ABSTRACT TURNER,BETHANYNICOLE.SomeCriteriaforSolvableandSupersolvableLeibnizAlgebras. (UnderthedirectionofErnestStitzingerandKailashMisra.) LeibnizalgebrasaregeneralizationsofLiealgebras.SincetheintroductionofLeibniz algebrasin1993byJean-LouisLoday,manyresultsforLiealgebrashavebeengeneralized to the Leibniz case, such as Lie’s Theorem, Engel’s Theorem, Cartan’s Criterion and the LeviDecomposition.Since2008,motivatedbygrouptheory,DavidTowershasdefined c-ideals,c-sections,andcompletionsofmaximalsubalgebrasofLiealgebras.Hehasused these,aswellasCartansubalgebrasandCAP-subalgebras,tocharacterizesolvableand supersolvableLiealgebras. Weintroducedefinitionsforc-ideals,CAP-subalgebras,c-sectionsandcompletions formaximalsubalgebrasofLeibnizalgebras.Wedeveloppropertiesofthesesubalgebras ofLeibnizalgebras.Wethengiveseveralcharacterizationsofsolvableandsupersolvable Leibnizalgebrasbasedonthebehaviorofthesesubalgebras. ©Copyright2016byBethanyNicoleTurner AllRightsReserved SomeCriteriaforSolvableandSupersolvableLeibnizAlgebras by BethanyNicoleTurner AdissertationsubmittedtotheGraduateFacultyof NorthCarolinaStateUniversity inpartialfulfillmentofthe requirementsfortheDegreeof DoctorofPhilosophy Mathematics Raleigh,NorthCarolina 2016 APPROVEDBY: ErnestStitzinger KailashMisra Co-chairofAdvisoryCommittee Co-chairofAdvisoryCommittee NathanReading MohanPutcha PaulHuffman DEDICATION Totheoneunderthebed. ii ACKNOWLEDGEMENTS Severalothersmadethisworkpossible,andIextendmythankstoallofthem,including: Dr.Misraforinspiringperseveranceandhelpingmetoarticulate;Dr.Stitzingerforkeeping mepointedintherightmathematicaldirection;andDr.Towersforleadingtheway.Ialso thankthosemanygiantswhohavemadetheirshoulderscomfortable. Thisworkexistswithsupportfromfamily,friendsandteachers.Ithankmyhusband Padraicforhelpingmebeherenow,mymotherLindaforhertirelessbeliefinmyability,my fatherDarrellforteachingmehowtoaskquestions,andPanforallthesoothingpurring. iii TABLEOFCONTENTS Chapter1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Chapter3 SubalgebraProperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 C-supplementedSubalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 C-ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 One-dimensionalsubalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 C-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.5 CAP-subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.6 Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Chapter4 SolvablilityCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1 C-ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 C-Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 CAP-subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Chapter5 SupersolvabilityCriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.1 C-ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3 CAP-subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 iv CHAPTER 1 INTRODUCTION Liealgebras,whicharosethoughthestudyofLiegroups,havebeenwell-studiedsincetheir introductioninthemid-nineteenthcentury.Sincethentheyhavefoundapplicationsin bothphysicsandappliedmathematics. VariousgeneralizationsofLiealgebrashavebeenstudied.Forexample,in1955Malcev algebraswereintroducedin[Mal55].Leibnizalgebrasweredefinedin1993byJean-Louis Loday[Lod93].ThemajordifferenceisthatLeibnizalgebrasarenotantisymmetric.Since thattime,analoguesofmanymajorLiealgebraresultshavebeenprovenforLeibnizalgebras. 1 CHAPTER1. INTRODUCTION AmongtheseareLie’sTheorem,Engel’sTheorem,Levidecomposition,andCartan’scriterion [Dem13]. Much of the research into Leibniz algebras is focused on determining which propertiesofLiealgebrascanbegeneralized,asin[Bar11]and[Bat13]. Animportantclassofnon-LieLeibnizalgebrasarethecyclicLeibnizalgebras.Inrecent years,methodshavebeendevelopedforcomputingmaximalsubalgebras,Cartansubalge- bras,minimalideals,andFrattinisubalgebrasofcyclicalgebras[McA14].ThecyclicLeibniz algebrashavebeenclassifiedoverthecomplexnumbersin[SS14].Theseresultsareused throughoutthisworktoconstructnon-Lieexamples. ThisworkgeneralizessomeresultsforLiealgebrasthatwereoriginallymotivatedby grouptheory.CompletionsofmaximalsubgroupsweredefinedbyW.E.Deskinsin[Des59], andfurtherstudiedin[Des90],[BBE92]and[MB89].Deskinsdefinedthenormalindexofa maximalsubgroup,andprovedthatafinitegroupissolvableifandonlyifallitsmaximal subgroupshaveprimepowernormalindex.Ballester-Bolinchesusedcompletionsandthe normalindextocharacterizesupersolvablegroups. Thegrouptheoryconceptsofc-supplementedsubgroups,c-normalsubgroups,and c-sections were defined and studied by Y. Wang and others in [BB00], [Wan] and [WS]. Wangprovedin[Wan]thatafinitegroupissolvableifandonlyifallitsmaximalsubgroups arec-normal.In[WS],WangandShirongdescribedtherelationshipbetweenc-normal subgroups,c-sectionsandthenormalindex. Since 2008, D. Towers has defined analogues of these group theory concepts for Lie algebras,andusedthemtocharacterizesolvabilityandsupersolvability.Hedefinedc-ideals forLiealgebrasin[Tow09],motivatedbyc-normalsubgroups.HeprovedthataLiealgebra issolvableifandonlyifallitsmaximalsubalgebrasarec-ideals.In[Tow11]hedefinedthe 2 CHAPTER1. INTRODUCTION idealindexofamaximalsubalgebra,andprovedthataLiealgebraissolvableifandonlyif theidealindexofeverymaximalsubalgebraequalsitscodimension.Hedefinedc-sections ofmaximalsubalgebrasin[Tow15a]. CAP-subalgebrasofLiealgebrashavebeenstudiedin[HO70]and[Sti72].In[Tow15b], Towers gave some properties of CAP-subalgebras in Lie algebras, and proved that a Lie algebraissolvableifandonlyifeachofitsmaximalsubalgebrasisaCAP-subalgebra.He alsoprovedthatinasupersolvableLiealgebra,everysubalgebraisaCAP-subalgebra. Theprimarypurposeofthisworkistogeneralize,wheneverpossible,theresultson solvableandsupersolvableLiealgebrasdescribedabovetotheLeibnizcase.Throughout, wealsodeveloppropertiesoftherelevantsubalgebras,andrelationshipsbetweenthem. Wheneverpossible,weemployatechniqueofgeneralizationoftheLiealgebraproofs. WegivebasicLeibnizalgebradefinitionsinChapter2.Wethenintroducedefinitionsof c-ideals,c-sections,completions,andCAP-subalgebrasfortheLeibnizcase,illustrating withnon-LieLeibnizexamples. In Chapter 3 we develop properties of c-ideals, c-sections, completions, and CAP- subalgebrasinLeibnizalgebras.Wecharacterizec-idealsandc-sectionsinsimpleLeibniz algebras,whichdiffersfromtheLiecase.Wealsodefinetheidealindexη(A:M),andthe c-sectiondimensionη∗(A:M)formaximalsubalgebras,andgiveanequationrelatingthese quantities.Wegiveconditionsunderwhicheveryone-dimensionalsubalgebraisac-ideal. InChapter4wegiveseveralcharacterizationsofsolvableLeibnizalgebras.Weprove thateachofthefollowingconditionsisequivalenttosolvabilityinaLeibnizalgebra:(i) Everymaximalsubalgebraisac-ideal,(ii)Everymaximalsubalgebrahasidealindexequal toitscodimension,(iii)Everymaximalsubalgebrahastrivialc-section,(iv)Everymaximal 3 CHAPTER1. INTRODUCTION subalgebrahasanabelianidealcompletion,and(v)EverymaximalsubalgebraisaCAP- subalgebra.WeprovethataLeibnizalgebraissolvableifeveryCartansubalgebraisac-ideal, andwepresentaLiecounterexampletotheconverse. In Chapter 5 we give characterizations of supersolvable Leibniz algebras. We show thataLeibnizalgebraissupersolvableifandonlyifeverymaximalsubalgebrasatisfies η(A:M)=1.WepresentoneresultwhichwehavenotseenforLiealgebras,namelythat LeibnizalgebrasaresupersolvableifandonlyifalltheirsubalgebrasareCAP-subalgebras. We prove that one sufficient condition for supersolvability given by Towers is in fact a characterizationofsupersolvabilityinthenon-LieLeibnizcase. 4
Description: