ebook img

Some Criteria for Solvable and Supersolvable Leibniz Algebras PDF

70 Pages·2016·0.29 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Some Criteria for Solvable and Supersolvable Leibniz Algebras

ABSTRACT TURNER,BETHANYNICOLE.SomeCriteriaforSolvableandSupersolvableLeibnizAlgebras. (UnderthedirectionofErnestStitzingerandKailashMisra.) LeibnizalgebrasaregeneralizationsofLiealgebras.SincetheintroductionofLeibniz algebrasin1993byJean-LouisLoday,manyresultsforLiealgebrashavebeengeneralized to the Leibniz case, such as Lie’s Theorem, Engel’s Theorem, Cartan’s Criterion and the LeviDecomposition.Since2008,motivatedbygrouptheory,DavidTowershasdefined c-ideals,c-sections,andcompletionsofmaximalsubalgebrasofLiealgebras.Hehasused these,aswellasCartansubalgebrasandCAP-subalgebras,tocharacterizesolvableand supersolvableLiealgebras. Weintroducedefinitionsforc-ideals,CAP-subalgebras,c-sectionsandcompletions formaximalsubalgebrasofLeibnizalgebras.Wedeveloppropertiesofthesesubalgebras ofLeibnizalgebras.Wethengiveseveralcharacterizationsofsolvableandsupersolvable Leibnizalgebrasbasedonthebehaviorofthesesubalgebras. ©Copyright2016byBethanyNicoleTurner AllRightsReserved SomeCriteriaforSolvableandSupersolvableLeibnizAlgebras by BethanyNicoleTurner AdissertationsubmittedtotheGraduateFacultyof NorthCarolinaStateUniversity inpartialfulfillmentofthe requirementsfortheDegreeof DoctorofPhilosophy Mathematics Raleigh,NorthCarolina 2016 APPROVEDBY: ErnestStitzinger KailashMisra Co-chairofAdvisoryCommittee Co-chairofAdvisoryCommittee NathanReading MohanPutcha PaulHuffman DEDICATION Totheoneunderthebed. ii ACKNOWLEDGEMENTS Severalothersmadethisworkpossible,andIextendmythankstoallofthem,including: Dr.Misraforinspiringperseveranceandhelpingmetoarticulate;Dr.Stitzingerforkeeping mepointedintherightmathematicaldirection;andDr.Towersforleadingtheway.Ialso thankthosemanygiantswhohavemadetheirshoulderscomfortable. Thisworkexistswithsupportfromfamily,friendsandteachers.Ithankmyhusband Padraicforhelpingmebeherenow,mymotherLindaforhertirelessbeliefinmyability,my fatherDarrellforteachingmehowtoaskquestions,andPanforallthesoothingpurring. iii TABLEOFCONTENTS Chapter1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter3 SubalgebraProperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 C-supplementedSubalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 C-ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 One-dimensionalsubalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 C-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 CAP-subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6 Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter4 SolvablilityCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1 C-ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 C-Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 CAP-subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Chapter5 SupersolvabilityCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1 C-ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3 CAP-subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 iv CHAPTER 1 INTRODUCTION Liealgebras,whicharosethoughthestudyofLiegroups,havebeenwell-studiedsincetheir introductioninthemid-nineteenthcentury.Sincethentheyhavefoundapplicationsin bothphysicsandappliedmathematics. VariousgeneralizationsofLiealgebrashavebeenstudied.Forexample,in1955Malcev algebraswereintroducedin[Mal55].Leibnizalgebrasweredefinedin1993byJean-Louis Loday[Lod93].ThemajordifferenceisthatLeibnizalgebrasarenotantisymmetric.Since thattime,analoguesofmanymajorLiealgebraresultshavebeenprovenforLeibnizalgebras. 1 CHAPTER1. INTRODUCTION AmongtheseareLie’sTheorem,Engel’sTheorem,Levidecomposition,andCartan’scriterion [Dem13]. Much of the research into Leibniz algebras is focused on determining which propertiesofLiealgebrascanbegeneralized,asin[Bar11]and[Bat13]. Animportantclassofnon-LieLeibnizalgebrasarethecyclicLeibnizalgebras.Inrecent years,methodshavebeendevelopedforcomputingmaximalsubalgebras,Cartansubalge- bras,minimalideals,andFrattinisubalgebrasofcyclicalgebras[McA14].ThecyclicLeibniz algebrashavebeenclassifiedoverthecomplexnumbersin[SS14].Theseresultsareused throughoutthisworktoconstructnon-Lieexamples. ThisworkgeneralizessomeresultsforLiealgebrasthatwereoriginallymotivatedby grouptheory.CompletionsofmaximalsubgroupsweredefinedbyW.E.Deskinsin[Des59], andfurtherstudiedin[Des90],[BBE92]and[MB89].Deskinsdefinedthenormalindexofa maximalsubgroup,andprovedthatafinitegroupissolvableifandonlyifallitsmaximal subgroupshaveprimepowernormalindex.Ballester-Bolinchesusedcompletionsandthe normalindextocharacterizesupersolvablegroups. Thegrouptheoryconceptsofc-supplementedsubgroups,c-normalsubgroups,and c-sections were defined and studied by Y. Wang and others in [BB00], [Wan] and [WS]. Wangprovedin[Wan]thatafinitegroupissolvableifandonlyifallitsmaximalsubgroups arec-normal.In[WS],WangandShirongdescribedtherelationshipbetweenc-normal subgroups,c-sectionsandthenormalindex. Since 2008, D. Towers has defined analogues of these group theory concepts for Lie algebras,andusedthemtocharacterizesolvabilityandsupersolvability.Hedefinedc-ideals forLiealgebrasin[Tow09],motivatedbyc-normalsubgroups.HeprovedthataLiealgebra issolvableifandonlyifallitsmaximalsubalgebrasarec-ideals.In[Tow11]hedefinedthe 2 CHAPTER1. INTRODUCTION idealindexofamaximalsubalgebra,andprovedthataLiealgebraissolvableifandonlyif theidealindexofeverymaximalsubalgebraequalsitscodimension.Hedefinedc-sections ofmaximalsubalgebrasin[Tow15a]. CAP-subalgebrasofLiealgebrashavebeenstudiedin[HO70]and[Sti72].In[Tow15b], Towers gave some properties of CAP-subalgebras in Lie algebras, and proved that a Lie algebraissolvableifandonlyifeachofitsmaximalsubalgebrasisaCAP-subalgebra.He alsoprovedthatinasupersolvableLiealgebra,everysubalgebraisaCAP-subalgebra. Theprimarypurposeofthisworkistogeneralize,wheneverpossible,theresultson solvableandsupersolvableLiealgebrasdescribedabovetotheLeibnizcase.Throughout, wealsodeveloppropertiesoftherelevantsubalgebras,andrelationshipsbetweenthem. Wheneverpossible,weemployatechniqueofgeneralizationoftheLiealgebraproofs. WegivebasicLeibnizalgebradefinitionsinChapter2.Wethenintroducedefinitionsof c-ideals,c-sections,completions,andCAP-subalgebrasfortheLeibnizcase,illustrating withnon-LieLeibnizexamples. In Chapter 3 we develop properties of c-ideals, c-sections, completions, and CAP- subalgebrasinLeibnizalgebras.Wecharacterizec-idealsandc-sectionsinsimpleLeibniz algebras,whichdiffersfromtheLiecase.Wealsodefinetheidealindexη(A:M),andthe c-sectiondimensionη∗(A:M)formaximalsubalgebras,andgiveanequationrelatingthese quantities.Wegiveconditionsunderwhicheveryone-dimensionalsubalgebraisac-ideal. InChapter4wegiveseveralcharacterizationsofsolvableLeibnizalgebras.Weprove thateachofthefollowingconditionsisequivalenttosolvabilityinaLeibnizalgebra:(i) Everymaximalsubalgebraisac-ideal,(ii)Everymaximalsubalgebrahasidealindexequal toitscodimension,(iii)Everymaximalsubalgebrahastrivialc-section,(iv)Everymaximal 3 CHAPTER1. INTRODUCTION subalgebrahasanabelianidealcompletion,and(v)EverymaximalsubalgebraisaCAP- subalgebra.WeprovethataLeibnizalgebraissolvableifeveryCartansubalgebraisac-ideal, andwepresentaLiecounterexampletotheconverse. In Chapter 5 we give characterizations of supersolvable Leibniz algebras. We show thataLeibnizalgebraissupersolvableifandonlyifeverymaximalsubalgebrasatisfies η(A:M)=1.WepresentoneresultwhichwehavenotseenforLiealgebras,namelythat LeibnizalgebrasaresupersolvableifandonlyifalltheirsubalgebrasareCAP-subalgebras. We prove that one sufficient condition for supersolvability given by Towers is in fact a characterizationofsupersolvabilityinthenon-LieLeibnizcase. 4

Description:
Dr. Misra for inspiring perseverance and helping me to articulate; Dr. but not completely factorizable, as there is no disjoint supplement to the Loday, J. “Une Version non Commutative des Algebres de Lie: Les Algebres de.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.