SOME ACTUARIAL AND STATISTICAL INVESTIGATIONS INTO TOPICS ON GENETICS AND INSURANCE By Li Lu Submitted for the Degree of Doctor of Philosophy at Heriot-Watt University on Completion of Research in the School of Mathematical and Computer Sciences May 2006. This copy of the thesis has been supplied on the condition that anyone who consults itisunderstoodtorecognisethatthecopyrightrestswithitsauthorandthatnoquo- tation from the thesis and no information derived from it may be published without the prior written consent of the author or the university (as may be appropriate). I hereby declare that the work presented in this the- sis was carried out by myself at Heriot-Watt University, Edinburgh, exceptwheredueacknowledgementismade, and has not been submitted for any other degree. Li Lu (Candidate) Professor Angus S. Macdonald (Supervisor) Professor Howard R. Waters (Supervisor) Date ii Contents Acknowledgements xi Abstract xiii Introduction 1 1 Background of Genetics and Insurance 7 1.1 Human Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.1 DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Genes and Chromosomes . . . . . . . . . . . . . . . . . . . . . 8 1.1.3 Genes and Alleles . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.4 Mendelian Pedigree Patterns . . . . . . . . . . . . . . . . . . . 9 1.1.5 DNA Mutation and Repair . . . . . . . . . . . . . . . . . . . . 10 1.1.6 Single-gene Disorders . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.7 Multifactorial and Polygenic Disorders . . . . . . . . . . . . . 12 1.1.8 DNA-based Genetic Testing . . . . . . . . . . . . . . . . . . . 12 1.1.9 Defining Genetic Information . . . . . . . . . . . . . . . . . . 13 1.1.10 An Example: Adult Polycystic Kidney Disease . . . . . . . . . 13 1.2 Genetics and Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.1 The Impact of Genetics on Insurance . . . . . . . . . . . . . . 14 1.2.2 Developments in the UK . . . . . . . . . . . . . . . . . . . . . 15 1.2.3 Legislation on Genetics in Other Countries . . . . . . . . . . . 18 1.2.4 Underwriting . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2.5 Adverse Selection . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.6 Critical Illness Insurance . . . . . . . . . . . . . . . . . . . . . 20 1.3 Actuarial Models and Quantities . . . . . . . . . . . . . . . . . . . . 20 1.3.1 The Continuous Time Markov Model . . . . . . . . . . . . . . 20 1.3.2 A Genetic Model for Critical Illness Insurance, APKD as an Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.3 Epidemiological Data . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.4 First Topic: Modelling Uncertainty in Actuarial Quantities . . 25 1.3.5 Second Topic: Modelling Family History Information . . . . . 26 1.3.6 A Dynamic Family History Model . . . . . . . . . . . . . . . . 28 2 The Actuarial and Statistical Toolkit 31 2.1 Non-parametric Survival Analysis . . . . . . . . . . . . . . . . . . . . 31 2.1.1 The Survivor Function and Hazard Function . . . . . . . . . . 32 iii 2.1.2 The Kaplan-Meier estimate . . . . . . . . . . . . . . . . . . . 33 2.1.3 The Nelson-Aalen Estimate . . . . . . . . . . . . . . . . . . . 35 2.1.4 Kernel Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.5 Choice of Optimal Bandwidth . . . . . . . . . . . . . . . . . . 38 2.1.6 Some Numerical Examples . . . . . . . . . . . . . . . . . . . . 39 2.2 Resampling Methods for Survival Data . . . . . . . . . . . . . . . . . 42 2.2.1 Parametric Simulation . . . . . . . . . . . . . . . . . . . . . . 43 2.2.2 The Bootstrap Method for Survival Data . . . . . . . . . . . . 44 2.2.3 The Weird Bootstrap . . . . . . . . . . . . . . . . . . . . . . . 45 2.3 Computational Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3.1 The Rejection Method . . . . . . . . . . . . . . . . . . . . . . 46 2.3.2 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . 48 3 Modelling Parameter Uncertainty 51 3.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 More About APKD . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.2 A Critical Illness Insurance Model of APKD and Family History 52 3.1.3 Estimating Parameter Uncertainty . . . . . . . . . . . . . . . 56 3.2 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.1 The Churchill Data . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.2 The Johnson & Gabow Data . . . . . . . . . . . . . . . . . . . 60 3.3 Baseline Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.1 Baseline Estimates of the Rate of Onset of ESRD . . . . . . . 61 3.3.2 Baseline Estimate of the Rate of Censoring . . . . . . . . . . . 67 3.3.3 Baseline Calculation of Premium Rates . . . . . . . . . . . . . 69 3.4 The Sampling Distribution of Critical Illness Insurance Premiums . . 69 3.4.1 Simulation — Churchill Data . . . . . . . . . . . . . . . . . . 73 3.4.2 Simulation — Johnson and Gabow data . . . . . . . . . . . . 80 3.5 Sensitivity Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4 Hereditary Non-polyposis Colorectal Cancer and Critical Illness Insurance 91 4.1 Genetic Bases of HNPCC . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.1 Defining HNPCC Clinically . . . . . . . . . . . . . . . . . . . 92 4.1.2 HNPCC Genes . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.3 Clinical Features of HNPCC . . . . . . . . . . . . . . . . . . . 94 4.1.4 The Frequency of HNPCC . . . . . . . . . . . . . . . . . . . . 94 4.2 A Genotype Model for HNPCC and CI Insurance . . . . . . . . . . . 95 4.3 Estimating Onset Rates of HNPCC Associated Cancers . . . . . . . . 96 4.3.1 A Brief Review of Some Epidemiological Studies . . . . . . . . 96 4.3.2 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.3 Onset of Colorectal Cancer . . . . . . . . . . . . . . . . . . . . 107 4.3.4 Onset of Endometrial Cancer and Extracolonic Cancers . . . . 109 4.3.5 MMR Mutation Frequency . . . . . . . . . . . . . . . . . . . . 111 4.3.6 Population Risk of CRC and EC . . . . . . . . . . . . . . . . 113 4.4 Critical Illness Insurance Premiums by Genotype . . . . . . . . . . . 115 iv 5 A Dynamic Family History Model of HNPCC 117 5.1 A Model of Family History of HNPCC . . . . . . . . . . . . . . . . . 118 5.1.1 Extending Models to Family History . . . . . . . . . . . . . . 118 5.1.2 Modelling Onset of Family History . . . . . . . . . . . . . . . 120 5.2 Estimating the Rate of ‘Onset’ of Family History . . . . . . . . . . . 122 5.2.1 Defining Family History . . . . . . . . . . . . . . . . . . . . . 122 5.2.2 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 123 5.2.3 The Probability of a Family History at Birth . . . . . . . . . . 124 5.2.4 The Probability of Developing a Family History After Birth in Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.5 The Probability of Developing a Family History After Birth in Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.6 The Probability of Developing a Family History After Birth in Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.2.7 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.3 Premium Rates Allowing for a Family History of CRC . . . . . . . . 131 5.4 The Extended Critical Illness Insurance Model . . . . . . . . . . . . . 132 5.4.1 An Insurance Market Model . . . . . . . . . . . . . . . . . . . 132 5.4.2 Definition of Underwriting Classes . . . . . . . . . . . . . . . . 134 5.4.3 Modelling Adverse Selection . . . . . . . . . . . . . . . . . . . 136 5.4.4 A Moratorium on Genetic Test Results . . . . . . . . . . . . . 137 5.4.5 A Moratorium on Genetic Tests and Family History . . . . . . 139 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6 Conclusions and Further Research 143 6.1 APKD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.1.1 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.2 HNPCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . 147 References 151 v vi List of Tables 3.1 Time-to-event table for 140 subjects at risk for ESRD. Source: Churchill et al. (1984). . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2 Timetorenalfailurefor287subjectswithAPKD1mutations. Source: Johnson and Gabow (1997). . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 Time to renal failure for 34 subjects with APKD2 mutations. Source: Johnson and Gabow (1997). . . . . . . . . . . . . . . . . . . . . . . . 61 3.4 Means of simulated single premiums in respect of male APKD muta- tion carriers, compared with baseline premiums, using the Churchill data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.5 Meansofpremiumratesasproportionsofthestandardpremiumrates and quantiles and extreme values as proportions of those means for male APKD mutation carriers, using the Churchill data. . . . . . . . 77 3.6 Meansofpremiumratesasproportionsofthestandardpremiumrates and quantiles and extreme values as proportions of those means for males with a family history of APKD, using the Churchill data. . . . 78 3.7 Meansofpremiumratesasproportionsofthestandardpremiumrates and quantiles and extreme values as proportions of means for males using the Johnson and Gabow APKD1 data, for a known APKD1 mutation carrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.8 Meansofpremiumratesasproportionsofthestandardpremiumrates and quantiles and extreme values as proportions of means for males with a family history, using the Johnson and Gabow data. . . . . . . 84 3.9 Meansofpremiumratesasproportionsofthestandardpremiumrates and quantiles and extreme values as proportions of means for male mutation carriers using the Churchill data and a constant bandwidth of 10 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.10 Meansofpremiumratesasproportionsofthestandardpremiumrates and quantiles and extreme values as proportions of means for male mutation carriers using the Churchill data and a constant bandwidth of 20 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.11 Age specific lifetime risk of cancers. Source: Aarnio et al. (1995). . . 99 4.12 Agespecificlifetimeriskofcancersofcolorectumanduterine. Source: Dunlop et al. (1997). . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.13 Lifetime risk of HNPCC associated cancers for MMR mutation car- riers and Finnish population. Source: Aarnio et al. (1999). . . . . . . 101 4.14 Cumulative lifetime risk of cancers for MSH2 mutation carriers in the UK, the USA and Canada. Source: Froggatt et al. (1999). . . . . . . 101 vii 4.15 Cumulative risks (%) of developing colorectal cancer (CRC) or en- dometrial cancer (EC, females only) by age for carriers of MLH1 or MSH2 mutations, given sex and type of mutation. Source: Vasen et al. (2001). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.16 Cumulative risks (%) of developing other extracolonic cancers by age (years) in carriers of MLH1 or MSH2 mutations. A 95% confidence interval for the lifetime risk is also shown. Source: Vasen et al. (2001).107 4.17 Cumulative risks (%) of developing any one of five extracolonic can- cersforMLH1orMSH2mutationcarriers. Thecancersincludecancer of: stomach, urinary tract, small bowel, ovary (female only) and brain.113 4.18 Level net premiums for a unit sum assured for level CI cover for per- sons with a known genotype. The premium rates for known mutation carriers are presented as a percentage of the premium for non-carriers (standard risks). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.19 An example of underwriting guidelines for applicants with a family history of CRC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.20 The distribution of the number of siblings. Source: Macdonald et al. (2003a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.21 Level premiums for a term insurance with £1 sum assured for level CI cover for persons with family history, as a percentage of the premium for a standard risk, using three different definitions of family history. 132 5.22 Possible underwriting classes with five sub-populations labelled by i. (F) denotes persons who have a family history and (U) denotes those who do not. ⊕ denotes a positive test result and “ denotes a negative test result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.23 Percentage increases in premium rates arising from severe adverse selection. Moratoria on the use of genetic test results, family history underwriting still allowed. CI market operating between ages 20 and 60. The rate of genetic testing is 0.02. . . . . . . . . . . . . . . . . . 138 5.24 Percentage increases in premium rates arising from severe adverse selection. Moratoria on the use of genetic test results, family history underwriting still allowed. CI market operating between ages 20 and 60. The rate of genetic testing is 0.10 per annum. . . . . . . . . . . . 139 5.25 Percentage increases in OR premium rates arising from new under- writing classes, and in all premiums arising from severe adverse se- lection, following a moratorium on the use of all genetic test results and family history. CI market operating between ages 20 and 60. . . 140 .26 28-Day mortality rates (qh = ph) following heart attack. Based on x x Dinani et al. (2000). . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 viii List of Figures 1.1 A multiple state Markov model of illness and death. . . . . . . . . . . 21 1.2 A model of APKD in Critical Illness Insurance, given exact genotype labelled g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Illustration of the rejection method . . . . . . . . . . . . . . . . . . . 47 3.4 A model of critical illness insurance with three subgroups, based on observation of family history (affected parent or sibling). The pro- portions p present in each subgroup at birth are shown. APKD1 and i APKD2 mutations are not distinguished. . . . . . . . . . . . . . . . . 53 3.5 A model of critical illness insurance with three subgroups, based on observation of family history (affected parent or sibling). The pro- portions p present in each subgroup at birth are shown. APKD1 and i APKD2 mutations are distinguished. . . . . . . . . . . . . . . . . . . 55 3.6 The first two terms of MISE against bandwidth using Churchill data (top), Johnson & Gabow APKD1 (middle) and APKD2 (bottom) data. 62 3.7 Nelson-Aalenestimateandkernel-smoothedcumulativeintensitiesus- ing Churchill data (top), Johnson & Gabow APKD1 (middle) and APKD2 (bottom) data. . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.8 Kaplan-Meierestimateandkernel-smoothedsurvivalprobabilitiesus- ing Churchill data (top), Johnson & Gabow APKD1 (middle) and APKD2 (bottom) data. . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.9 Kernel-smoothed onset rate of ESRD, compared with the graduations by Guti´errez and Macdonald, using Churchill data (top), Johnson & Gabow APKD1 (middle) and APKD2 (bottom) data. . . . . . . . . . 66 3.10 Kaplan-Meier estimate of the survival and censoring probability (left column) and kernel-smoothed Nelson-Aalen estimate of rate of onset of ESRD and censoring (right column), using Churchill data (top row), Johnson & Gabow APKD1 (middle row) and APKD2 (bottom row) data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.11 Single premium for females (top) and males (bottom), for a CI in- surance policy with sum assured £1 expiring at age 60, ages at entry 20–60, using the Churchill data. . . . . . . . . . . . . . . . . . . . . . 70 3.12 Single premium for females (top) and males (bottom), for a CI in- surance policy with sum assured £1 expiring at age 60, ages at entry 20–60, using the Johnson & Gabow APKD1 data. . . . . . . . . . . . 71 3.13 Single premium for females (top) and males (bottom), for a CI in- surance policy with sum assured £1 expiring at age 60, ages at entry 20–60, using the Johnson & Gabow APKD2 data. . . . . . . . . . . . 72 ix 3.14 Empirical distribution of simulated premium rates, as a multiple of the standard premium, for a male known APKD mutation carrier with various terms and ages at entry, using Churchill data and three resampling methods. The x-axis is the simulated premium rates, as a multiple of the standard premium; the y-axis is the density. . . . . . 75 3.15 Empirical distribution of simulated premium rates, as a multiple of the standard premium, for a known APKD1 mutation carrier with various terms and ages at entry, using the Johnson & Gabow data and three resampling methods. The x-axis is the simulated premium rates, as a multiple of the standard premium; the y-axis is the density. 82 4.16 Model 1: A model of HNPCC and critical illness insurance, given exact genotype labelled g. (*Endometrial cancer may only develop amongst females.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.17 Kaplan-Meierestimateofendometrial-cancer-freesurvivalprobability from birth. Source: Watson et al. (1994). . . . . . . . . . . . . . . . . 98 4.18 Kaplan-Meier estimate of cumulative risk of cancers for MLH1 and MSH2 mutation carriers. Source: Parc et al. (2003). . . . . . . . . . . 104 4.19 The observed and fitted probability (top) and rate of onset (bottom) of colorectal cancer for male and female MLH1 or MSH2 mutation carriers. Data: Vasen et al. (2001). . . . . . . . . . . . . . . . . . . . 108 4.20 The observed and fitted probability (top) and rate of onset (bottom) of endometrial cancer (EC) for MLH1 and MSH2 mutation carriers. Data: Vasen et al. (2001). . . . . . . . . . . . . . . . . . . . . . . . . 110 4.21 The observed and fitted probability (top) and rate of onset (bottom) of extracolonic cancers (OECC) for MLH1 and MSH2 mutation car- riers. Data: Vasen et al. (2001). . . . . . . . . . . . . . . . . . . . . . 112 4.22 Point and smoothed estimates of the rates of onset of CRC and EC for the general population. Source: National Cancer Statistics in England and Wales, 1988–1992. . . . . . . . . . . . . . . . . . . . . . 114 5.23 Model 2: A model of HNPCC, development of a family history, and critical illness insurance, in subpopulation i. (*Only females may develop endometrial cancer.) . . . . . . . . . . . . . . . . . . . . . . . 121 5.24 The rate of developing family history for MMR carriers and non- carriers under family history scenario 1 (top), 2 (middle) and 3 (bot- tom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.25 Model 3: A model of the critical illness insurance market allowing for family history of CRC and genetic testing, for a person in Subpopu- lation i. All states are at risk of death and critical illness (the same events as shown in Figure 4.16). . . . . . . . . . . . . . . . . . . . . . 133 x
Description: