ebook img

Some Results for the Apostol-Genocchi Polynomials of Higher Order PDF

16 Pages·2013·0.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Some Results for the Apostol-Genocchi Polynomials of Higher Order

BULLETINofthe Bull.Malays.Math.Sci.Soc.(2)36(2)(2013),465–479 MALAYSIANMATHEMATICAL SCIENCESSOCIETY http://math.usm.my/bulletin SomeResultsfortheApostol-GenocchiPolynomialsofHigherOrder 1HASSANJOLANY,2HESAMSHARIFIAND3R.EIZADIALIKELAYE 1SchoolofMathematics,StatisticsandComputerScience,UniversityofTehran,Iran 2DepartmentofMathematics,FacultyofScience,UniversityofShahed,Tehran,Iran 3FacultyofManagementandAccounting,QazvinIslamicAzadUniversity,Qazvin,Iran [email protected],2hsharifi@shahed.ac.ir,[email protected] Abstract. ThepresentpaperdealswithmultiplicationformulasfortheApostol-Genocchi polynomialsofhigherorderanddeducessomeexplicitrecursiveformulas. Someearlier resultsofCarlitzandHowardintermsofGenocchinumberscanbededuced.Weintroduce the2-variableApostol-Genocchipolynomialsandthenweconsiderthemultiplicationtheo- remfor2-variableGenocchipolynomials.AlsoweintroducegeneralizedApostol-Genocchi polynomialswitha,b,cparametersandweobtainseveralidentitiesongeneralizedApostol- Genocchipolynomialswitha,b,cparameters. 2010MathematicsSubjectClassification:11B68,05A10,05A15 Keywordsandphrases:Apostol-Genocchinumbersandpolynomials(ofhigherorder),gen- eralization of Genocchi numbers and polynomials, Raabe’s multiplication formula, mul- tiplicationformula,Bernoullinumbersandpolynomials,Eulernumbersandpolynomials, Stirlingnumbers. 1. Preliminariesandmotivation TheclassicalGenocchinumberscanbedefinedinanumberofways. Thewayinwhichit is defined is often determined by which sorts of applications they are intended to be used for. TheGenocchinumbershavewide-rangingapplicationsfromnumbertheoryandCom- binatorics to numerical analysis and other fields of applied mathematics. There exist two important definitions of the Genocchi numbers: the generating function definition, which is the most commonly used definition, and a Pascal-type triangle definition, first given by PhilipLudwigvonSeidel,anddiscussedin[38]. Assuch,itmakesitveryappealingforuse incombinatorialapplications. Theideabehindthisdefinition, asinPascal’striangle, isto utilizearecursiverelationshipgivingsomeinitialconditionstogeneratetheGenocchinum- bers. The combinatorics of the Genocchi numbers were developed by Dumont in [8] and variousco-authorsinthe70sand80s.DumontandFoataintroducedin1976athree-variable symmetricrefinementofGenocchinumbers,whichsatisfiesasimplerecurrencerelation. A six-variable generalization with many similar properties was later considered by Dumont. CommunicatedbyLeeSeeKeong. Received:September20,2010;Revised:June16,2011. 466 H.Jolany,H.SharifiandR.E.Alikelaye In[13],Jangetal. definedanewgeneralizationofGenocchinumbers,polyGenocchinum- bers. Kim in [14] gave a new concept for the q-extension of Genocchi numbers and gave somerelationsbetweenq-Genocchipolynomialsandq-Eulernumbers. In[36], Simseket al. investigatedtheq-GenocchizetafunctionandL-functionbyusinggeneratingfunctions andMellintransformation. Genocchinumbersareknowntocountalargevarietyofcom- binatorial objects, among which numerous sets of permutations. One of the applications of Genocchi numbers that was investigated by Jeff Remmel in [29] is counting the num- ber of up-down ascent sequences. Another application of Genocchi numbers is in Graph Theory. Forinstance,BooleannumbersoftheassociatedFerrersGraphsaretheGenocchi numbers of the second kind [5]. A third application of Genocchi numbers is in Automata Theory. One of the generalizations of Genocchi numbers that was first proposed by Han in [7] proves useful in enumerating the class of deterministic finite automata (DFA) that accept a finite language and in enumerating a generalization of permutations counted by Dumont. Recently S. Herrmann in [10], presented a relation between the f-vector of the boundaryandtheinteriorofasimplicialballdirectlyintermsofthe f-vectors. Themost interesting point about this equation is the occurrence of the Genocchi numbers G . In 2n the last decade, a surprising number of papers appeared proposing new generalizations of the classical Genocchi polynomials to real and complex variables or treating other topics relatedtoGenocchipolynomials. Qiu-MingLuoin[25]introducednewgeneralizationsof Genocchipolynomials,hedefinedtheApostol-Genocchipolynomialsofhigherorderandq- Apostol-Genocchi polynomials and he obtained a relationship between Apostol-Genocchi polynomials of higher order and Goyal-Laddha-Hurwitz-Lerch Zeta function. Next Qiu- MingLuoandH.M.Srivastavain[27]byApostol-Genocchipolynomialsofhigherorder derivedvariousexplicitseriesrepresentationsintermsoftheGaussianhypergeometricfunc- tion and the Hurwitz (or generalized) zeta function which yields a deeper insight into the effectiveness of this type of generalization. Also it is clear that Apostol-Genocchi poly- nomials of higher order are in a class of orthogonal polynomials and we know that most suchspecialfunctionsthatareorthogonalaresatisfiedinmultiplicationtheorem,sointhis present paper we show this property is true for Apostol-Genocchi polynomials of higher order. The study of Genocchi numbers and their combinatorial relations has received much attention [2,8,10,14,17,19,25,30,31,34,35,38]. In this paper we consider some com- binatorial relationships of the Apostol-Genocchi numbers of higher order. The unsigned Genocchinumbers{G2n}n(cid:62)1canbedefinedthroughtheirgeneratingfunction: ∞ x2n (cid:16)x(cid:17) ∑G =x.tan 2n (2n)! 2 n=1 andalso t2n (cid:16)t(cid:17) ∑(−1)nG =−ttanh 2n (2n)! 2 n(cid:62)1 So,bysimplecomputation (cid:16)t(cid:17) (cid:0)t(cid:1)2s+1 (cid:0)t(cid:1)2m (−1)m E t2m+2s+1 tanh = ∑ 2 . ∑(−1)mE 2 = ∑ 2m 2 (2s+1)! 2m(2m)! 22m+2s+1(2m)!(2s+1)! s(cid:62)0 m(cid:62)0 s,m(cid:62)0 SomeResultsfortheApostol-GenocchiPolynomials 467 n−1(cid:18)2n−1(cid:19)(−1)mE t2n−1 = ∑ ∑ 2m , 2m 22n−1(2n−1)! n(cid:62)1m=0 weobtainforn(cid:62)1, n−1 (cid:18)2n(cid:19) E G = ∑(−1)n−k−1(n−k) 2k 2n 2k 22n−2 k=0 whereE areEulernumbers. AlsotheGenocchinumbersG aredefinedbythegenerating k n function 2t ∞ tn G(t)= = ∑G , (|t|<π). et+1 nn! n=0 Ingeneral,itsatisfiesG =0,G =1,G =G =G =...G =0,andevencoefficients 0 1 3 5 7 2n+1 aregivenG =2(1−22n)B =2nE ,whereB areBernoullinumbersandE areEuler 2n 2n 2n−1 n n numbers. The first few Genocchi numbers for even integers are -1, 1, -3, 17, -155, 2073, ....ThefirstfewprimeGenocchinumbersare-3and17,whichoccuratn=6and8.There arenootherswithn<105. Forx∈R,weconsidertheGenocchipolynomialsasfollows 2t ∞ tn G(x,t)=G(t)ext = ext = ∑G (x) . et+1 n n! n=0 Inspecialcasex=0,wedefineG (0)=G . Becausewehave n n n (cid:18)n(cid:19) G (x)= ∑ G xn−k, n k k k=0 ItiseasytodeducethatG (x)arepolynomialsofdegreek. Here, wepresentsomeofthe k firstGenocchi’spolynomials: G (x)=1, G (x)=2x−1, G (x)=3x2−3x, G (x)=4x3−6x2+1, 1 2 3 4 G (x)=5x4−10x3+5x, G (x)=6x5−15x4+15x2−3, ... 5 6 The classical Bernoulli polynomials (of higher order) B(α)(x) and Euler polynomials (of n higher order) E(α)(x),(α ∈C), are usually defined by means of the following generating n functions[15,16,19,21,28,32,33] (cid:16) z (cid:17)α ∞ zn exz= ∑B(α)(x) , (|z|<2π) ez−1 n n! n=0 and (cid:16) 2 (cid:17)α ∞ zn exz= ∑E(α)(x) , (|z|<π) ez+1 n n! n=0 Sothat,obviously, B (x):=B1(x) and E (x):=E(1)(x). n n n n In2002,Q.M.Luoetal.(see[9,23,24])definedthegeneralizationofBernoullipolynomials andEulernumbers,asfollows tcxt ∞ B (x;a,b,c) b = ∑ n tn, (|tln |<2π) bt−at n! a n=0 2 ∞ tn b = ∑E (a,b) , (|tln |<π). bt+at n n! a n=0 468 H.Jolany,H.SharifiandR.E.Alikelaye Here,wegiveananalogousdefinitionforgeneralizedApostol-Genocchipolynomials. Leta,b>0,TheGeneralizedApostol-GenocchiNumbersandApostol-Genocchipoly- nomialswitha,b,cparametersaredefinedby 2t ∞ tn = ∑G (a,b;λ) λbt+at n n! n=0 2t ∞ tn ext = ∑G (x,a,b;λ) λbt+at n n! n=0 2t ∞ tn cxt = ∑G (x,a,b,c;λ) λbt+at n n! n=0 respectively. Forarealorcomplexparameterα, TheApostol-Genocchipolynomialswitha,b,cpa- rametersoforderα,G(α)(x;a,b;λ),eachofdegreenisxaswellasinα,aredefinedbythe n followinggeneratingfunctions (cid:16) 2t (cid:17)α ∞ tn exz= ∑G(α)(x,a,b;λ) , λbt+at n n! n=0 (1) Clearly,wehaveG (x,a,b;λ)=G (x;a,b;λ). n n Now, weintroducethe2-variableApostol-Genocchipolynomialsandthenweconsider themultiplicationtheoremfor2-variableApostol-GenocchiPolynomials. Westartwiththe definitionofApostol-GenocchipolynomialsG (x;λ). TheApostol-GenocchiPolynomials n G (x;λ)invariablexaredefinedbymeansofthegeneratingfunction n 2zexz ∞ zn = ∑G (x;λ) (|z|<2π whenλ =1,|z|<|logλ|whenλ (cid:54)=1), λez+1 n n! n=0 with,ofcourse, G (λ):=G (0;λ), n n WhereG (λ)denotestheso-calledApostol-Genocchinumbers. n Also(see[1,16,20,22,25,26,32])Apostol-GenocchiPolynomialsG(α)(x;λ)oforderα n invariablexaredefinedbymeansofthegeneratingfunction: (cid:18) 2z (cid:19)α ∞ zn exz= ∑G(α)(x;λ) λez+1 n n! n=0 with,ofcourse,G(α)(λ):=Gα(0;λ).WhereGα(λ)denotestheso-calledApostol-Genocchi n n n numbersofhigherorder. Ifweset, (cid:18) 2t (cid:19)α φ(x,t;α)= ext, et+1 then, ∂φ =tφ, ∂x and, ∂φ (cid:26)α+tx αet (cid:27)∂φ t − − =0. ∂t t et+1 ∂x SomeResultsfortheApostol-GenocchiPolynomials 469 Next, we introduce the class of Apostol-Genocchi numbers as follows (for more infor- mationsee[38]). [n] 2 n!G (λ)G (λ) G (λ)= ∑ n−2s s H n s!(n−2s)! s=0 Thegeneratingfunctionof G (λ)isprovidedby H n 4t3 ∞ tn = ∑ G (λ) (λet+1)(λet2+1) H n n! n=0 andthegeneralizationof G (λ)for(a,b)(cid:54)=0,is H n 4t3 ∞ tn = ∑ G (a,b;λ) (λeat+1)(λebt2+1) H n n! n=0 where 1 [n2] n!an−2sbsG (λ)G (λ) G (a,b;λ)= ∑ n−2s s H n ab s!(n−2s)! n=0 The main object of the present paper is to investigate the multiplication formulas for the Apostol-typepolynomials. Luoin[22]definedthemultiplealternatingsumsas (cid:18) (cid:19) l Z(l)(m;λ)=(−1)l ∑ (−λ)v1+2v2+...+mvm k v ,v ,...,v 0≤v1,v2,...,vm≤l 1 2 m v1+v2+...+vm=(cid:96) m Z (m;λ)= ∑(−1)j+1λjjk=λ−λ22k+...+(−1)m+1λmmk k j=1 m Z (m)= ∑(−1)j+1jk=1−2k+...+(−1)m+1mk, (m,k,l∈N ;λ ∈C) k 0 j=1 whereN :=N∪{0}, (N:={1,2,3,...}). 0 2. ThemultiplicationformulasfortheApostol-Genocchipolynomialsofhigherorder In this Section, we obtain some interesting new relations and properties associated with Apostol-Genocchipolynomialsofhigherorderandthenderiveseveralelementaryproper- tiesincludingrecurrencerelationsforGenocchinumbers. Firstofallweprovethemultipli- cationtheoremofthesepolynomials. Theorem 2.1. For m∈N, n∈N , α,λ ∈C, the following multiplication formula of the 0 Apostol-Genocchipolynomialsofhigherorderholdstrue: (cid:18) α (cid:19) (cid:16) r (cid:17) (2.1) G(α)(mx;λ)=mn−α ∑ (−λ)rG(α) x+ ;λm n n v ,v ,...,v m v1,v2,...,vm−1≥0 1 2 m−1 wherer=v +2v +...+(m−1)v ,(misodd) 1 2 m−1 Proof. Itiseasytoobservethat 1 1−λet+λ2e2t+...+(−λ)m−1e(m−1)t (2.2) =− λet+1 (−λ)memt−1 470 H.Jolany,H.SharifiandR.E.Alikelaye Butwehave,ifx ∈C i (cid:18) (cid:19) n (2.3) (x +x +...+x )n= ∑ xa1xa2...xam 1 2 m a ,a ,...,a 1 2 m a1,a2,...,am(cid:62)0 1 2 m a1+a2+...am=n Thelastsummationtakesplaceoverallpositiveorzerointegersa (cid:62)0suchthata +a + i 1 2 ...+a =n,where m (cid:18) (cid:19) n n! := a ,a ,...,a a a !...a ! 1 2 m 1! 2 m Sobyapplying(2.2)onthefollowingfirstequalitysignandsetting(x =1,x =(−λ)kekt 1 k fork≥2)andn=α in(2.3)onthefollowingsecondequalitysign,weobtain ∞ tn (cid:18) 2t (cid:19)α (cid:18) 2t (cid:19)α(cid:32)m−1 (cid:33)α ∑G(α)(mx;λ) = emxt = ∑(−λ)kekt emxt n n! λet+1 λmemt+1 n=0 k=0 = ∑ (cid:18) α (cid:19)(−λ)r(cid:18) 2t (cid:19)αe(x+mr)mt v ,v ,...,v λmemt+1 v1,v2,...,vm−1(cid:62)0 1 2 m−1 ∞ (cid:32) (cid:18) α (cid:19) (cid:16) r (cid:17)(cid:33)tn = ∑ mn−α ∑ (−λ)rG(α) x+ ;λm n v ,v ,...,v m n! n=0 v1,v2,...,vm(cid:62)0 1 2 m Bycomparingthecoefficientoftn/(n!)onbothsidesoflastequation,proofiscomplete. In terms of the generalized Apostol-Genocchi polynomials, by setting λ =1 in Theo- rem2.1, weobtainthefollowingexplicitformulathatiscalledmultiplicationtheoremfor Genocchipolynomialsofhigherorder. Corollary2.1. Form∈N,n∈N ,α,∈C,wehave 0 (cid:18) α (cid:19) (cid:16) r(cid:17) G(α)(mx)=mn−α ∑ (−1)rG(α) x+ (misodd). n n v ,v ,...,v m v1,v2,...,vm−1(cid:62)0 1 2 m−1 AndusingCorollary2.1,(bysettingα =1),wegetCorollary2.2thatisthemainresult of[37]andiscalledmultiplicationTheoremforGenocchipolynomials. Corollary2.2. Form∈N,n∈N ,wehave 0 m−1 (cid:18) k(cid:19) G (mx)=mn−1 ∑(−1)kG x+ (misodd). n n m k=0 Now,weconsiderthemultiplicationformulafortheApostol-Genocchinumberswhenm iseven. Theorem2.2. Form∈N(meven),n∈N,α,λ ∈C,thefollowingmultiplicationformula oftheApostol-Genocchipolynomialsofhigherorderholdstrue: (cid:18) α (cid:19) (cid:16) r (cid:17) G(α)(mx;λ)=(−2)αmn−α ∑ (−λ)rB(α) x+ ,λm , n n v ,v ,...,v m v1,v2,...,vm−1(cid:62)0 1 2 m−1 wherer=v +2v +...+(m−1)v . 1 2 m−1 SomeResultsfortheApostol-GenocchiPolynomials 471 Proof. Itiseasytoobservethat 1 1−λet+λ2e2t+...+(−λ)m−1e(m−1)t =− λet+1 (−λ)memt−1 So,weobtain ∞ tn ∑G(α)(mx;λ) n n! n=0 (cid:18) 2t (cid:19)α (cid:18) t (cid:19)α (cid:18) t (cid:19)α(cid:32)m−1 (cid:33)α = emxt =2α emxt =(−2)α ∑(−λet)k emxt λet+1 λet+1 λmemt−1 k=0 =(−2)α ∑ (cid:18) α (cid:19)(−λ)r(cid:18) t (cid:19)αe(x+mr)mt v ,v ,...,v λmem−1 v1,v2,...,vm−1(cid:62)0 1 2 m−1 ∞ (cid:32) (cid:18) α (cid:19) (cid:16) r (cid:17)(cid:33)tn = ∑ (−2)αmn−α ∑ (−λ)r×B(α) x+ ;λm n v ,v ,...,v m n! n=0 v1,v2,...,vm−1(cid:62)0 1 2 m−1 Bycomparingthecoefficientsoftn/(n!)onbothsidesproofwillbecomplete. Next, usingTheorem2.2, (withλ =1), weobtaintheGenocchipolynomialsofhigher ordercanbeexpressedbytheBernoullipolynomialsofhigherorderwhenmiseven Corollary2.3. Form∈N(meven),n∈N ,α ∈C,weget 0 (cid:18) α (cid:19) (cid:16) r(cid:17) G(α)(mx)=(−2)αmn−α ∑ (−1)rBα x+ . n v ,v ,...,v n m v1,v2,...,vm−1(cid:62)0 1 2 m−1 Alsobyapplyingα=1,inCorollary2.3weobtainthefollowingassertionthatisoneof themostremarkableidentitiesinareaofGenocchipolynomials. Corollary2.4. Form∈N,n∈N ,weobtain 0 m−1 (cid:18) k(cid:19) G (mx)=−2mn−1 ∑(−1)kB x+ miseven. n n m k=0 Obviously, the result of Corollary 2.4 is analogous with the well-known Raabe’s mul- (l) (l) tiplication formula. Now, we present explicit evaluations of Z (m;λ), Z (λ), Z (m) by n n n Apostol-Genocchipolynomials. Theorem2.3. Form,n,l∈N ,λ ∈C,wehave 0 l (cid:18)l(cid:19)(−1)j(m+1)λmj+l n+l(cid:18)n+l(cid:19) Z(l)(m;λ)=2−l ∑ ∑ G(j)(mj+l;λ)G(l−j) (λ) n j (n+1) k k n+l−k j=0 l k=0 where(n) =1,(n) =n(n+1)...(n+k−1). 0 k (l) Proof. BydefinitionofZ (m;λ),wecalculatethefollowingsum n ∞ tn ∑Z(l)(m;λ) n n! n=0 472 H.Jolany,H.SharifiandR.E.Alikelaye   ∞ (cid:18) l (cid:19) tn = ∑(−1)l ∑ v ,v ,...,v (−λ)λ1+2λ2+...+mλm(v1+2v2+...+mvm)nn! n=0 0(cid:54)v1,v2,...,vm(cid:54)l 1 2 m v1+v2+...+vm=l (cid:18) (cid:19) l =(−1)l ∑ (−λet)λ1+2λ2+...+mλm v ,v ,...,v 0(cid:54)v1,v2,...,vm(cid:54)l 1 2 m v1+v2+...+vm=l (cid:32) (cid:33)l =(cid:0)λet−λ2e2t+...+(−1)m+1λmemt(cid:1)l = (−1)m+1λm+1e(m+1)t + λet λet+1 λet+1 l (cid:18)l(cid:19)(cid:34)2t(−1)m+1λm+1e(m+1)t(cid:35)j(cid:20) 2tλet (cid:21)l−j =(2t)−l ∑ j λet+1 λet+1 j=0 l (cid:18)l(cid:19) ∞ tn ∞ tn =(2t)−l ∑ (−1)j(m+1)λmj+l ∑G(j)(mj+l;λ) ∑G(l−j)(λ) n n j n! n! j=0 n=0 n=0 ∞ (cid:34) l (cid:18)j(cid:19)(−1)j(m+1)λmj+l n+l(cid:18)n+l(cid:19) (cid:35)tn =2−l ∑ ∑ ∑ G(j)(mj+l;λ)G(l−j) (λ) l (n+1) k k n+l−k n! n=0 j=0 l k=0 bycomparingthecoefficientsoftn/(n!)onbothsides,proofwillbecomplete. As a direct result, using λ =1 in Theorem 2.3, we derive an explicit representation of (l) multiple alternating sums Z (m), in terms of the Genocchi polynomials of higher order. n Wealsodeducetheirspecialcasesandapplicationswhichleadtothecorrespondingresults fortheGenocchipolynomials. Corollary2.5. Form,n,l∈N ,thefollowingformulaholdstrueintermsoftheGenocchi 0 polynimials l (cid:18)l(cid:19)(−1)j(m+1) n+l(cid:18)n+l(cid:19) Z(l)(m)=2−l ∑ ∑ G(j)(mj+l)Gl−j n j (n+1) k k n+l−k j=0 l k=0 where(n) =1,(n) =n(n+1)...(n+k−1). 0 k Next we investigate some of the recursive formulas for the Apostol-Genocchi numbers of higher order that are analogous to the results of Howard [3,11,12] and we deduce that theyconstituteausefulspecialcase. Theorem2.4. Letmbeodd,n,l∈N ,λ ∈C,thenwehave 0 n (cid:18)n(cid:19) mnG(l)(λm)−mlG(l)(λ)=(−1)l−1∑ mkG(l)(λm)Z(l) (m−1;λ). n n k k n−k k=0 Proof. Bytakingx=0,α =lin(2.1),wherer=v +2v +...+(m−1)v weobtain 1 2 m−1 (cid:18) l (cid:19) (cid:16)r (cid:17) mlG(l)(λ)=mn ∑ (−λ)rG(l) ,λm n n v ,v ,...,v m v1,v2,...,vm−1(cid:62)0 1 2 m−1 Butweknow n (cid:18)n(cid:19) G(l)(x;λ)= ∑ G(l)(λ)xn−k n k k k=0 SomeResultsfortheApostol-GenocchiPolynomials 473 So,weobtain (cid:18) l (cid:19) n (cid:18)n(cid:19) (cid:16)r(cid:17)n−k mlG(l)(λ)=mn ∑ (−λ)r ∑ G(l)(λm) n v ,v ,...,v k k m v1,v2,...,vm−1(cid:62)0 1 2 m−1 k=0 n (cid:18)n(cid:19) (cid:18) l (cid:19) = ∑ mkG(l)(λm) ∑ (−λ)rrn−k k k v ,v ,...,v k=0 0(cid:54)v1,v2,...,vm−1(cid:54)l 1 2 m−1 n (cid:18)n(cid:19) (cid:18) l (cid:19) = ∑ mkG(l)(λm) ∑ (−λ)rrn−k+mnG(l)(λm) k k v ,v ,...,v n k=0 0(cid:54)v1,v2,...,vm−1(cid:54)l 1 2 m−1 v1+v2+...vm−1=l n (cid:18)n(cid:19) =(−1)l ∑ mkG(l)(λm)Z(l) (m−1;λ)+mnG(l)(λm) k k n−k n k=0 Soproofiscomplete. Furthermore,wederivesomewell-knownresults(see[14])involvingGenocchipolyno- mials of higher order and Genocchi polynomials which we state here. By setting λ =1, l=1inTheorem2.4,wegetCorollaries2.6,2.7,respectively. Corollary2.6. Letmbeodd,n,l∈N ,thenwehave 0 n (cid:18)n(cid:19) (mn−ml)G(l)=(−1)l−1∑ G(l)Z(l) (m−1). n k k n−k k=0 Corollary2.7. Letmbeodd,n∈N ,λ ∈C,thenwehave 0 n (cid:18)n(cid:19) mnG (λm)−mG (λ)= ∑ mkG (λm)Z (m−1;λ). n n k n−k k k=0 Alsobysettingλ =1inCorollary2.7,wegetthefollowingassertionthatisanalogous totheformulaofHowardintermsofGenocchinumbers.See[11,12]formoreinformation. Corollary2.8. Formbeodd,n,l∈N ,λ ∈C,weobtain 0 n (cid:18)n(cid:19) (mn−m)G = ∑ mkG Z (m−1). n k n−k k k=0 Next,weinvestigatethegeneralizationofHoward’sformulaintermsofApostol-Genocchi numbers,whenmiseven. Theorem2.5. Letmbeeven,n,l∈N ,λ ∈C,thefollowingformula 0 n (cid:18)n(cid:19) mlG(l)(λ)−(−2)lmnB(l)(λm)=2l ∑ mkB(l)(λm)Z(l) (m−1;λ) n n k k n−k k=0 holdstrue,wherer=v +2v +...+(m−1)v . 1 2 m−1 Proof. Wehave (cid:18) l (cid:19) (cid:16)r (cid:17) G(l)(λ)=(−2)lmn−l ∑ (−λ)rB(l) ,λm n n v ,v ,...,v m v1,v2,...,vm−1(cid:62)0 1 2 m−1 Butweknow n (cid:18)n(cid:19) B(l)(x;λ)= ∑ B(l)(λ)xn−k n k k k=0 474 H.Jolany,H.SharifiandR.E.Alikelaye Soweget (cid:18) l (cid:19) n (cid:18)n(cid:19) (cid:16)r(cid:17)n−k mlG(l)(λ)=(−2)lmn ∑ (−λ)r ∑ B(l)(λm) n v ,v ,...,v k k m v1,v2,...,vm−1(cid:62)0 1 2 m−1 k=0 n (cid:18)n(cid:19) (cid:18) l (cid:19) =(−2)l ∑ mkB(l)(λm) ∑ (−λ)rrn−k k k v ,v ,...,v k=0 v1,v2,...,vm−1(cid:62)0 1 2 m−1 n (cid:18)n(cid:19) =2l ∑ mkB(l)(λm)Z(l) (m−1;λ)+(−2)lmnB(l)(λm) k k n−k n k=0 Soweobtain n (cid:18)n(cid:19) mlG(l)(λ)−(−2)lmnB(l)(λm)=2l ∑ mkB(l)(λm)Z(l) (m−1;λ) n n k k n−k k=0 Sotheproofiscomplete. Alsobylettingλ =1inTheorem2.5,weobtainthefollowingassertion. Corollary2.9. Letmbeeven,n,l∈N ,thenweget 0 n (cid:18)n(cid:19) mlG(l)−(−2)lmnB(l)=2l ∑ mkB(l)Z(l) (m−1) n n k n n−k k=0 HerewepresentarecurrencerelationforApostol-Genocchinumbersofhigherorder. Theorem2.6. Letn,k(cid:62)1,thenwehave (cid:16) 2k(cid:17) (n+1) (n) (n) G (λ)=2kG (λ)− 2− G (λ) k k−1 n k Proof. Let us put G (t;λ)=(2t/(λet+1))n. Then G (t;λ) is the generating function of n n (cid:48) higherorderApostol-Genocchinumbers. ThederivativeG(t;λ)=(d/dt)G (t;λ)isequal n to (cid:18)1 λet (cid:19) n n n − G (t;λ)= G (t;λ)−nG (t;λ)+ G (t;λ) t λet+1 n t n n λet+1 n and n (cid:48) tG (t;λ)=nG (t;λ)−ntG (t;λ)+ G (t) n n n 2 n+1 soweobtain G(n)(λ) G(n)(λ) G(n) (λ) nG(n+1)(λ) k =n k −n k−1 + k (k−1)! k! (k−1)! 2 k! fork(cid:62)1. Thisformulacanwrittenas (cid:18) (cid:19) 2k (n+1) (n) (n) G (λ)=2kG (λ)− 2− G (λ) k k−1 n k soproofiscomplete.

Description:
rem for 2-variable Genocchi polynomials. Also we introduce generalized Apostol-Genocchi polynomials with a,b,c parameters and we obtain several
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.