BULLETINofthe Bull.Malays.Math.Sci.Soc.(2)36(2)(2013),465–479 MALAYSIANMATHEMATICAL SCIENCESSOCIETY http://math.usm.my/bulletin SomeResultsfortheApostol-GenocchiPolynomialsofHigherOrder 1HASSANJOLANY,2HESAMSHARIFIAND3R.EIZADIALIKELAYE 1SchoolofMathematics,StatisticsandComputerScience,UniversityofTehran,Iran 2DepartmentofMathematics,FacultyofScience,UniversityofShahed,Tehran,Iran 3FacultyofManagementandAccounting,QazvinIslamicAzadUniversity,Qazvin,Iran [email protected],2hsharifi@shahed.ac.ir,[email protected] Abstract. ThepresentpaperdealswithmultiplicationformulasfortheApostol-Genocchi polynomialsofhigherorderanddeducessomeexplicitrecursiveformulas. Someearlier resultsofCarlitzandHowardintermsofGenocchinumberscanbededuced.Weintroduce the2-variableApostol-Genocchipolynomialsandthenweconsiderthemultiplicationtheo- remfor2-variableGenocchipolynomials.AlsoweintroducegeneralizedApostol-Genocchi polynomialswitha,b,cparametersandweobtainseveralidentitiesongeneralizedApostol- Genocchipolynomialswitha,b,cparameters. 2010MathematicsSubjectClassification:11B68,05A10,05A15 Keywordsandphrases:Apostol-Genocchinumbersandpolynomials(ofhigherorder),gen- eralization of Genocchi numbers and polynomials, Raabe’s multiplication formula, mul- tiplicationformula,Bernoullinumbersandpolynomials,Eulernumbersandpolynomials, Stirlingnumbers. 1. Preliminariesandmotivation TheclassicalGenocchinumberscanbedefinedinanumberofways. Thewayinwhichit is defined is often determined by which sorts of applications they are intended to be used for. TheGenocchinumbershavewide-rangingapplicationsfromnumbertheoryandCom- binatorics to numerical analysis and other fields of applied mathematics. There exist two important definitions of the Genocchi numbers: the generating function definition, which is the most commonly used definition, and a Pascal-type triangle definition, first given by PhilipLudwigvonSeidel,anddiscussedin[38]. Assuch,itmakesitveryappealingforuse incombinatorialapplications. Theideabehindthisdefinition, asinPascal’striangle, isto utilizearecursiverelationshipgivingsomeinitialconditionstogeneratetheGenocchinum- bers. The combinatorics of the Genocchi numbers were developed by Dumont in [8] and variousco-authorsinthe70sand80s.DumontandFoataintroducedin1976athree-variable symmetricrefinementofGenocchinumbers,whichsatisfiesasimplerecurrencerelation. A six-variable generalization with many similar properties was later considered by Dumont. CommunicatedbyLeeSeeKeong. Received:September20,2010;Revised:June16,2011. 466 H.Jolany,H.SharifiandR.E.Alikelaye In[13],Jangetal. definedanewgeneralizationofGenocchinumbers,polyGenocchinum- bers. Kim in [14] gave a new concept for the q-extension of Genocchi numbers and gave somerelationsbetweenq-Genocchipolynomialsandq-Eulernumbers. In[36], Simseket al. investigatedtheq-GenocchizetafunctionandL-functionbyusinggeneratingfunctions andMellintransformation. Genocchinumbersareknowntocountalargevarietyofcom- binatorial objects, among which numerous sets of permutations. One of the applications of Genocchi numbers that was investigated by Jeff Remmel in [29] is counting the num- ber of up-down ascent sequences. Another application of Genocchi numbers is in Graph Theory. Forinstance,BooleannumbersoftheassociatedFerrersGraphsaretheGenocchi numbers of the second kind [5]. A third application of Genocchi numbers is in Automata Theory. One of the generalizations of Genocchi numbers that was first proposed by Han in [7] proves useful in enumerating the class of deterministic finite automata (DFA) that accept a finite language and in enumerating a generalization of permutations counted by Dumont. Recently S. Herrmann in [10], presented a relation between the f-vector of the boundaryandtheinteriorofasimplicialballdirectlyintermsofthe f-vectors. Themost interesting point about this equation is the occurrence of the Genocchi numbers G . In 2n the last decade, a surprising number of papers appeared proposing new generalizations of the classical Genocchi polynomials to real and complex variables or treating other topics relatedtoGenocchipolynomials. Qiu-MingLuoin[25]introducednewgeneralizationsof Genocchipolynomials,hedefinedtheApostol-Genocchipolynomialsofhigherorderandq- Apostol-Genocchi polynomials and he obtained a relationship between Apostol-Genocchi polynomials of higher order and Goyal-Laddha-Hurwitz-Lerch Zeta function. Next Qiu- MingLuoandH.M.Srivastavain[27]byApostol-Genocchipolynomialsofhigherorder derivedvariousexplicitseriesrepresentationsintermsoftheGaussianhypergeometricfunc- tion and the Hurwitz (or generalized) zeta function which yields a deeper insight into the effectiveness of this type of generalization. Also it is clear that Apostol-Genocchi poly- nomials of higher order are in a class of orthogonal polynomials and we know that most suchspecialfunctionsthatareorthogonalaresatisfiedinmultiplicationtheorem,sointhis present paper we show this property is true for Apostol-Genocchi polynomials of higher order. The study of Genocchi numbers and their combinatorial relations has received much attention [2,8,10,14,17,19,25,30,31,34,35,38]. In this paper we consider some com- binatorial relationships of the Apostol-Genocchi numbers of higher order. The unsigned Genocchinumbers{G2n}n(cid:62)1canbedefinedthroughtheirgeneratingfunction: ∞ x2n (cid:16)x(cid:17) ∑G =x.tan 2n (2n)! 2 n=1 andalso t2n (cid:16)t(cid:17) ∑(−1)nG =−ttanh 2n (2n)! 2 n(cid:62)1 So,bysimplecomputation (cid:16)t(cid:17) (cid:0)t(cid:1)2s+1 (cid:0)t(cid:1)2m (−1)m E t2m+2s+1 tanh = ∑ 2 . ∑(−1)mE 2 = ∑ 2m 2 (2s+1)! 2m(2m)! 22m+2s+1(2m)!(2s+1)! s(cid:62)0 m(cid:62)0 s,m(cid:62)0 SomeResultsfortheApostol-GenocchiPolynomials 467 n−1(cid:18)2n−1(cid:19)(−1)mE t2n−1 = ∑ ∑ 2m , 2m 22n−1(2n−1)! n(cid:62)1m=0 weobtainforn(cid:62)1, n−1 (cid:18)2n(cid:19) E G = ∑(−1)n−k−1(n−k) 2k 2n 2k 22n−2 k=0 whereE areEulernumbers. AlsotheGenocchinumbersG aredefinedbythegenerating k n function 2t ∞ tn G(t)= = ∑G , (|t|<π). et+1 nn! n=0 Ingeneral,itsatisfiesG =0,G =1,G =G =G =...G =0,andevencoefficients 0 1 3 5 7 2n+1 aregivenG =2(1−22n)B =2nE ,whereB areBernoullinumbersandE areEuler 2n 2n 2n−1 n n numbers. The first few Genocchi numbers for even integers are -1, 1, -3, 17, -155, 2073, ....ThefirstfewprimeGenocchinumbersare-3and17,whichoccuratn=6and8.There arenootherswithn<105. Forx∈R,weconsidertheGenocchipolynomialsasfollows 2t ∞ tn G(x,t)=G(t)ext = ext = ∑G (x) . et+1 n n! n=0 Inspecialcasex=0,wedefineG (0)=G . Becausewehave n n n (cid:18)n(cid:19) G (x)= ∑ G xn−k, n k k k=0 ItiseasytodeducethatG (x)arepolynomialsofdegreek. Here, wepresentsomeofthe k firstGenocchi’spolynomials: G (x)=1, G (x)=2x−1, G (x)=3x2−3x, G (x)=4x3−6x2+1, 1 2 3 4 G (x)=5x4−10x3+5x, G (x)=6x5−15x4+15x2−3, ... 5 6 The classical Bernoulli polynomials (of higher order) B(α)(x) and Euler polynomials (of n higher order) E(α)(x),(α ∈C), are usually defined by means of the following generating n functions[15,16,19,21,28,32,33] (cid:16) z (cid:17)α ∞ zn exz= ∑B(α)(x) , (|z|<2π) ez−1 n n! n=0 and (cid:16) 2 (cid:17)α ∞ zn exz= ∑E(α)(x) , (|z|<π) ez+1 n n! n=0 Sothat,obviously, B (x):=B1(x) and E (x):=E(1)(x). n n n n In2002,Q.M.Luoetal.(see[9,23,24])definedthegeneralizationofBernoullipolynomials andEulernumbers,asfollows tcxt ∞ B (x;a,b,c) b = ∑ n tn, (|tln |<2π) bt−at n! a n=0 2 ∞ tn b = ∑E (a,b) , (|tln |<π). bt+at n n! a n=0 468 H.Jolany,H.SharifiandR.E.Alikelaye Here,wegiveananalogousdefinitionforgeneralizedApostol-Genocchipolynomials. Leta,b>0,TheGeneralizedApostol-GenocchiNumbersandApostol-Genocchipoly- nomialswitha,b,cparametersaredefinedby 2t ∞ tn = ∑G (a,b;λ) λbt+at n n! n=0 2t ∞ tn ext = ∑G (x,a,b;λ) λbt+at n n! n=0 2t ∞ tn cxt = ∑G (x,a,b,c;λ) λbt+at n n! n=0 respectively. Forarealorcomplexparameterα, TheApostol-Genocchipolynomialswitha,b,cpa- rametersoforderα,G(α)(x;a,b;λ),eachofdegreenisxaswellasinα,aredefinedbythe n followinggeneratingfunctions (cid:16) 2t (cid:17)α ∞ tn exz= ∑G(α)(x,a,b;λ) , λbt+at n n! n=0 (1) Clearly,wehaveG (x,a,b;λ)=G (x;a,b;λ). n n Now, weintroducethe2-variableApostol-Genocchipolynomialsandthenweconsider themultiplicationtheoremfor2-variableApostol-GenocchiPolynomials. Westartwiththe definitionofApostol-GenocchipolynomialsG (x;λ). TheApostol-GenocchiPolynomials n G (x;λ)invariablexaredefinedbymeansofthegeneratingfunction n 2zexz ∞ zn = ∑G (x;λ) (|z|<2π whenλ =1,|z|<|logλ|whenλ (cid:54)=1), λez+1 n n! n=0 with,ofcourse, G (λ):=G (0;λ), n n WhereG (λ)denotestheso-calledApostol-Genocchinumbers. n Also(see[1,16,20,22,25,26,32])Apostol-GenocchiPolynomialsG(α)(x;λ)oforderα n invariablexaredefinedbymeansofthegeneratingfunction: (cid:18) 2z (cid:19)α ∞ zn exz= ∑G(α)(x;λ) λez+1 n n! n=0 with,ofcourse,G(α)(λ):=Gα(0;λ).WhereGα(λ)denotestheso-calledApostol-Genocchi n n n numbersofhigherorder. Ifweset, (cid:18) 2t (cid:19)α φ(x,t;α)= ext, et+1 then, ∂φ =tφ, ∂x and, ∂φ (cid:26)α+tx αet (cid:27)∂φ t − − =0. ∂t t et+1 ∂x SomeResultsfortheApostol-GenocchiPolynomials 469 Next, we introduce the class of Apostol-Genocchi numbers as follows (for more infor- mationsee[38]). [n] 2 n!G (λ)G (λ) G (λ)= ∑ n−2s s H n s!(n−2s)! s=0 Thegeneratingfunctionof G (λ)isprovidedby H n 4t3 ∞ tn = ∑ G (λ) (λet+1)(λet2+1) H n n! n=0 andthegeneralizationof G (λ)for(a,b)(cid:54)=0,is H n 4t3 ∞ tn = ∑ G (a,b;λ) (λeat+1)(λebt2+1) H n n! n=0 where 1 [n2] n!an−2sbsG (λ)G (λ) G (a,b;λ)= ∑ n−2s s H n ab s!(n−2s)! n=0 The main object of the present paper is to investigate the multiplication formulas for the Apostol-typepolynomials. Luoin[22]definedthemultiplealternatingsumsas (cid:18) (cid:19) l Z(l)(m;λ)=(−1)l ∑ (−λ)v1+2v2+...+mvm k v ,v ,...,v 0≤v1,v2,...,vm≤l 1 2 m v1+v2+...+vm=(cid:96) m Z (m;λ)= ∑(−1)j+1λjjk=λ−λ22k+...+(−1)m+1λmmk k j=1 m Z (m)= ∑(−1)j+1jk=1−2k+...+(−1)m+1mk, (m,k,l∈N ;λ ∈C) k 0 j=1 whereN :=N∪{0}, (N:={1,2,3,...}). 0 2. ThemultiplicationformulasfortheApostol-Genocchipolynomialsofhigherorder In this Section, we obtain some interesting new relations and properties associated with Apostol-Genocchipolynomialsofhigherorderandthenderiveseveralelementaryproper- tiesincludingrecurrencerelationsforGenocchinumbers. Firstofallweprovethemultipli- cationtheoremofthesepolynomials. Theorem 2.1. For m∈N, n∈N , α,λ ∈C, the following multiplication formula of the 0 Apostol-Genocchipolynomialsofhigherorderholdstrue: (cid:18) α (cid:19) (cid:16) r (cid:17) (2.1) G(α)(mx;λ)=mn−α ∑ (−λ)rG(α) x+ ;λm n n v ,v ,...,v m v1,v2,...,vm−1≥0 1 2 m−1 wherer=v +2v +...+(m−1)v ,(misodd) 1 2 m−1 Proof. Itiseasytoobservethat 1 1−λet+λ2e2t+...+(−λ)m−1e(m−1)t (2.2) =− λet+1 (−λ)memt−1 470 H.Jolany,H.SharifiandR.E.Alikelaye Butwehave,ifx ∈C i (cid:18) (cid:19) n (2.3) (x +x +...+x )n= ∑ xa1xa2...xam 1 2 m a ,a ,...,a 1 2 m a1,a2,...,am(cid:62)0 1 2 m a1+a2+...am=n Thelastsummationtakesplaceoverallpositiveorzerointegersa (cid:62)0suchthata +a + i 1 2 ...+a =n,where m (cid:18) (cid:19) n n! := a ,a ,...,a a a !...a ! 1 2 m 1! 2 m Sobyapplying(2.2)onthefollowingfirstequalitysignandsetting(x =1,x =(−λ)kekt 1 k fork≥2)andn=α in(2.3)onthefollowingsecondequalitysign,weobtain ∞ tn (cid:18) 2t (cid:19)α (cid:18) 2t (cid:19)α(cid:32)m−1 (cid:33)α ∑G(α)(mx;λ) = emxt = ∑(−λ)kekt emxt n n! λet+1 λmemt+1 n=0 k=0 = ∑ (cid:18) α (cid:19)(−λ)r(cid:18) 2t (cid:19)αe(x+mr)mt v ,v ,...,v λmemt+1 v1,v2,...,vm−1(cid:62)0 1 2 m−1 ∞ (cid:32) (cid:18) α (cid:19) (cid:16) r (cid:17)(cid:33)tn = ∑ mn−α ∑ (−λ)rG(α) x+ ;λm n v ,v ,...,v m n! n=0 v1,v2,...,vm(cid:62)0 1 2 m Bycomparingthecoefficientoftn/(n!)onbothsidesoflastequation,proofiscomplete. In terms of the generalized Apostol-Genocchi polynomials, by setting λ =1 in Theo- rem2.1, weobtainthefollowingexplicitformulathatiscalledmultiplicationtheoremfor Genocchipolynomialsofhigherorder. Corollary2.1. Form∈N,n∈N ,α,∈C,wehave 0 (cid:18) α (cid:19) (cid:16) r(cid:17) G(α)(mx)=mn−α ∑ (−1)rG(α) x+ (misodd). n n v ,v ,...,v m v1,v2,...,vm−1(cid:62)0 1 2 m−1 AndusingCorollary2.1,(bysettingα =1),wegetCorollary2.2thatisthemainresult of[37]andiscalledmultiplicationTheoremforGenocchipolynomials. Corollary2.2. Form∈N,n∈N ,wehave 0 m−1 (cid:18) k(cid:19) G (mx)=mn−1 ∑(−1)kG x+ (misodd). n n m k=0 Now,weconsiderthemultiplicationformulafortheApostol-Genocchinumberswhenm iseven. Theorem2.2. Form∈N(meven),n∈N,α,λ ∈C,thefollowingmultiplicationformula oftheApostol-Genocchipolynomialsofhigherorderholdstrue: (cid:18) α (cid:19) (cid:16) r (cid:17) G(α)(mx;λ)=(−2)αmn−α ∑ (−λ)rB(α) x+ ,λm , n n v ,v ,...,v m v1,v2,...,vm−1(cid:62)0 1 2 m−1 wherer=v +2v +...+(m−1)v . 1 2 m−1 SomeResultsfortheApostol-GenocchiPolynomials 471 Proof. Itiseasytoobservethat 1 1−λet+λ2e2t+...+(−λ)m−1e(m−1)t =− λet+1 (−λ)memt−1 So,weobtain ∞ tn ∑G(α)(mx;λ) n n! n=0 (cid:18) 2t (cid:19)α (cid:18) t (cid:19)α (cid:18) t (cid:19)α(cid:32)m−1 (cid:33)α = emxt =2α emxt =(−2)α ∑(−λet)k emxt λet+1 λet+1 λmemt−1 k=0 =(−2)α ∑ (cid:18) α (cid:19)(−λ)r(cid:18) t (cid:19)αe(x+mr)mt v ,v ,...,v λmem−1 v1,v2,...,vm−1(cid:62)0 1 2 m−1 ∞ (cid:32) (cid:18) α (cid:19) (cid:16) r (cid:17)(cid:33)tn = ∑ (−2)αmn−α ∑ (−λ)r×B(α) x+ ;λm n v ,v ,...,v m n! n=0 v1,v2,...,vm−1(cid:62)0 1 2 m−1 Bycomparingthecoefficientsoftn/(n!)onbothsidesproofwillbecomplete. Next, usingTheorem2.2, (withλ =1), weobtaintheGenocchipolynomialsofhigher ordercanbeexpressedbytheBernoullipolynomialsofhigherorderwhenmiseven Corollary2.3. Form∈N(meven),n∈N ,α ∈C,weget 0 (cid:18) α (cid:19) (cid:16) r(cid:17) G(α)(mx)=(−2)αmn−α ∑ (−1)rBα x+ . n v ,v ,...,v n m v1,v2,...,vm−1(cid:62)0 1 2 m−1 Alsobyapplyingα=1,inCorollary2.3weobtainthefollowingassertionthatisoneof themostremarkableidentitiesinareaofGenocchipolynomials. Corollary2.4. Form∈N,n∈N ,weobtain 0 m−1 (cid:18) k(cid:19) G (mx)=−2mn−1 ∑(−1)kB x+ miseven. n n m k=0 Obviously, the result of Corollary 2.4 is analogous with the well-known Raabe’s mul- (l) (l) tiplication formula. Now, we present explicit evaluations of Z (m;λ), Z (λ), Z (m) by n n n Apostol-Genocchipolynomials. Theorem2.3. Form,n,l∈N ,λ ∈C,wehave 0 l (cid:18)l(cid:19)(−1)j(m+1)λmj+l n+l(cid:18)n+l(cid:19) Z(l)(m;λ)=2−l ∑ ∑ G(j)(mj+l;λ)G(l−j) (λ) n j (n+1) k k n+l−k j=0 l k=0 where(n) =1,(n) =n(n+1)...(n+k−1). 0 k (l) Proof. BydefinitionofZ (m;λ),wecalculatethefollowingsum n ∞ tn ∑Z(l)(m;λ) n n! n=0 472 H.Jolany,H.SharifiandR.E.Alikelaye ∞ (cid:18) l (cid:19) tn = ∑(−1)l ∑ v ,v ,...,v (−λ)λ1+2λ2+...+mλm(v1+2v2+...+mvm)nn! n=0 0(cid:54)v1,v2,...,vm(cid:54)l 1 2 m v1+v2+...+vm=l (cid:18) (cid:19) l =(−1)l ∑ (−λet)λ1+2λ2+...+mλm v ,v ,...,v 0(cid:54)v1,v2,...,vm(cid:54)l 1 2 m v1+v2+...+vm=l (cid:32) (cid:33)l =(cid:0)λet−λ2e2t+...+(−1)m+1λmemt(cid:1)l = (−1)m+1λm+1e(m+1)t + λet λet+1 λet+1 l (cid:18)l(cid:19)(cid:34)2t(−1)m+1λm+1e(m+1)t(cid:35)j(cid:20) 2tλet (cid:21)l−j =(2t)−l ∑ j λet+1 λet+1 j=0 l (cid:18)l(cid:19) ∞ tn ∞ tn =(2t)−l ∑ (−1)j(m+1)λmj+l ∑G(j)(mj+l;λ) ∑G(l−j)(λ) n n j n! n! j=0 n=0 n=0 ∞ (cid:34) l (cid:18)j(cid:19)(−1)j(m+1)λmj+l n+l(cid:18)n+l(cid:19) (cid:35)tn =2−l ∑ ∑ ∑ G(j)(mj+l;λ)G(l−j) (λ) l (n+1) k k n+l−k n! n=0 j=0 l k=0 bycomparingthecoefficientsoftn/(n!)onbothsides,proofwillbecomplete. As a direct result, using λ =1 in Theorem 2.3, we derive an explicit representation of (l) multiple alternating sums Z (m), in terms of the Genocchi polynomials of higher order. n Wealsodeducetheirspecialcasesandapplicationswhichleadtothecorrespondingresults fortheGenocchipolynomials. Corollary2.5. Form,n,l∈N ,thefollowingformulaholdstrueintermsoftheGenocchi 0 polynimials l (cid:18)l(cid:19)(−1)j(m+1) n+l(cid:18)n+l(cid:19) Z(l)(m)=2−l ∑ ∑ G(j)(mj+l)Gl−j n j (n+1) k k n+l−k j=0 l k=0 where(n) =1,(n) =n(n+1)...(n+k−1). 0 k Next we investigate some of the recursive formulas for the Apostol-Genocchi numbers of higher order that are analogous to the results of Howard [3,11,12] and we deduce that theyconstituteausefulspecialcase. Theorem2.4. Letmbeodd,n,l∈N ,λ ∈C,thenwehave 0 n (cid:18)n(cid:19) mnG(l)(λm)−mlG(l)(λ)=(−1)l−1∑ mkG(l)(λm)Z(l) (m−1;λ). n n k k n−k k=0 Proof. Bytakingx=0,α =lin(2.1),wherer=v +2v +...+(m−1)v weobtain 1 2 m−1 (cid:18) l (cid:19) (cid:16)r (cid:17) mlG(l)(λ)=mn ∑ (−λ)rG(l) ,λm n n v ,v ,...,v m v1,v2,...,vm−1(cid:62)0 1 2 m−1 Butweknow n (cid:18)n(cid:19) G(l)(x;λ)= ∑ G(l)(λ)xn−k n k k k=0 SomeResultsfortheApostol-GenocchiPolynomials 473 So,weobtain (cid:18) l (cid:19) n (cid:18)n(cid:19) (cid:16)r(cid:17)n−k mlG(l)(λ)=mn ∑ (−λ)r ∑ G(l)(λm) n v ,v ,...,v k k m v1,v2,...,vm−1(cid:62)0 1 2 m−1 k=0 n (cid:18)n(cid:19) (cid:18) l (cid:19) = ∑ mkG(l)(λm) ∑ (−λ)rrn−k k k v ,v ,...,v k=0 0(cid:54)v1,v2,...,vm−1(cid:54)l 1 2 m−1 n (cid:18)n(cid:19) (cid:18) l (cid:19) = ∑ mkG(l)(λm) ∑ (−λ)rrn−k+mnG(l)(λm) k k v ,v ,...,v n k=0 0(cid:54)v1,v2,...,vm−1(cid:54)l 1 2 m−1 v1+v2+...vm−1=l n (cid:18)n(cid:19) =(−1)l ∑ mkG(l)(λm)Z(l) (m−1;λ)+mnG(l)(λm) k k n−k n k=0 Soproofiscomplete. Furthermore,wederivesomewell-knownresults(see[14])involvingGenocchipolyno- mials of higher order and Genocchi polynomials which we state here. By setting λ =1, l=1inTheorem2.4,wegetCorollaries2.6,2.7,respectively. Corollary2.6. Letmbeodd,n,l∈N ,thenwehave 0 n (cid:18)n(cid:19) (mn−ml)G(l)=(−1)l−1∑ G(l)Z(l) (m−1). n k k n−k k=0 Corollary2.7. Letmbeodd,n∈N ,λ ∈C,thenwehave 0 n (cid:18)n(cid:19) mnG (λm)−mG (λ)= ∑ mkG (λm)Z (m−1;λ). n n k n−k k k=0 Alsobysettingλ =1inCorollary2.7,wegetthefollowingassertionthatisanalogous totheformulaofHowardintermsofGenocchinumbers.See[11,12]formoreinformation. Corollary2.8. Formbeodd,n,l∈N ,λ ∈C,weobtain 0 n (cid:18)n(cid:19) (mn−m)G = ∑ mkG Z (m−1). n k n−k k k=0 Next,weinvestigatethegeneralizationofHoward’sformulaintermsofApostol-Genocchi numbers,whenmiseven. Theorem2.5. Letmbeeven,n,l∈N ,λ ∈C,thefollowingformula 0 n (cid:18)n(cid:19) mlG(l)(λ)−(−2)lmnB(l)(λm)=2l ∑ mkB(l)(λm)Z(l) (m−1;λ) n n k k n−k k=0 holdstrue,wherer=v +2v +...+(m−1)v . 1 2 m−1 Proof. Wehave (cid:18) l (cid:19) (cid:16)r (cid:17) G(l)(λ)=(−2)lmn−l ∑ (−λ)rB(l) ,λm n n v ,v ,...,v m v1,v2,...,vm−1(cid:62)0 1 2 m−1 Butweknow n (cid:18)n(cid:19) B(l)(x;λ)= ∑ B(l)(λ)xn−k n k k k=0 474 H.Jolany,H.SharifiandR.E.Alikelaye Soweget (cid:18) l (cid:19) n (cid:18)n(cid:19) (cid:16)r(cid:17)n−k mlG(l)(λ)=(−2)lmn ∑ (−λ)r ∑ B(l)(λm) n v ,v ,...,v k k m v1,v2,...,vm−1(cid:62)0 1 2 m−1 k=0 n (cid:18)n(cid:19) (cid:18) l (cid:19) =(−2)l ∑ mkB(l)(λm) ∑ (−λ)rrn−k k k v ,v ,...,v k=0 v1,v2,...,vm−1(cid:62)0 1 2 m−1 n (cid:18)n(cid:19) =2l ∑ mkB(l)(λm)Z(l) (m−1;λ)+(−2)lmnB(l)(λm) k k n−k n k=0 Soweobtain n (cid:18)n(cid:19) mlG(l)(λ)−(−2)lmnB(l)(λm)=2l ∑ mkB(l)(λm)Z(l) (m−1;λ) n n k k n−k k=0 Sotheproofiscomplete. Alsobylettingλ =1inTheorem2.5,weobtainthefollowingassertion. Corollary2.9. Letmbeeven,n,l∈N ,thenweget 0 n (cid:18)n(cid:19) mlG(l)−(−2)lmnB(l)=2l ∑ mkB(l)Z(l) (m−1) n n k n n−k k=0 HerewepresentarecurrencerelationforApostol-Genocchinumbersofhigherorder. Theorem2.6. Letn,k(cid:62)1,thenwehave (cid:16) 2k(cid:17) (n+1) (n) (n) G (λ)=2kG (λ)− 2− G (λ) k k−1 n k Proof. Let us put G (t;λ)=(2t/(λet+1))n. Then G (t;λ) is the generating function of n n (cid:48) higherorderApostol-Genocchinumbers. ThederivativeG(t;λ)=(d/dt)G (t;λ)isequal n to (cid:18)1 λet (cid:19) n n n − G (t;λ)= G (t;λ)−nG (t;λ)+ G (t;λ) t λet+1 n t n n λet+1 n and n (cid:48) tG (t;λ)=nG (t;λ)−ntG (t;λ)+ G (t) n n n 2 n+1 soweobtain G(n)(λ) G(n)(λ) G(n) (λ) nG(n+1)(λ) k =n k −n k−1 + k (k−1)! k! (k−1)! 2 k! fork(cid:62)1. Thisformulacanwrittenas (cid:18) (cid:19) 2k (n+1) (n) (n) G (λ)=2kG (λ)− 2− G (λ) k k−1 n k soproofiscomplete.
Description: