ebook img

Some properties of the generalized Apostol-type polynomials PDF

13 Pages·2013·0.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Some properties of the generalized Apostol-type polynomials

LuandLuoBoundaryValueProblems2013,2013:64 http://www.boundaryvalueproblems.com/content/2013/1/64 RESEARCH OpenAccess Some properties of the generalized Apostol-type polynomials Da-QianLu1andQiu-MingLuo2* *Correspondence: [email protected] Abstract 2DepartmentofMathematics, Inthispaper,westudysomepropertiesofthegeneralizedApostol-typepolynomials ChongqingNormalUniversity, ChongqingHigherEducationMega (see(LuoandSrivastavainAppl.Math.Comput.217:5702-5728,2011)),includingthe Center,HuxiCampus,Chongqing, recurrencerelations,thedifferentialequationsandsomeotherconnectedproblems, 401331,People’sRepublicofChina whichextendsomeknownresults.Wealsodeducesomepropertiesofthe Fulllistofauthorinformationis availableattheendofthearticle generalizedApostol-Eulerpolynomials,thegeneralizedApostol-Bernoulli polynomials,andApostol-Genocchipolynomialsofhighorder. MSC: Primary11B68;secondary33C65 Keywords: generalizedApostoltypepolynomials;recurrencerelations;differential equations;connectedproblems;quasi-monomial 1 Introduction,definitionsandmotivation TheclassicalBernoullipolynomialsB (x),theclassicalEulerpolynomialsE (x) andthe n n classicalGenocchipolynomialsG (x),togetherwiththeirfamiliargeneralizationsB(α)(x), n n E(α)(x)andG(α)(x)of(realorcomplex)orderα,areusuallydefinedbymeansofthefol- n n lowinggeneratingfunctions(see,fordetails,[],pp.-and[],p.etseq.;seealso []andthereferencescitedtherein): (cid:2) (cid:3) z α (cid:4)∞ zn (cid:5) (cid:6) ·exz= B(α)(x) |z|<π , (.) ez– n n! n= (cid:2) (cid:3)  α (cid:4)∞ zn (cid:5) (cid:6) ·exz= E(α)(x) |z|<π (.) ez+ n n! n= and (cid:2) (cid:3) z α (cid:4)∞ zn (cid:5) (cid:6) ·exz= G(α)(x) |z|<π . (.) ez+ n n! n= Sothat,obviously,theclassicalBernoullipolynomialsB (x),theclassicalEulerpolynomi- n alsE (x)andtheclassicalGenocchipolynomialsG (x)aregiven,respectively,by n n B (x):=B()(x), E (x):=E()(x) and G (x):=G()(x) (n∈N ). (.) n n n n n n  ©2013LuandLuo;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttribu- tionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproductioninany medium,providedtheoriginalworkisproperlycited. LuandLuoBoundaryValueProblems2013,2013:64 Page2of13 http://www.boundaryvalueproblems.com/content/2013/1/64 FortheclassicalBernoullinumbers B ,theclassicalEulernumbers E andtheclassical n n GenocchinumbersG ofordern,wehave n B :=B ()=B()(), E :=E ()=E()() and G :=G ()=G()(), (.) n n n n n n n n n respectively. Some interesting analogues of the classical Bernoulli polynomials and numbers were first investigated by Apostol (see [], p., Eq. (.)) and (more recently) by Srivastava (see[],pp.-).WebeginbyrecallinghereApostol’sdefinitionsasfollows. Definition.(Apostol[];seealsoSrivastava[]) TheApostol-Bernoullipolynomials B (x;λ)(λ∈C)aredefinedbymeansofthefollowinggeneratingfunction: n (cid:4)∞ zexz zn = B (x;λ) λez– n n! n= (cid:5) (cid:6) |z|<π whenλ=;|z|<|logλ|whenλ(cid:4)= (.) with,ofcourse, B (x)=B (x;) and B (λ):=B (;λ), (.) n n n n whereB (λ)denotestheso-calledApostol-Bernoullinumbers. n Recently,LuoandSrivastava[]furtherextendedtheApostol-Bernoullipolynomialsas theso-calledApostol-Bernoullipolynomialsoforderα. Definition.(LuoandSrivastava[]) TheApostol-BernoullipolynomialsB(α)(x;λ)(λ∈ n C)oforderα∈N aredefinedbymeansofthefollowinggeneratingfunction:  (cid:2) (cid:3) z α (cid:4)∞ zn ·exz= B(α)(x;λ) λez– n n! n= (cid:5) (cid:6) |z|<π whenλ=;|z|<|logλ|whenλ(cid:4)= (.) with,ofcourse, B(α)(x)=B(α)(x;) and B(α)(λ):=B(α)(;λ), (.) n n n n whereB(α)(λ)denotestheso-calledApostol-Bernoullinumbersoforderα. n Ontheotherhand,Luo[],gaveananalogousextensionofthegeneralizedEulerpoly- nomialsastheso-calledApostol-Eulerpolynomialsoforderα. Definition.(Luo[]) TheApostol-EulerpolynomialsE(α)(x;λ)(λ∈C)oforderα∈N n  aredefinedbymeansofthefollowinggeneratingfunction: (cid:2) (cid:3)  α·exz=(cid:4)∞ E(α)(x;λ)zn (cid:5)|z|<(cid:7)(cid:7)log(–λ)(cid:7)(cid:7)(cid:6) (.) λez+ n n! n= LuandLuoBoundaryValueProblems2013,2013:64 Page3of13 http://www.boundaryvalueproblems.com/content/2013/1/64 with,ofcourse, E(α)(x)=E(α)(x;) and E(α)(λ):=E(α)(;λ), (.) n n n n whereE(α)(λ)denotestheso-calledApostol-Eulernumbersoforderα. n OnthesubjectoftheGenocchipolynomialsG (x) andtheirvariousextensions,are- n markablylargenumberofinvestigationshaveappearedintheliterature(see,forexample, [–]).Moreover,Luo(see[–])introducedandinvestigatedtheApostol-Genocchi polynomialsof(realorcomplex)orderα,whicharedefinedasfollows: Definition. TheApostol-GenocchipolynomialsG(α)(x;λ)(λ∈C)oforderα∈N are n  definedbymeansofthefollowinggeneratingfunction: (cid:2) (cid:3) z α·exz=(cid:4)∞ G(α)(x;λ)zn (cid:5)|z|<(cid:7)(cid:7)log(–λ)(cid:7)(cid:7)(cid:6) (.) λez+ n n! n= with,ofcourse, G(α)(x)=G(α)(x;), G(α)(λ):=G(α)(;λ), n n n n (.) G (x;λ):=G()(x;λ) and G (λ):=G()(λ), n n n n where G (λ), G(α)(λ) and G (x;λ) denote the so-called Apostol-Genocchi numbers, the n n n Apostol-Genocchi numbers of order α and the Apostol-Genocchi polynomials, respec- tively. Recently, Luo and Srivastava [] introduced a unification (and generalization) of the above-mentionedthreefamiliesofthegeneralizedApostoltypepolynomials. Definition . (Luo and Srivastava []) The generalized Apostol type polynomials F(α)(x;λ;u,v)(α∈N ,λ,u,v∈C)oforderαaredefinedbymeansofthefollowinggener- n  atingfunction: (cid:2) (cid:3) uzv α·exz=(cid:4)∞ F(α)(x;λ;u,v)zn (cid:5)|z|<(cid:7)(cid:7)log(–λ)(cid:7)(cid:7)(cid:6), (.) λez+ n n! n= where F(α)(λ;u,v):=F(α)(;λ;u,v) (.) n n denotetheso-calledApostoltypenumbersoforderα. Sothat,bycomparingDefinition.withDefinitions.,.and.,wehave B(α)(x;λ)=(–)αF(α)(x;–λ;,), (.) n n E(α)(x;λ)=F(α)(x;λ;,), (.) n n G(α)(x;λ)=F(α)(x;λ;,). (.) n n LuandLuoBoundaryValueProblems2013,2013:64 Page4of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Apolynomialp (x)(n∈N,x∈C)issaidtobeaquasi-monomial[],whenevertwoop- n ˆ ˆ eratorsM,P,calledmultiplicativeandderivative(orlowering)operatorsrespectively,can bedefinedinsuchawaythat ˆ Pp (x)=np (x), (.) n n– ˆ Mp (x)=p (x), (.) n n+ whichcanbecombinedtogettheidentity ˆ ˆ MPp (x)=np (x). (.) n n The Appell polynomials [] can be defined by considering the following generating function: (cid:4)∞ R (x) A(t)ext= n tn, (.) n! n= where (cid:4)∞ (cid:5) (cid:6) R A(t)= ktk A()(cid:4)= (.) k! k= isanalyticfunctionatt=. From[],weknowthatthemultiplicativeandderivativeoperatorsofR (x)are n Mˆ =(x+α )+(cid:4)n– αn–k Dn–k, (.)  (n–k)! x k= ˆ P=D , (.) x where A(cid:5)(t) (cid:4)∞ tn = α . (.) n A(t) n! n= Byusing(.),wehavethefollowinglemma. Lemma.([]) TheAppellpolynomialsR (x)definedby(.)satisfythedifferential n equation: α α α n– y(n)+ n– y(n–)+···+ y(cid:5)(cid:5)+(x+α )y(cid:5)–ny=, (.)  (n–)! (n–)! ! wherethenumericalcoefficientsα ,k=,,...,n–aredefinedin(.),andarelinked k tothevaluesR bythefollowingrelations: k (cid:2) (cid:3) (cid:4)k k R = R α . k+ h k–h h h= LuandLuoBoundaryValueProblems2013,2013:64 Page5of13 http://www.boundaryvalueproblems.com/content/2013/1/64 LetP bethevectorspaceofpolynomialswithcoefficientsinC.Apolynomialsequence {Pn}n≥beapolynomialset.{Pn}n≥iscalledaσ-Appellpolynomialsetoftransferpower seriesAisgeneratedby (cid:4)∞ P (x) G(x,t)=A(t)G (x,t)= n tn, (.)  n! n= whereG (x,t)isasolutionofthesystem:  σG (x,t)=tG (x,t),   G (x,)=.  In[],theauthorsinvestigatedtheconnectioncoefficientsbetweentwopolynomials. Andthereisaresultaboutconnectioncoefficientsbetweentwoσ-Appellpolynomialsets. Lemma.([]) Letσ ∈(cid:6)(–).Let{Pn}n≥and{Qn}n≥betwoσ-Appellpolynomialsets oftransferpowerseries,respectively,A andA .Then   (cid:4)n n! Q (x)= α P (x), (.) n n–m m m! m= where (cid:4)∞ A (t)  = α tk. k A (t)  k= Inrecentyears,severalauthorsobtainedmanyinterestingresultsinvolvingtherelated BernoullipolynomialsandEulerpolynomials[,–].Andin[],theauthorsstudied someseriesidentitiesinvolvingthegeneralizedApostoltypeandrelatedpolynomials. Inthispaper,westudysomeotherpropertiesofthegeneralizedApostoltypepolynomi- alsF(α)(x;λ;u,v),includingtherecurrencerelations,thedifferentialequationsandsome n connectionproblems,whichextendsomeknownresults.Asspecial,weobtainsomeprop- erties of the generalized Apostol-Euler polynomials, the generalized Apostol-Bernoulli polynomialsandApostol-Genocchipolynomialsofhighorder. 2 Recursionformulasanddifferentialequations Fromthegeneratingfunction(.),wehave ∂ F(α)(x;λ;u,v)=nF(α)(x;λ;u,v). (.) ∂x n n– ArecurrencerelationforthegeneralizedApostoltypepolynomialsisgivenbythefol- lowingtheorem. Theorem. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostoltypepolynomialsF(α)(x;λ;u,v)holdstrue: n (cid:2) (cid:3) αv αλ n! – F(α)(x;λ;u,v)= · F(α+)(x+;λ;u,v)–xF(α)(x;λ;u,v). (.) n+ n+ u (n+v)! n+v n LuandLuoBoundaryValueProblems2013,2013:64 Page6of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Proof Differentiating both sides of (.) with respect to t, and using some elementary algebraandtheidentityprincipleofpowerseries,recursion(.)easilyfollows. (cid:2) Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehave: Corollary. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostol-BernoullipolynomialsB(α)(x;λ)holdstrue: n (cid:8) (cid:9) α–(n+) B(α)(x;λ)=αλB(α+)(x+;λ)–xB(α)(x;λ). (.) n+ n+ n Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostol-EulerpolynomialsE(α)(x;λ)holdstrue: n αλ E(α)(x;λ)=xE(α)(x;λ)– E(α+)(x+;λ). (.) n+ n  n Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostol-GenocchipolynomialsG(α)(x;λ)holdstrue: n (cid:8) (cid:9)  α–(n+) G(α)(x;λ)=αλG(α+)(x+;λ)–(n+)xG(α)(x;λ). (.) n+ n+ n From (.) and (.), we know that the generalized Appostol type polynomials F(α)(x;λ;u,v)isAppellpolynomialswith n (cid:2) (cid:3) utv α A(t)= . (.) λet+ FromtheEq.()of[],weknowthatG (;λ)=.Sofrom(.)and(.),wecanobtain  thatifv=,wehave A(cid:5)(t) λα(cid:4)∞ G (;λ) tn = n+ · . (.) A(t)  n+ n! n= Byusing(.)and(.),wecanobtainthemultiplicativeandderivativeoperatorsofthe generalizedAppostoltypepolynomialsF(α)(x;λ;u,v) n (cid:2) (cid:3) Mˆ = x+ λαG (;λ) + λα(cid:4)n– Gn–k+(;λ)Dn–k, (.)    (n–k+)! x k= ˆ P=D . (.) x From(.),wecanobtain ∂p n! F(α)(x;λ;u,v)= F(α)(x;λ;u,v). (.) ∂xp n (n–p)! n–p Thenbyusing(.),(.)and(.),weobtainthefollowingresult. LuandLuoBoundaryValueProblems2013,2013:64 Page7of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Theorem. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostoltypepolynomialsF(α)(x;λ;u,)holdstrue: n (cid:2) (cid:3) λα F(α)(x;λ;u,)= x+ G (;λ) F(α)(x;λ;u,) n+   n (cid:2) (cid:3) λα(cid:4)n– n G (;λ) + n–k+ F(α)(x;λ;u,). (.)  k n–k+ n–k k= Bysettingu=inTheorem.,wehavethefollowingcorollary. Corollary. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostol-EulerpolynomialsE(α)(x;λ)holdstrue: n (cid:2) (cid:3) (cid:2) (cid:3) λα λα(cid:4)n– n G (;λ) E(α)(x;λ)= x+ G (;λ) E(α)(x;λ)+ n–k+ E(α)(x;λ). (.) n+   n  k n–k+ n–k k= Furthermore,applyingLemma.toF(α)(x;λ;u,),wehavethefollowingtheorem. n Theorem. ThegeneralizedApostoltypepolynomialsF(α)(x;λ;u,)satisfythediffer- n entialequation: λαG (;λ) λαG (;λ) n y(n)+ n– y(n–)+···  n!  (n–)! (cid:2) (cid:3) λαG (;λ) λα +  y(cid:5)(cid:5)+ x+ G (;λ) y(cid:5)–ny=. (.)     Specially,bysettingu=inTheorem.,thenwehavethefollowingcorollary. Corollary. ThegeneralizedApostol-EulerpolynomialsE(α)(x;λ)satisfythedifferential n equation: λαG (;λ) λαG (;λ) n y(n)+ n– y(n–)+···  n!  (n–)! (cid:2) (cid:3) λαG (;λ) λα +  y(cid:5)(cid:5)+ x+ G (;λ) y(cid:5)–ny=. (.)     3 Connectionproblems From(.)and(.),weknowthatthegeneralizedApostoltypepolynomialsF(α)(x;λ; n u,v)areaD -Appellpolynomialset,whereD denotesthederivativeoperator. x x FromTable  in [],weknow thatthederivative operatorsofmonomials xn andthe Gould-Hopperpolynomialsgm(x,h)[]areallD .AndtheirtransferpowerseriesA(t) n x areandehtm,respectively. ApplyingLemma.toP (x)=xnandQ (x)=F(α)(x;λ;u,v),wehavethefollowingthe- n n n orem. LuandLuoBoundaryValueProblems2013,2013:64 Page8of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Theorem. (cid:2) (cid:3) (cid:4)n n F(α)(x;λ;u,v)= F(α) (λ;u,v)xm, (.) n m n–m m= whereF(α)(λ;u,v)istheso-calledApostoltypenumbersoforderαdefinedby(.). n Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n B(α)(x;λ)= B(α) (λ)xm, (.) n m n–m m= whichisjustEq.(.)of[]. Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n E(α)(x;λ)= E(α) (λ)xm. (.) n m n–m m= Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n G(α)(x;λ)= G(α) (λ)xm, (.) n m n–m m= whichisjustEq.()of[]. ApplyingLemma.toP (x)=F (x;λ;u,v)andQ (x)=F(α)(x;λ;u,v),wehavethefol- n n n n lowingtheorem. Theorem. (cid:2) (cid:3) (cid:4)n n F(α)(x;λ;u,v)= F(α–)(λ;u,v)F (x;λ;u,v), (.) n m n–m m m= whereF(α)(λ;u,v)istheso-calledApostoltypenumbersoforderαdefinedby(.). n Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n B(α)(x;λ)= B(α–)(λ)B (x;λ), (.) n m n–m m m= whichisjustEq.(.)of[]. LuandLuoBoundaryValueProblems2013,2013:64 Page9of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n E(α)(x;λ)= E(α–)(λ)E (x;λ). (.) n m n–m m m= Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n G(α)(x;λ)= G(α–)(λ)G (x;λ). (.) n m n–m m m= ApplyingLemma.toP (x)=gm(x,h)andQ (x)=F(α)(x;λ;u,v),wehavethefollowing n n n n theorem. Theorem. (cid:10) (cid:11) (cid:4)n n! [(n(cid:4)–r)/m] hk F(α)(x;λ;u,v)= (–)k F(α) (λ;u,v) gm(x,h). (.) n r! k!(n–r–mk)! n–r–mk r r= k= Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehavethefollowingcorollary. Corollary. (cid:10) (cid:11) (cid:4)n n! [(n(cid:4)–r)/m] hk B(α)(x;λ)= (–)k B(α) (λ) gm(x,h), (.) n r! k!(n–r–mk)! n–r–mk r r= k= whichisjustEq.(.)of[]. Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:10) (cid:11) (cid:4)n n! [(n(cid:4)–r)/m] hk E(α)(x;λ)= (–)k E(α) (λ) gm(x,h). (.) n r! k!(n–r–mk)! n–r–mk r r= k= Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:10) (cid:11) (cid:4)n n! [(n(cid:4)–r)/m] hk G(α)(x;λ)= (–)k G(α) (λ) gm(x,h). (.) n r! k!(n–r–mk)! n–r–mk r r= k= Whenvα=,applyingLemma.toP (x)=E(α–)(x;λ)andQ (x)=F(α)(x;λ;u,v),we n n n n havethefollowingtheorem. LuandLuoBoundaryValueProblems2013,2013:64 Page10of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Theorem. Ifvα=,thenwehave (cid:2) (cid:3) (cid:4)n n F(α)(x;λ;u,v)= (u–)αG (λ)E(α–)(x;λ). (.) n m n–m m m= Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n  n B (x;λ)=– G (–λ)xm. (.) n n–m  m m= Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n  n G (x;λ)=– G (λ)xm, (.) n n–m  m m= whichisjustthecaseofα=in(.). When v= or α=,applyingLemma.to P (x)=G(α–)(x;λ) and Q (x)=F(α)(x;λ; n n n n u,v),wecanobtainthefollowingtheorem. Theorem. Ifv=orα=,wehave (cid:2) (cid:3) (cid:4)n n F(α)(x;λ;u,v)= (u–)αG (λ)G(α–)(x;λ). (.) n m n–m m m= Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3)(cid:2) (cid:3) (cid:4)n n  α B(α)(x;λ)= – G (–λ)G(α–)(x;–λ). (.) n m  n–m m m= Whenα=in(.),itisjust(.). Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n G(α)(x;λ)= G (λ)G(α–)(x;λ), (.) n m n–m m m= whichisequalto(.).

Description:
Lu and Luo Boundary Value Problems 2013, 2013:64 .. n (x;λ;u,v), including the recurrence relations, the differential equations and some connection problems with respect to t, and using some elementary algebra and the .. Ben Cheikh, Y, Chaggara, H: Connection problems via lowering operators.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.