ebook img

Some Problems of Unlikely Intersections in Arithmetic and Geometry PDF

174 Pages·2012·3.72 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Some Problems of Unlikely Intersections in Arithmetic and Geometry

Annals of Mathematics Studies Number 181 This page intentionally left blank Some Problems of Unlikely Intersections in Arithmetic and Geometry Umberto Zannier with Appendixes by David Masser PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD 2012 LibroPrincetonPrepages January 11, 2012 7x10 Copyright c 2012 by Princeton University Press ￿ Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved Library of Congress Cataloging-in-Publication Data Zannier, U. (Umberto), 1957- Some problems of unlikely intersections in arithmetic and geometry / Umberto Zannier ; with appendixes by David Masser. p. cm. – (Annals of mathematics studies ; no. 181) Includes bibliographical references and index. ISBN978-0-691-15370-4(hardcover: acid-freepaper)–ISBN978-0-691-15371-1(pbk. : acid-free paper) 1. Intersection theory. 2. Algebraic varieties. 3. Algebraic geometry. I. Masser, David William, 1948- II. Title. QA564.Z36 2012 516.35–dc23 ￿ 2011037619 British Library Cataloging-in-Publication Data is available This book has been composed in LATEX. Thepublisherwouldliketoacknowledgetheauthorofthisvolumeforprovidingthecamera-ready copy from which this book was printed. Printed on acid-free paper ∞ Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 Contents Preface ix Notation and Conventions xi Introduction: An Overview of Some Problems of Unlikely Intersections 1 1 Unlikely Intersections in Multiplicative Groups and the Zilber Conjecture 15 1.1 Torsion points on subvarieties of n . . . . . . . . . . . . . . . . . . . . . . . . . . 16 m 1.2 Higher multiplicative rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3 Remarks on Theorem 1.3 and its developments . . . . . . . . . . . . . . . . . . . . 29 1.3.1 Fields other than . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3.2 Weakened assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3.3 Unlikely intersections of positive dimension and height bounds. . . . . . . . 31 1.3.4 Unlikely intersections of positive dimension and Zilber’s . . . . . . . . conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.3.5 Unlikely intersections and reducibility of lacunary poly- . . . . . . . . nomials (Schinzel’s conjecture) . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.3.6 Zhang’s notion of dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.3.7 Abelian varieties (and other algebraic groups) . . . . . . . . . . . . . . . . . 36 1.3.8 Uniformity of bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Notes to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Sparseness of multiplicatively dependent points . . . . . . . . . . . . . . . . . . . . 39 Other unlikely intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 A generalization of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 An application of the methods to zeros of linear recurrences . . . . . . . . . . . . . 40 Comments on the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2 An Arithmetical Analogue 43 2.1 Some unlikely intersections in number fields . . . . . . . . . . . . . . . . . . . . . . 43 2.2 Some applications of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.3 An analogue of Theorem 2.1 for function fields . . . . . . . . . . . . . . . . . . . . 50 2.4 Some applications of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.5 A proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Notes to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Simplifying the proof of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Rational points on curves over . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 p Unlikely Intersections and Holomorphic GCD in Nevanlinna Theory . . . . . . . . 60 LibroPrincetonPrepages January 11, 2012 7x10 vi CONTENTS 3 Unlikely Intersections in Elliptic Surfaces and Problems of Masser 62 3.1 A method for the Manin-Mumford conjecture . . . . . . . . . . . . . . . . . . . . . 62 3.2 Masser’s questions on elliptic pencils . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3 A finiteness proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4 Related problems, conjectures, and developments . . . . . . . . . . . . . . . . . . . 77 3.4.1 Pink’s and related conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4.2 Extending Theorem 3.3 from to C . . . . . . . . . . . . . . . . . . . . . . 80 3.4.3 Effectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.4.4 Extending Theorem 3.3 to arbitrary pairs of points on families . . . . . . . of elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.4.5 Simple abelian surfaces and Pell’s equations over function fields . . . . . . . 85 3.4.6 Further extensions and analogues . . . . . . . . . . . . . . . . . . . . . . . . 87 3.4.7 Dynamical analogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Notes to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Torsion values for a single point: other arguments . . . . . . . . . . . . . . . . . . 92 A variation on the Manin-Mumford conjecture . . . . . . . . . . . . . . . . . . . . 93 Comments on the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4 About the Andr´e-Oort Conjecture 96 4.1 Generalities about the Andr´e-Oort Conjecture. . . . . . . . . . . . . . . . . . . . . 96 4.2 Modular curves and complex multiplication . . . . . . . . . . . . . . . . . . . . . . 99 4.3 The theorem of Andr´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.1 An effective variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.4 Pila’s proof of Andr´e’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.5 Shimura varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Notes to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Remarks on Edixhoven’s approach to Andr´e’s theorem . . . . . . . . . . . . . . . . 123 Some unlikely intersections beyond Andr´e-Oort . . . . . . . . . . . . . . . . . . . . 124 Definability and o-minimal structures . . . . . . . . . . . . . . . . . . . . . . . . . 125 Appendix A Distribution of Rational Points on Subanalytic Surfaces 128 by Umberto Zannier Appendix B Uniformity in Unlikely Intersections: An Example for Lines in Three Dimensions 136 by David Masser Appendix C Silverman’s Bounded Height Theorem for Elliptic Curves: A Direct Proof 138 by David Masser Appendix D Lower Bounds for Degrees of Torsion Points: The Transcendence Approach 140 by David Masser Appendix E A Transcendence Measure for a Quotient of Periods 143 by David Masser LibroPrincetonPrepages January 11, 2012 7x10 CONTENTS vii Appendix F Counting Rational Points on Analytic Curves: A Transcendence Approach 145 by David Masser Appendix G Mixed Problems: Another Approach 147 by David Masser Bibliography 149 Index 159 This page intentionally left blank Preface ThepresentmonographarosefromtheHermannWeylLectures,whichIhadthehonorandpleasure to deliver during May 2010 at the Institute for Advanced Study in Princeton. The series in question consisted of four lectures, entitled, respectively: 1. “An Overview of Some Problems of Unlikely Intersections” 2. “Unlikely Intersections in Multiplicative Groups and the Zilber Conjecture” 3. “Unlikely Intersections in Elliptic Surfaces and Problems of Masser” 4. “About the Andr´e-Oort Conjecture” The denomination “unlikely intersections” roughly speaking refers to varieties which we do not expect to intersect, due to natural dimensional reasons: for instance, if X,Y are varieties of dimensionsr,sinaspaceofdimensionn>r+s, weusuallyexpectX∩Y tobeempty. Moreover, if this emptiness does not occur for whole families of varieties which arisefor independent reasons, we should expect some (simple) structural reason behind this; discovering and proving such a motivationfortheexistenceofthesaidunexpectedintersectionsisthebasicpatternoftheproblems in this realm. We stress that the families considered here are not part of continuous or algebraic ones, but are genuinely discrete ones, a fact which introduces certain arithmetical aspects into the picture, seemingly not of the most common diophantine type. Inthelectures,Ifocusedonsomeknownproblemsthatcanbeviewedinthisperspective,which sometimes unifies them. I tried to offer an overview of some of the problems and especially of a method that arose recently, without any attempt to be complete, but limited mainly to the issues with which I am more familiar. Also, according to the general spirit of these lectures, I tried to give some survey and sketch of the proofs, rather than fine details on technical points. In these notes I have basically followed similar principles, and I have presented essentially the same general topics and theorems as in the lectures, with a few exceptions. Naturally, I have added a substantial amount of detail. Similarly to the lectures, these notes are addressed to a “general” reader: they may be considered rather elementary, and known facts are often recalled for convenience. Also, the subject shows rapid evolution, so probably several results shall soon be superseded; nevertheless, hopefully this should not affect too much the said spirit of the notes. The introduction, which roughly corresponds to the first of the lectures, gives an overview of thetopicsandofthecontentofthesubsequentchapters,whichshouldcorrespondtotheremaining threelectures;however,Chapter2presentsmaterialwhichinasenseismorespecificandcouldnot be mentioned in the lectures. The chapters are concluded with notes, where other, more specific questions are included. Moreover, the volume contains seven (short) appendixes (six of which are by David Masser), which in particular illustrate some essentials of the proofs of certain auxiliary tools needed for the main results. Acknowledgments. It is a real pleasure to thank the Institute for Advanced Study for the invitation to deliver the Hermann Weyl Lectures, and for the generous hospitality. In particular, I x Preface deeplyandheartilythankEnricoBombieriandPeterSarnak,alsofortheirveryimportantgeneral help and advice and for rewarding encouragement. I am also much indebted to David Masser for several illuminating discussions, revisions, and the precious appendixes. I further thank Yves Andr´e, Matt Baker, Daniel Bertrand, Yuri Bilu, Paula Cohen-Tretkoff, Pietro Corvaja, Philipp Habegger, Ben Hutz, Lars Ku¨hne, Aaron Levin, Vincenzo Mantova, Jonathan Pila, Francesco Veneziano and Shou-Wu Zhang for very helpful clarifications and references. I further thank the staffofthePrincetonUniversityPress,especiallyVickieKearnandBenHolmes,forverykindand helpful assistance.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.