LuandLuoBoundaryValueProblems2013,2013:64 http://www.boundaryvalueproblems.com/content/2013/1/64 RESEARCH OpenAccess Some properties of the generalized Apostol-type polynomials Da-QianLu1andQiu-MingLuo2* *Correspondence: [email protected] Abstract 2DepartmentofMathematics, Inthispaper,westudysomepropertiesofthegeneralizedApostol-typepolynomials ChongqingNormalUniversity, ChongqingHigherEducationMega (see(LuoandSrivastavainAppl.Math.Comput.217:5702-5728,2011)),includingthe Center,HuxiCampus,Chongqing, recurrencerelations,thedifferentialequationsandsomeotherconnectedproblems, 401331,People’sRepublicofChina whichextendsomeknownresults.Wealsodeducesomepropertiesofthe Fulllistofauthorinformationis availableattheendofthearticle generalizedApostol-Eulerpolynomials,thegeneralizedApostol-Bernoulli polynomials,andApostol-Genocchipolynomialsofhighorder. MSC: Primary11B68;secondary33C65 Keywords: generalizedApostoltypepolynomials;recurrencerelations;differential equations;connectedproblems;quasi-monomial 1 Introduction,definitionsandmotivation TheclassicalBernoullipolynomialsB (x),theclassicalEulerpolynomialsE (x) andthe n n classicalGenocchipolynomialsG (x),togetherwiththeirfamiliargeneralizationsB(α)(x), n n E(α)(x)andG(α)(x)of(realorcomplex)orderα,areusuallydefinedbymeansofthefol- n n lowinggeneratingfunctions(see,fordetails,[],pp.-and[],p.etseq.;seealso []andthereferencescitedtherein): (cid:2) (cid:3) z α (cid:4)∞ zn (cid:5) (cid:6) ·exz= B(α)(x) |z|<π , (.) ez– n n! n= (cid:2) (cid:3) α (cid:4)∞ zn (cid:5) (cid:6) ·exz= E(α)(x) |z|<π (.) ez+ n n! n= and (cid:2) (cid:3) z α (cid:4)∞ zn (cid:5) (cid:6) ·exz= G(α)(x) |z|<π . (.) ez+ n n! n= Sothat,obviously,theclassicalBernoullipolynomialsB (x),theclassicalEulerpolynomi- n alsE (x)andtheclassicalGenocchipolynomialsG (x)aregiven,respectively,by n n B (x):=B()(x), E (x):=E()(x) and G (x):=G()(x) (n∈N ). (.) n n n n n n ©2013LuandLuo;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttribu- tionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproductioninany medium,providedtheoriginalworkisproperlycited. LuandLuoBoundaryValueProblems2013,2013:64 Page2of13 http://www.boundaryvalueproblems.com/content/2013/1/64 FortheclassicalBernoullinumbers B ,theclassicalEulernumbers E andtheclassical n n GenocchinumbersG ofordern,wehave n B :=B ()=B()(), E :=E ()=E()() and G :=G ()=G()(), (.) n n n n n n n n n respectively. Some interesting analogues of the classical Bernoulli polynomials and numbers were first investigated by Apostol (see [], p., Eq. (.)) and (more recently) by Srivastava (see[],pp.-).WebeginbyrecallinghereApostol’sdefinitionsasfollows. Definition.(Apostol[];seealsoSrivastava[]) TheApostol-Bernoullipolynomials B (x;λ)(λ∈C)aredefinedbymeansofthefollowinggeneratingfunction: n (cid:4)∞ zexz zn = B (x;λ) λez– n n! n= (cid:5) (cid:6) |z|<π whenλ=;|z|<|logλ|whenλ(cid:4)= (.) with,ofcourse, B (x)=B (x;) and B (λ):=B (;λ), (.) n n n n whereB (λ)denotestheso-calledApostol-Bernoullinumbers. n Recently,LuoandSrivastava[]furtherextendedtheApostol-Bernoullipolynomialsas theso-calledApostol-Bernoullipolynomialsoforderα. Definition.(LuoandSrivastava[]) TheApostol-BernoullipolynomialsB(α)(x;λ)(λ∈ n C)oforderα∈N aredefinedbymeansofthefollowinggeneratingfunction: (cid:2) (cid:3) z α (cid:4)∞ zn ·exz= B(α)(x;λ) λez– n n! n= (cid:5) (cid:6) |z|<π whenλ=;|z|<|logλ|whenλ(cid:4)= (.) with,ofcourse, B(α)(x)=B(α)(x;) and B(α)(λ):=B(α)(;λ), (.) n n n n whereB(α)(λ)denotestheso-calledApostol-Bernoullinumbersoforderα. n Ontheotherhand,Luo[],gaveananalogousextensionofthegeneralizedEulerpoly- nomialsastheso-calledApostol-Eulerpolynomialsoforderα. Definition.(Luo[]) TheApostol-EulerpolynomialsE(α)(x;λ)(λ∈C)oforderα∈N n aredefinedbymeansofthefollowinggeneratingfunction: (cid:2) (cid:3) α·exz=(cid:4)∞ E(α)(x;λ)zn (cid:5)|z|<(cid:7)(cid:7)log(–λ)(cid:7)(cid:7)(cid:6) (.) λez+ n n! n= LuandLuoBoundaryValueProblems2013,2013:64 Page3of13 http://www.boundaryvalueproblems.com/content/2013/1/64 with,ofcourse, E(α)(x)=E(α)(x;) and E(α)(λ):=E(α)(;λ), (.) n n n n whereE(α)(λ)denotestheso-calledApostol-Eulernumbersoforderα. n OnthesubjectoftheGenocchipolynomialsG (x) andtheirvariousextensions,are- n markablylargenumberofinvestigationshaveappearedintheliterature(see,forexample, [–]).Moreover,Luo(see[–])introducedandinvestigatedtheApostol-Genocchi polynomialsof(realorcomplex)orderα,whicharedefinedasfollows: Definition. TheApostol-GenocchipolynomialsG(α)(x;λ)(λ∈C)oforderα∈N are n definedbymeansofthefollowinggeneratingfunction: (cid:2) (cid:3) z α·exz=(cid:4)∞ G(α)(x;λ)zn (cid:5)|z|<(cid:7)(cid:7)log(–λ)(cid:7)(cid:7)(cid:6) (.) λez+ n n! n= with,ofcourse, G(α)(x)=G(α)(x;), G(α)(λ):=G(α)(;λ), n n n n (.) G (x;λ):=G()(x;λ) and G (λ):=G()(λ), n n n n where G (λ), G(α)(λ) and G (x;λ) denote the so-called Apostol-Genocchi numbers, the n n n Apostol-Genocchi numbers of order α and the Apostol-Genocchi polynomials, respec- tively. Recently, Luo and Srivastava [] introduced a unification (and generalization) of the above-mentionedthreefamiliesofthegeneralizedApostoltypepolynomials. Definition . (Luo and Srivastava []) The generalized Apostol type polynomials F(α)(x;λ;u,v)(α∈N ,λ,u,v∈C)oforderαaredefinedbymeansofthefollowinggener- n atingfunction: (cid:2) (cid:3) uzv α·exz=(cid:4)∞ F(α)(x;λ;u,v)zn (cid:5)|z|<(cid:7)(cid:7)log(–λ)(cid:7)(cid:7)(cid:6), (.) λez+ n n! n= where F(α)(λ;u,v):=F(α)(;λ;u,v) (.) n n denotetheso-calledApostoltypenumbersoforderα. Sothat,bycomparingDefinition.withDefinitions.,.and.,wehave B(α)(x;λ)=(–)αF(α)(x;–λ;,), (.) n n E(α)(x;λ)=F(α)(x;λ;,), (.) n n G(α)(x;λ)=F(α)(x;λ;,). (.) n n LuandLuoBoundaryValueProblems2013,2013:64 Page4of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Apolynomialp (x)(n∈N,x∈C)issaidtobeaquasi-monomial[],whenevertwoop- n ˆ ˆ eratorsM,P,calledmultiplicativeandderivative(orlowering)operatorsrespectively,can bedefinedinsuchawaythat ˆ Pp (x)=np (x), (.) n n– ˆ Mp (x)=p (x), (.) n n+ whichcanbecombinedtogettheidentity ˆ ˆ MPp (x)=np (x). (.) n n The Appell polynomials [] can be defined by considering the following generating function: (cid:4)∞ R (x) A(t)ext= n tn, (.) n! n= where (cid:4)∞ (cid:5) (cid:6) R A(t)= ktk A()(cid:4)= (.) k! k= isanalyticfunctionatt=. From[],weknowthatthemultiplicativeandderivativeoperatorsofR (x)are n Mˆ =(x+α )+(cid:4)n– αn–k Dn–k, (.) (n–k)! x k= ˆ P=D , (.) x where A(cid:5)(t) (cid:4)∞ tn = α . (.) n A(t) n! n= Byusing(.),wehavethefollowinglemma. Lemma.([]) TheAppellpolynomialsR (x)definedby(.)satisfythedifferential n equation: α α α n– y(n)+ n– y(n–)+···+ y(cid:5)(cid:5)+(x+α )y(cid:5)–ny=, (.) (n–)! (n–)! ! wherethenumericalcoefficientsα ,k=,,...,n–aredefinedin(.),andarelinked k tothevaluesR bythefollowingrelations: k (cid:2) (cid:3) (cid:4)k k R = R α . k+ h k–h h h= LuandLuoBoundaryValueProblems2013,2013:64 Page5of13 http://www.boundaryvalueproblems.com/content/2013/1/64 LetP bethevectorspaceofpolynomialswithcoefficientsinC.Apolynomialsequence {Pn}n≥beapolynomialset.{Pn}n≥iscalledaσ-Appellpolynomialsetoftransferpower seriesAisgeneratedby (cid:4)∞ P (x) G(x,t)=A(t)G (x,t)= n tn, (.) n! n= whereG (x,t)isasolutionofthesystem: σG (x,t)=tG (x,t), G (x,)=. In[],theauthorsinvestigatedtheconnectioncoefficientsbetweentwopolynomials. Andthereisaresultaboutconnectioncoefficientsbetweentwoσ-Appellpolynomialsets. Lemma.([]) Letσ ∈(cid:6)(–).Let{Pn}n≥and{Qn}n≥betwoσ-Appellpolynomialsets oftransferpowerseries,respectively,A andA .Then (cid:4)n n! Q (x)= α P (x), (.) n n–m m m! m= where (cid:4)∞ A (t) = α tk. k A (t) k= Inrecentyears,severalauthorsobtainedmanyinterestingresultsinvolvingtherelated BernoullipolynomialsandEulerpolynomials[,–].Andin[],theauthorsstudied someseriesidentitiesinvolvingthegeneralizedApostoltypeandrelatedpolynomials. Inthispaper,westudysomeotherpropertiesofthegeneralizedApostoltypepolynomi- alsF(α)(x;λ;u,v),includingtherecurrencerelations,thedifferentialequationsandsome n connectionproblems,whichextendsomeknownresults.Asspecial,weobtainsomeprop- erties of the generalized Apostol-Euler polynomials, the generalized Apostol-Bernoulli polynomialsandApostol-Genocchipolynomialsofhighorder. 2 Recursionformulasanddifferentialequations Fromthegeneratingfunction(.),wehave ∂ F(α)(x;λ;u,v)=nF(α)(x;λ;u,v). (.) ∂x n n– ArecurrencerelationforthegeneralizedApostoltypepolynomialsisgivenbythefol- lowingtheorem. Theorem. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostoltypepolynomialsF(α)(x;λ;u,v)holdstrue: n (cid:2) (cid:3) αv αλ n! – F(α)(x;λ;u,v)= · F(α+)(x+;λ;u,v)–xF(α)(x;λ;u,v). (.) n+ n+ u (n+v)! n+v n LuandLuoBoundaryValueProblems2013,2013:64 Page6of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Proof Differentiating both sides of (.) with respect to t, and using some elementary algebraandtheidentityprincipleofpowerseries,recursion(.)easilyfollows. (cid:2) Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehave: Corollary. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostol-BernoullipolynomialsB(α)(x;λ)holdstrue: n (cid:8) (cid:9) α–(n+) B(α)(x;λ)=αλB(α+)(x+;λ)–xB(α)(x;λ). (.) n+ n+ n Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostol-EulerpolynomialsE(α)(x;λ)holdstrue: n αλ E(α)(x;λ)=xE(α)(x;λ)– E(α+)(x+;λ). (.) n+ n n Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostol-GenocchipolynomialsG(α)(x;λ)holdstrue: n (cid:8) (cid:9) α–(n+) G(α)(x;λ)=αλG(α+)(x+;λ)–(n+)xG(α)(x;λ). (.) n+ n+ n From (.) and (.), we know that the generalized Appostol type polynomials F(α)(x;λ;u,v)isAppellpolynomialswith n (cid:2) (cid:3) utv α A(t)= . (.) λet+ FromtheEq.()of[],weknowthatG (;λ)=.Sofrom(.)and(.),wecanobtain thatifv=,wehave A(cid:5)(t) λα(cid:4)∞ G (;λ) tn = n+ · . (.) A(t) n+ n! n= Byusing(.)and(.),wecanobtainthemultiplicativeandderivativeoperatorsofthe generalizedAppostoltypepolynomialsF(α)(x;λ;u,v) n (cid:2) (cid:3) Mˆ = x+ λαG (;λ) + λα(cid:4)n– Gn–k+(;λ)Dn–k, (.) (n–k+)! x k= ˆ P=D . (.) x From(.),wecanobtain ∂p n! F(α)(x;λ;u,v)= F(α)(x;λ;u,v). (.) ∂xp n (n–p)! n–p Thenbyusing(.),(.)and(.),weobtainthefollowingresult. LuandLuoBoundaryValueProblems2013,2013:64 Page7of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Theorem. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostoltypepolynomialsF(α)(x;λ;u,)holdstrue: n (cid:2) (cid:3) λα F(α)(x;λ;u,)= x+ G (;λ) F(α)(x;λ;u,) n+ n (cid:2) (cid:3) λα(cid:4)n– n G (;λ) + n–k+ F(α)(x;λ;u,). (.) k n–k+ n–k k= Bysettingu=inTheorem.,wehavethefollowingcorollary. Corollary. Foranyintegraln≥,λ∈Candα∈N,thefollowingrecurrencerelation forthegeneralizedApostol-EulerpolynomialsE(α)(x;λ)holdstrue: n (cid:2) (cid:3) (cid:2) (cid:3) λα λα(cid:4)n– n G (;λ) E(α)(x;λ)= x+ G (;λ) E(α)(x;λ)+ n–k+ E(α)(x;λ). (.) n+ n k n–k+ n–k k= Furthermore,applyingLemma.toF(α)(x;λ;u,),wehavethefollowingtheorem. n Theorem. ThegeneralizedApostoltypepolynomialsF(α)(x;λ;u,)satisfythediffer- n entialequation: λαG (;λ) λαG (;λ) n y(n)+ n– y(n–)+··· n! (n–)! (cid:2) (cid:3) λαG (;λ) λα + y(cid:5)(cid:5)+ x+ G (;λ) y(cid:5)–ny=. (.) Specially,bysettingu=inTheorem.,thenwehavethefollowingcorollary. Corollary. ThegeneralizedApostol-EulerpolynomialsE(α)(x;λ)satisfythedifferential n equation: λαG (;λ) λαG (;λ) n y(n)+ n– y(n–)+··· n! (n–)! (cid:2) (cid:3) λαG (;λ) λα + y(cid:5)(cid:5)+ x+ G (;λ) y(cid:5)–ny=. (.) 3 Connectionproblems From(.)and(.),weknowthatthegeneralizedApostoltypepolynomialsF(α)(x;λ; n u,v)areaD -Appellpolynomialset,whereD denotesthederivativeoperator. x x FromTable in [],weknow thatthederivative operatorsofmonomials xn andthe Gould-Hopperpolynomialsgm(x,h)[]areallD .AndtheirtransferpowerseriesA(t) n x areandehtm,respectively. ApplyingLemma.toP (x)=xnandQ (x)=F(α)(x;λ;u,v),wehavethefollowingthe- n n n orem. LuandLuoBoundaryValueProblems2013,2013:64 Page8of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Theorem. (cid:2) (cid:3) (cid:4)n n F(α)(x;λ;u,v)= F(α) (λ;u,v)xm, (.) n m n–m m= whereF(α)(λ;u,v)istheso-calledApostoltypenumbersoforderαdefinedby(.). n Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n B(α)(x;λ)= B(α) (λ)xm, (.) n m n–m m= whichisjustEq.(.)of[]. Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n E(α)(x;λ)= E(α) (λ)xm. (.) n m n–m m= Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n G(α)(x;λ)= G(α) (λ)xm, (.) n m n–m m= whichisjustEq.()of[]. ApplyingLemma.toP (x)=F (x;λ;u,v)andQ (x)=F(α)(x;λ;u,v),wehavethefol- n n n n lowingtheorem. Theorem. (cid:2) (cid:3) (cid:4)n n F(α)(x;λ;u,v)= F(α–)(λ;u,v)F (x;λ;u,v), (.) n m n–m m m= whereF(α)(λ;u,v)istheso-calledApostoltypenumbersoforderαdefinedby(.). n Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n B(α)(x;λ)= B(α–)(λ)B (x;λ), (.) n m n–m m m= whichisjustEq.(.)of[]. LuandLuoBoundaryValueProblems2013,2013:64 Page9of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n E(α)(x;λ)= E(α–)(λ)E (x;λ). (.) n m n–m m m= Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n G(α)(x;λ)= G(α–)(λ)G (x;λ). (.) n m n–m m m= ApplyingLemma.toP (x)=gm(x,h)andQ (x)=F(α)(x;λ;u,v),wehavethefollowing n n n n theorem. Theorem. (cid:10) (cid:11) (cid:4)n n! [(n(cid:4)–r)/m] hk F(α)(x;λ;u,v)= (–)k F(α) (λ;u,v) gm(x,h). (.) n r! k!(n–r–mk)! n–r–mk r r= k= Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehavethefollowingcorollary. Corollary. (cid:10) (cid:11) (cid:4)n n! [(n(cid:4)–r)/m] hk B(α)(x;λ)= (–)k B(α) (λ) gm(x,h), (.) n r! k!(n–r–mk)! n–r–mk r r= k= whichisjustEq.(.)of[]. Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:10) (cid:11) (cid:4)n n! [(n(cid:4)–r)/m] hk E(α)(x;λ)= (–)k E(α) (λ) gm(x,h). (.) n r! k!(n–r–mk)! n–r–mk r r= k= Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:10) (cid:11) (cid:4)n n! [(n(cid:4)–r)/m] hk G(α)(x;λ)= (–)k G(α) (λ) gm(x,h). (.) n r! k!(n–r–mk)! n–r–mk r r= k= Whenvα=,applyingLemma.toP (x)=E(α–)(x;λ)andQ (x)=F(α)(x;λ;u,v),we n n n n havethefollowingtheorem. LuandLuoBoundaryValueProblems2013,2013:64 Page10of13 http://www.boundaryvalueproblems.com/content/2013/1/64 Theorem. Ifvα=,thenwehave (cid:2) (cid:3) (cid:4)n n F(α)(x;λ;u,v)= (u–)αG (λ)E(α–)(x;λ). (.) n m n–m m m= Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n B (x;λ)=– G (–λ)xm. (.) n n–m m m= Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n G (x;λ)=– G (λ)xm, (.) n n–m m m= whichisjustthecaseofα=in(.). When v= or α=,applyingLemma.to P (x)=G(α–)(x;λ) and Q (x)=F(α)(x;λ; n n n n u,v),wecanobtainthefollowingtheorem. Theorem. Ifv=orα=,wehave (cid:2) (cid:3) (cid:4)n n F(α)(x;λ;u,v)= (u–)αG (λ)G(α–)(x;λ). (.) n m n–m m m= Bysettingλ:=–λ,u=andv=inTheorem.,andthenmultiplying(–)α onboth sidesoftheresult,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3)(cid:2) (cid:3) (cid:4)n n α B(α)(x;λ)= – G (–λ)G(α–)(x;–λ). (.) n m n–m m m= Whenα=in(.),itisjust(.). Bysettingu=andv=inTheorem.,wehavethefollowingcorollary. Corollary. (cid:2) (cid:3) (cid:4)n n G(α)(x;λ)= G (λ)G(α–)(x;λ), (.) n m n–m m m= whichisequalto(.).
Description: