Applied Mathematical Sciences, Vol. 6, 2012, no. 82, 4091 - 4102 Some Relations Involving Hermite-Based Apostol-Genocchi Polynomials S. Gaboury Department of Mathematics and Computer Sciences Universit´e du Qu´ebec `a Chicoutimi Chicoutimi, Qc. Canada G7H 2B1 [email protected] B. Kurt Department of Mathematics, Faculty of Science University of Akdeniz, TR-07058 Antalya, Turkey [email protected] Abstract. Inrecentyears,thesubjectofApostol-Bernoullipolynomials,Apostol-Euler polynomials and Apostol-Genocchi polynomials have been studied by a large number of mathematicians. Many properties and interesting relationships for these polynomials have been investigated. In this work, we present some further relations for the gener- alized Apostol-Genocchi polynomials with parameters a,b and c introduced recently by Srivastava et al. We also define the Hermite-based Genocchi polynomials with parameters a, b, c. Some recurrences relations, addition theorem and relevant connections with the generalized Hurwitz-Lerch zeta function ang the gaussian hypergeometric function are given. Mathematics Subject Classification: 05A10, 11B65, 28B99, 11B68 Keywords: Bernoulli numbers and polynomials, Euler numbers and polynomials, Genocchi numbers and polynomials, Apostol-Bernoulli polynomials, Apostol-Euler poly- nomials, Apostol-Genocchi polynomials, Hermite-based Apostol-Genocchi polynomials, Hurwitz lerch zeta function 1. Introduction, Definitions and Notations The generalized Bernoulli polynomials Bn(α)(x) of order α ∈ C, the generalized Euler polynomials En(α)(x) of order α ∈ C and the generalized Genocchi polynomials Gn(α)(x) of order α ∈ C, each of degree n as well as in α, are defined respectively by the following 4092 S. Gaboury and B. Kurt generating functions (see,[6, vol.3, p.253 et seq.], [13, Section 2.8] and [15]): (cid:2) (cid:3) t α (cid:4)∞ tk (1.1) ·ext = B(α)(x) (|t| < 2π;1α := 1), et −1 k k! k=0 (cid:2) (cid:3) 2 α (cid:4)∞ tk (1.2) ·ext = E(α)(x) (|t| < π;1α := 1) et +1 k k! k=0 and (cid:2) (cid:3) 2t α (cid:4)∞ tk (1.3) ·ext = G(α)(x) (|t| < π;1α := 1). et +1 k k! k=0 The literature contains a large number of interesting properties and relationships in- volving these polynomials [1, 3, 4, 6, 8, 18]. These appear in many applications in com- binatorics, number theory and numerical analysis. Q.-M. Luo and Srivastava ([16, 17]) introduced the generalized Apostol-Bernoulli polynomials Bn(α)(x) of order α, Q.-M. Luo [14] investigated the generalized Apostol-Euler polynomials En(α)(x) of order α and the generalized Apostol-Genocchi polynomials G(nα)(x) of order α. The generalized Apostol-Bernoulli polynomials Bn(α)(x;λ) of order α ∈ C, the gen- eralized Apostol-Euler polynomials E(nα)(x;λ) of order α ∈ C, the generalized Apostol- Genocchi polynomials G(nα)(x;λ) of order α ∈ C are defined respectively by the following generating functions (cid:2) (cid:3) t α (cid:4)∞ tk (1.4) ·ext = B(α)(x;λ) (|t+lnλ| < 2π;1α := 1) λet −1 k k! k=0 (cid:2) (cid:3) 2 α (cid:4)∞ tk (1.5) ·ext = E(α)(x;λ) (|t+lnλ| < π;1α := 1) λet +1 k k! k=0 and (cid:2) (cid:3) 2t α (cid:4)∞ tk (1.6) ·ext = G(α)(x;λ) (|t+lnλ| < π;1α := 1). λet +1 k k! k=0 Recently, Srivastava et al. in [20, 21] have investigated some new classes of Apostol- Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials with parameters a, b and c defined by the following generating functions. Definition 1. Let a, b, c ∈ R+, (a (cid:3)= b) and n ∈ N . The generalized Apostol-Bernoulli 0 polynomials B(nα)(x;λ;a,b,c) oforder α, thegeneralizedApostol-Euler polynomialsEn(α)(x;λ;a,b,c) of order α and the generalized Apostol-Genocchi polynomials Gn(α)(x;λ;a,b,c) of order α are defined respectively by the following generating functions (cid:2) t (cid:3)α (cid:4)∞ tn (cid:5)(cid:6)(cid:6) (cid:5)a(cid:7) (cid:6)(cid:6) (cid:7) (1.7) cxt = B(α)(x;λ;a,b,c) , (cid:6)tln +lnλ(cid:6) < 2π;1α := 1 , λbt −at n n! b n=0 Some relations involving Hermite-based Apostol-Genocchi polynomials 4093 (cid:2) (cid:3) 2 α (cid:4)∞ tn (cid:5)(cid:6)(cid:6) (cid:5)a(cid:7) (cid:6)(cid:6) (cid:7) (1.8) cxt = E(α)(x;λ;a,b,c) , (cid:6)tln +lnλ(cid:6) < π;1α := 1 λbt +at n n! b n=0 and (cid:2) 2t (cid:3)α (cid:4)∞ tn (cid:5)(cid:6)(cid:6) (cid:5)a(cid:7) (cid:6)(cid:6) (cid:7) (1.9) cxt = G(α)(x;λ;a,b,c) , (cid:6)tln +lnλ(cid:6) < π;1α := 1 . λbt +at n n! b n=0 If we take a = 1, b = c = e in (1.7), (1.8) and (1.9) respectively, we have (1.4), (1.5) and (1.6). Obviously, when we set λ = 1, α = 1, a = 1, b = c = e in (1.7), (1.8) and (1.9), we have classical Bernoulli polynomials B (x), classical Euler polynomials E (x) n n and classical Genocchi polynomials G (x). n Recently, LinandSrivastava[11]introducedthefollowinggeneralizationoftheHurwitz- Lerch zeta function Φ(z,s,a) (cid:4)∞ (μ) zn (1.10) Φ(ρ,σ)(z,s,a) := ρn μ,ν (ν) (n+a)s σn n=0 (cid:8) μ ∈ C; a,ν ∈ Z−; ρ,σ ∈ R+; ρ < σ when s,z ∈ C; 0 (cid:9) ρ = σ and s ∈ C when |z| < 1; ρ = σ and Re(s−μ+ν) when |z| = 1 , where (λ) denotes the Pochhammer symbol defined by ν Γ(λ+ν) (λ) := ; (λ) = 1. ν Γ(λ) 0 It is obvious that (1.11) Φ(σ,σ)(z,s,a) = Φ(0,0)(z,s,a) = Φ(z,s,a) ν,ν μ,ν and (cid:4)∞ (μ) zn (1.12) Φ(1,1)(z,s,a) = Φ∗ (z,s,a) := n . μ,1 μ n! (n+a)s n=0 The reader should see the works of Garg et al. [7] and Lin et al. [12] for further results involving the generalized Hurwitz-Lerch zeta function. Making use of this generalization, Srivastava et al. in[20, 21] gave relationships between thesepolynomialsandthe Hurwitz- Lerch zeta function. They also obtained other relationships, in particular, with the Gauss hypergeometric function and the Stirling numbers of the second kind. Finally, Brychkov in [3] by considering the well-known formula for the product of power (cid:4)∞ series, that is, if f (z) = a(i)zk, then i k k=0 (cid:10)m (cid:4)∞ (1.13) f (z) = b zk, i k i=1 k=0 4094 S. Gaboury and B. Kurt where (cid:4) (cid:10)m a(i) (1.14) b = k zk, k k ! i k1+···+km=k i=1 obtained the following relation for the generalized (classical) Bernoulli polynomials: (cid:4) (cid:10)m 1 1 (1.15) B(αi)(z ) = B(α)(z) k ! ki i n! n i k1+···+km=ni=1 with α = α +···+α and z = z +···+z . 1 m 1 m In this paper, we give further results involving the generalized Apostol-Genocchi poly- nomials G(nα)(x;λ;a,b,c). A multiplication formula analogue of that of Brychkov is given. We also define the generalized Hermite based Apostol-Genocchi polynomials HG(nα)(x,y;λ;a,b,c) and we present several properties for that new class of polynomi- als. In particular, we obtain some relationships involving the generalized Hurwitz-Lerch zeta function Φ∗ (z,s,a) and the gaussian hypergeometric function. μ 2. Some properties and multiplication formula for the generalized Apostol-Genocchi polynomials In this section, we present some further properties (Theorem 2 and Theorem 3) for the generalized Apostol-Genocchi polynomials Gn(α)(x;λ;a,b,c). We also give, in Theorem 4, a multiplication formula based on the result obtained recently by Brychkov [3]. Theorem 1. Let a, b, c ∈ R+, α and β an arbitrary complex number and n ∈ N . 0 Then the generalized Apostol-Genocchi polynomials Gn(α)(x;λ;a,b,c) satisfy the following addition theorem (cid:2) (cid:3) (cid:4)n n (2.1) G(α+β)(x+y;λ;a,b,c) = G(α)(x;λ;a,b,c)G(β) (y;λ;a,b,c). n k k n−k k=0 The proof follows easily from (1.9). Theorem 2. Let a, b, c ∈ R+, α an arbitrary complex number and n,r ∈ N . Then the 0 generalized Apostol-Genocchi polynomials Gn(α)(x;λ;a,b,c) satisfy he following relation (cid:2) (cid:3) (cid:2) (cid:3)(cid:2) (cid:3) n (cid:4)∞ m+r −1 b n−r (2.2) G(r)(x;λ;a,b,c) = 2r r! mln +xlnc−rlna . n r m a m=0 Proof. From (1.9), we have (cid:4)∞ tn G(r)(x;λ;a,b,c) n n! n=0 Some relations involving Hermite-based Apostol-Genocchi polynomials 4095 (cid:2) (cid:3) (cid:5) (cid:7) 2t r −r = cxt = (2t)re−trlna 1+λetlnab extlnc λbt +at (cid:11) (cid:12) (cid:2) (cid:3) (cid:2) (cid:3) (cid:4)∞ (cid:4)∞ m+r −1 b n tn = 2rtr (−λ)m mln +xlnc−rlna m a n! (cid:11)n=0 m=0 (cid:12) (cid:2) (cid:3) (cid:2) (cid:3)(cid:2) (cid:3) (cid:4)∞ n+r (cid:4)∞ m+r−1 b n tn+r = 2r r! mln +xlnc−rlna . r m a (n+r)! n=0 m=0 Now, upon replacing n by n−r (n ≥ r) and comparing the coefficient of tn, we arrive at (2.2). If we put a = 1, b = c = e in (2.2), we recover a result obtained by Ozden et al. in [19]. Theorem 3. Let a, b, c ∈ R+, (a (cid:3)= b), α an arbitrary complex number and for n ∈ N . The following relation holds between the generalized Apostol-Genocchi polynomials 0 G(nα)(x;λ;a,b,c), the generalized Apostol-Euler polynomials En(α)(x;λ;a,b,c) and the gen- eralized Apostol-Bernoulli polynomials Bn(α)(x;λ;a,b,c) (cid:2) (cid:3) (cid:4)n n (2.3) G(α)(x;λ2;a,b,c) = 2α−n E(α) (2x;λ;a,b,c)B(α)(0;λ;a,b,c). n k n−k k k=0 Proof. From (1.7), (1.8) and (1.9), we write (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:4)∞ tn 2t α 2 α t/2 α G(α)(x;λ2;a,b,c) = cxt = cxt·2α n n! λ2bt+at λbt/2+at/2 λbt/2−at/2 n=0 (cid:4)∞ tn (cid:4)∞ tk = 2α E(α)(2x;λ;a,b,c) · B(α)(0;λ;a,b,c) n 2nn! n 2kk! n(cid:13)=0 k=0 (cid:14) (cid:2) (cid:3) (cid:4)∞ (cid:4)n n tn (2.4) = 2α−n E(α) (2x;λ;a,b,c)B(α)(0;λ;a,b,c) . k n−k k n! n=0 k=0 tn Comparing the coefficients of , we obtain (2.3). n! In view of the result given by Brychkov [3], the next theorem holds for the generalized Apostol-Genocchi polynomials G(nα)(x;λ;a,b,c). Theorem 4. The generalizedApostol- Genocchipolynomials Gn(α)(x;λ;a,b,c) satisfies the following multiplication relation (cid:4) (cid:10)m 1 1 (2.5) G(αi)(x;λ;a,b,c) = G(α)(x;λ;a,b,c). k ! i n! k i k1+···+km=ni=1 4096 S. Gaboury and B. Kurt Proof. From (1.9) and (1.13)-(1.15), (cid:2) (cid:3) (cid:2) (cid:3) (cid:10)m (cid:4)∞ tk (cid:10)m 2t αi 2t α1+···+αm G(αi)(x ;λ;a,b,c) = cxit = c(x1+···+xm)t ki i k! λbt +at λbt +at i=1k =0 i=1 i (cid:2) (cid:3) 2t α (cid:4)∞ tn = cxt = G(α)(x;λ;a,b,c) , λbt +at n n! n=0 where α +···+α = α, k +···+k = n. Comparing the coefficients, we have (2.5). 1 m 1 m Similiary, for the generalized Apostol-Bernoulli polynomials Bn(α)(x;λ;a,b,c) and the generalized Apostol-Euler polynomials En(α)(x;λ;a,b,c) (cid:4) (cid:10)m 1 1 (2.6) B(αi)(x;λ;a,b,c) = B(α)(x;λ;a,b,c) k ! i n! n i k1+···+km=ni=1 and (cid:4) (cid:10)m 1 1 (2.7) E(αi)(x;λ;a,b,c) = E(α)(x;λ;a,b,c). k ! i n! n i k1+···+km=ni=1 3. Hermite-based Apostol-Genocchi polynomials In this section, we recall the definition of the two variable Hermite-Kamp´e de F´eriet polynomials (2VHKdFP) H2(x,y). Next, we define and give some properties of the gen- n eralized Hermite-based Apostol-Genocchi polynomials HGn(α)(x,y;λ;a,b,c). Finally, we establish some relations between this new class of polynomials and the Hurwitz-Lerch zeta function and the familiar gaussian hypergeometric function. The two variable Hermite-Kamp´e de F´eriet polynomials (2VHKdFP) H2(x,y) (see, n [2, 5, 23]) is defined by [n] (cid:4)2 yrxn−2r (3.1) H(2)(x,y) = n! n r!(n−2r)! r=0 with the following generating function (cid:4)∞ tn (3.2) H(2)(x,y) = ext+yt2. n n! n=0 WedefinethegeneralizedHermite-basedApostol-GenocchipolynomialsHGn(α)(x,y;λ;a,b,c) by means of the following generating function. Definition 2. Let a, b, c ∈ R+, (a (cid:3)= b), α an arbitrary complex number and n ∈ N . The 0 generalized Hermite-based Apostol-Genocchi polynomials HGn(α)(x,y;λ;a,b,c) are defined Some relations involving Hermite-based Apostol-Genocchi polynomials 4097 by (3.3) (cid:2) (cid:3) (cid:4)∞ tn 2t α (cid:5)(cid:6)(cid:6) (cid:5)a(cid:7) (cid:6)(cid:6) (cid:7) G(α)(x,y;λ;a,b,c) = cxt+yt2 (cid:6)tln +lnλ(cid:6) < π;1α := 1 . H n n! λbt +at b n=0 Obviously, if we set a = 1, b = c = e in (3.3), we recover the classical Hermite-based Apostol-Genocchi polynomials investigated by Khan et al. in [10]. From (3.3) and with the help of the following elementary serie identity [22, p. 100] [n] (cid:4)∞ (cid:4)∞ (cid:4)∞ (cid:4)2 (3.4) A(k,n) = A(k,n−2k) n=0 k=0 n=0 k=0 we find [n] (cid:4)2 G(α) (x,λ;a,b,c)(y ·lnc)l (3.5) G(α)(x,y;λ;a,b,c) = n! n−2l . H n l!(n−2l)! l=0 Theorem 5. Let a, b, c ∈ R+, α and β arbitrary complex numbers n ∈ N . The general- 0 izedHermite-based Apostol-GenocchipolynomialsHGn(α)(x,y;λ;a,b,c)satisfy thefollowing relation (3.6) (cid:2) (cid:3) (cid:4)n n G(α+β)(x +x ,y +y ;λ;a,b,c) = G(α)(x ,y ;λ;a,b,c) G(β)(x ,y ;λ;a,b,c). H n 1 2 1 2 k H n 1 1 H n 2 2 k=0 Proof. From (3.3), the result follows easily. Theorem 6. For a,b,c ∈ R+, a (cid:3)= b, l ∈ N , the generalized Hermite-based Apostol- 0 Genocchi polynomials HGn(l)(x,y;λ;a,b,c) and the generalized Hurwitz-Lerch zeta function Φ∗μ(z,s,a) are related by (3.7) [n] (cid:8) (cid:9) (cid:2) (cid:2) (cid:3)(cid:3) (cid:4)2 Φ∗ −λ,l−n+2j, xlnc−llna b n−l−2j G(l)(x,y;λ;a,b,c) = 2ln! l lnb−lna · ln (ylnc)j. H n (n−l−2j)!j! a j=0 Proof. From (3.3), we write as (cid:4)∞ tn G(l)(x,y;λ;a,b,c) H n n! n=0 4098 S. Gaboury and B. Kurt (cid:2) (cid:3) (cid:5) (cid:7) 2t l −l = cxt+yt2 = (2t)le−tllna 1+λetlnab extlnceyt2lnc λbt +at (cid:2) (cid:2) (cid:3)(cid:3) (cid:4)∞ (l) (−λ)k (cid:4)∞ b n tn (cid:4)∞ t2j = 2ltl k xlnc−llna+kln · (ylnc)j k! a n! j! k=0 n=0 j=0 (cid:2) (cid:2) (cid:3)(cid:3) (cid:4)∞ (cid:4)∞ (cid:4)∞ (l) (−λ)k b n tn+l+2j = 2l k xlnc−llna+kln ·(ylnc)j k! a n!j! n=0 j=0 k=0 (cid:2) (cid:2) (cid:3)(cid:3) (cid:4)∞ (cid:4)∞ (cid:4)∞ (l) (−λ)k b n tn+l+2j = 2l k xlnc−llna+kln ·(ylnc)j k! a (n)!j! n=0 j=0 k=0 (cid:11) (cid:8) (cid:9) (cid:2) (cid:2) (cid:3)(cid:3) (cid:12) (cid:4)∞ (cid:4)∞ Φ∗ −λ,−n, xlnc−llna b n = 2l l lnb−lna · ln ·(ylnc)j tn+l+2j. (n)!j! a n=0 j=0 Now, upon replacing n by n − l (n ≥ l), using equation (3.5) and comparing the coefficient of tn, we arrive at Theorem 6. Theorem 7. For n ∈ N , a,b,c ∈ R+, the generalized Hermite-based Apostol-Genocchi 0 polynomials HGn(l)(x,y;λ;a,b,c) and the gaussian hypergeometric function (see for details, [22, p. 29]) (cid:4)∞ (α) (β) zn (3.8) F (α,β;γ;z) = n n 2 1 (γ) n! n n=0 where (λ) denotes the Pochhammer symbol defined by ν Γ(λ+ν) (λ) := ; (λ) = 1 ν Γ(λ) 0 are related by the following relation HG(nl)(x,y;λ;a,b,c) (cid:4)[n2] (y·lnc)i 2ln−2i! n−(cid:4)2i−l(cid:2)n−2i−l(cid:3)(cid:2)k+l−1(cid:3) λk (cid:15) (cid:2)b(cid:3)(cid:16)k =n! · ln i!(n−2i)! (n−2i−l)! k k (λ+1)k+l a i=0 k=0 (3.9) (cid:2) (cid:3) (cid:13) (cid:8) (cid:9) (cid:14) (cid:4)k k jln b ·(xlnc−llna)n−2i−k−l· (−1)j j jk 2F1 k+l−n−2i,1;k+1;−xlnc−allna . j=0 Proof. Making use of equation (3.5) and the following result obtained by Srivastava et al. in [21, p. 301, Eq. 74] for the Apostol-Genocchi polynomials (3.10) (cid:2) (cid:3)(cid:2) (cid:3) (cid:15) (cid:2) (cid:3)(cid:16) 2ln! (cid:4)n−l n−l k+l−1 λk b k G(l)(x,λ;a,b,c) = ln (xlnc−llna)n−k−l n (n−l)! k k (λ+1)k+l a k=0 (cid:2) (cid:3) (cid:13) (cid:8) (cid:9) (cid:14) (cid:4)k k jln b · (−1)j j jk 2F1 k+l−n,1;k+1;−xlnc−allna j=0 Some relations involving Hermite-based Apostol-Genocchi polynomials 4099 the result follows. At this point, we must recall a basic identity which is needed for the sequel. Lemma 1. (Generalized multinomial identity [4, p. 41]) If x , x ,..., x are commuting 1 2 r elements of a ring, then for α ∈ C, we have (cid:2) (cid:3) (cid:4) α (3.11) (1+x +···+x )α = xν1···xνm 1 m ν ,··· ,ν 1 m 1 m ν1,···,νm≥0 where summation takes place over all integers ν ≥ 0, with i (cid:2) (cid:3) α α(α−1)(α−2)...(α−ν −ν −···−ν +1) (3.12) = 1 2 m . ν ,··· ,ν ν ! ν !...ν ! 1 m 1 2 m Theorem 8. For m ∈ N, n ∈ N , a,b,c ∈ R+, the following multiplication formula for 0 the Hermite-based Apostol-Genocchi polynomials of higher order holds true; G(α)(mx,y;λ;a,b,c) = H n (3.13) (cid:2) (cid:3) (cid:2) (cid:3) mn−α (cid:4) ν1,···α,νm−1 (−λ)r HG(nα) x+ r(lnb−lnam)+lnαc(m−1)lna,my2;λm;a,b,c ν1+···+νm−1≥0 where r = ν +2ν +···+(m−1)ν . 1 2 m−1 Proof. For m odd, we have m(cid:17)−1(cid:8) (cid:9) −λemt(lnb−lna) k 2t (3.14) = 2te−lna k=0 . λbt +at 1+(λet(lnb−lna))m From the generalized multinomial identity (3.11), the last equation (3.14) and the gener- ating function for the generalized Hermite-based Apostol-Genocchi polynomials (3.3), we have (cid:4)∞ tn HGn(α)(mx,y;λ;a,b,c) n! n=0 4100 S. Gaboury and B. Kurt (cid:2) (cid:3) = 2t αcmxt+yt2 λbt+at (cid:13) (cid:14) = (cid:2) 2te−lna (cid:3)α m(cid:4)−1(−λ)kekt(lnb−lna) αe(mxt+yt2)lnc 1+λmemt(lnb−lna) k=0 (cid:2) (cid:3) (cid:2) (cid:3) = (cid:4) m−α α (−λ)r 2tm αcmt x+r(lnb−lnam)+lnαc(m−1)lna +y(mm2t)2 ν1,··· ,νm−1 λmbmt+atm (cid:0) (cid:2) ν1,···⎛,νm≥0 (cid:2) (cid:3) (cid:4)∞ (cid:4) α = ⎝mn−α (−λ)r ν ,··· ,ν 1 m−1 n=0 ν +···+ν ≥0 (cid:2) 1 m−1 (cid:3)(cid:3) r(lnb−lna)+α(m−1)lna y tn ×HG(nα) x+ mlnc ,m2;λm;a,b,c n!. tn Comparing the coefficients of , the result follows. n! If we put λ = 1 and y = 0 in theorem 9, we obtain a result given by Jolany et al. in [9], namely G(α)(mx;a,b,c) n (3.15) (cid:2) (cid:3) (cid:2) (cid:3) (cid:4) α r(lnb−lna)+α(m−1)lna = mn−α (−1)r G(α) x+ ;a,b,c ν ,··· ,ν n mlnc 1 m−1 ν +···+ν ≥0 1 m−1 where G(nα)(x;a,b,c) are the Genocchi polynomials of higher order. Corollary 1. For a, b, p, q ∈ R+, n ∈ N and α ∈ C, the following equation holds true. G(α)(px,qy;λ;a,b,c) H m (3.16) [k] (cid:4)n (cid:4)2 tn = n! G(α) (x,y;λ;a,b,c)((p−1)xlnc)k−2j((q −1)ylnc)j . H n−k (n−k)!(k −2j)!j! k=0 j=0 Proof. Using definition (3.3), we have (cid:2) (cid:3) (cid:4)∞ tn 2t α (3.17) G(α)(px,qy;λ;a,b,c) = cxt+yt2c(p−1)xtc(q−1)yt2. H n n! λbt +at n=0 Expanding the right hand side in power series and using series rearrangement techniques, we obtain (cid:4)∞ tn G(α)(x,y;λ;a,b,c) H n n! n=0 (cid:13) (cid:14)(cid:13) (cid:14)(cid:13) (cid:14) (cid:4)∞ tn (cid:4)∞ tk (cid:4)∞ t2j = G(α)(x,y;λ;a,b,c) ((p−1)xlnc)k ((q−1)ylnc)j H n n! k! j! n=0 k=0 j=0
Description: