ebook img

Solving the Pell Equation PDF

500 Pages·2009·0.54 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Solving the Pell Equation

3.2 heT InndainasictitahmaeM 33 areellwesdcribedybSelenius 05 adn ehtretedetsnireared ohsdlu octlusn siht orkw ofr urthfer details and rereenfces .eWllwi oyln ,hcteks htwi aoitiddanl ofniraomit,n atarainvreht(e are era)lvesof eht aglormhti rehe. eWlliwaemussahtt Q,,AB (cid:3) Z adnahtt( ,AB )=1ni;2(2.3)sihtemasn ahtt ( B,Q ) = 1. sA eht qienuhetc orf sogvlni 22(.2) asw ,wnkon eht setp of gnidn(cid:147) an geterni P hsuc ahtt Q | BP + A could be easily edhievac yb the aatktuk rposecs. tI swofoll ahtt escni ( B,Q ) = 1, ew sutm evah Q | P 2 (cid:138) D adn Q | PA + DB . By gnittup R =1 ni 2(2.4,)ew see rfom 2(2.5) ahtt (cid:8) (cid:9) (cid:8) (cid:9) PA + DB 2 A + BP 2 P 2 (cid:138) D (cid:138) D = . 2(2.7) Q Q Q romFsihtelpmisaoitnoresbvewcaneolpvedehtcilcycohtemdofrsognivleht lelP eqauoit.n enGiv egtersni n,A ,B ,Q , adn P where ( A ,B ) = 1 hscu n (cid:138) 1 n (cid:138) 1 n n n (cid:138) 1 n (cid:138) 1 ahtt (cid:25) (cid:25) (cid:25) A 2 (cid:138) DB 2 (cid:25) = Q , n (cid:138) 1 n (cid:138) 1 n dn(cid:147)ybehtaatktukrposesc a peovsiti 15 geterni P hsucahtt |P 2 (cid:138) D | si n +1 n +1 aminlim adn Q | ( P B + A .) Ptu Q = |P 2 (cid:138) D |/Q , n n +1 n (cid:138) 1 n (cid:138) 1 n +1 n +1 n A P + DB B P + A A = n (cid:138) 1 n +1 n (cid:138) 1 , B = n (cid:138) 1 n +1 n (cid:138) 1 . 2(2.8) n Q n Q n n By 2(2.7)ew get (cid:25) (cid:25) (cid:25) A 2 (cid:138) DB 2 (cid:25) = Q , 2(2.9) n n n +1 adn( A ,B )=1.ehTalrettrtluseswofollaeylisyboresbvgniahtt |A B (cid:138) n n n n (cid:138) 1 B A | = 1. eTh ohtemd retansiemt ,nehw ofr soem n , Q = 1 , 2 , 4 n n (cid:138) 1 n +1 bace,esu as ew evah alpxedeni e,abvo Braamhgatpu ahd arleayd nwsoh woh ot esovleht ellP eqauoitn ocne yan soiotuln of 2(2.6) si .wnkon oCredisnehteaxelpmof D =67.eWbegnihtwi n =0, A =1, B =0, (cid:138) 1 (cid:138) 1 Q =1, adn P =0.eWwon ammusrezi niaelbT21. eht sooituln of eht ellP 0 0 equationybthis process,calledhet alavarkac eht( crielcor cilccyohtem)dyb eht aiIdn.sn lbaeT..21 alavkaarCrof D =76 n P Q A B P (mod Q ) n n n(cid:138) 1 n(cid:138) 1 n+1 n 0 0 1 1 0 1 1 8 3 8 1 1 2 7 6 14 5 5 3 5 7 09 11 2 4 9 2 122 72 43 2 ylraEyrtoHsifo thellePnqoEtuia ecniS221 2 (cid:138) 67 • 27 2 = (cid:138) 2,ewget T =221 2 +1=48842, U =27 • 221=5967 as a sooituln of eht ellP auqeoitn T 2 (cid:138) 67 U 2 =1. Corecngnin siht ,euqinhcet leaHkn 25 ats,det (cid:141)tI si bodney all rpa;esi ti si recatylni eht tsen(cid:147) gniht ahtt aswedeivhacni eht ehtory of bemrusn beofre Lagragne(cid:142).,ofanrneuylUtteht aidnIsn did ont edivrpo a rpoof ahtt eht cilccy ohtemd odluw ysaawl or.kw Theyerewt,entconitseems,intheemp riacilwgdeleonkahtttiysaawlsdemee ot od os, adn yeht desu ti ot eosvl eht ellP auqeoitn ofr D = 61 , 67 , 97 , 103. It asw ont litnu eht alet 1930s ahtt a rpoof ahtt eht cyccil ohetmd odluw syaawl rpoecud a aeulv of Q = 1 asw rpoduced yb angar.Ayy 35 eH ondet i (cid:2) ahtt siht rpossec codlu be detrerpneseas eht apxeoisnn of D otnia ypet of serimegalureudnitconrfacoitnhciwhodluwysaawlbe peroici.d eWonet ahtt fi a(s si recaytlni eht case ofr n =0) P B (cid:13) A om(d Q ) , n n (cid:138) 1 n (cid:138) 1 n eh,nt yb,2(2.8) P B (cid:138) A = B ( P 2 (cid:138) D ) /Q n +1 n n n (cid:138) 1 n +1 n (cid:13) 0 (omd Q ) . n +1 ,suhT yb oitcudnin ew yam aemuss ahtt Q | ( P B (cid:138) A .) ecniS Q | n n n (cid:138) 1 n (cid:138) 1 n ( P B + A ) yb corsnoitctun adn ( Q ,B ) | ( A ,B ,) ew get n +1 n (cid:138) 1 n (cid:138) 1 n n (cid:138) 1 n (cid:138) 1 n (cid:138) 1 ( Q ,B )=1 adn n n (cid:138) 1 P (cid:13)(cid:138) P (omd Q ) . n +1 n n Hence, P = q Q (cid:138) P 2(3.0) n +1 n n n ofr soem q (cid:3) Z . If ewwon begni htwi n =0 adn en(cid:147)ed n (cid:2) P + D (cid:8) = i ( > 0) ( i =0 , 1 , 2 ,... ) , i Q i (cid:22) =(sgin P 2 (cid:138) D ) , i+1 i+1 ew get (cid:2) P + D (cid:22) Q (cid:8) = i+1 = (cid:2) i+1 i . i+1 Q D (cid:138) P i+1 i+1 By ,2(3.0) (cid:2) D (cid:138) P i+1 = (cid:8) (cid:138) q ; Q i i i hence, (cid:22) (cid:8) = i+1 . 2(3.1) i+1 (cid:8) (cid:138) q i i eWwongitseaetvnieht rpomelb of ehtaeulvof q . n (cid:2) eeohmrT 2.2. fI ew utp q = (cid:5) ( P + D ) /Q (cid:6) , neth 0 <q (cid:7) q (cid:7) q +1 . n n n 3.2 heT InndainasictitahmaeM 53 .foorP Ptu P = qQ (cid:138) P , P (cid:2) = ( q +1) Q (cid:138) P adn onet ahtt P (cid:13) P (cid:2) (cid:13) n n n n (cid:2) (cid:2) P om(d Q .) yB oitin(cid:147)end of q ,ewevah P < D adn P (cid:2) > D . n +1 n If q <q , ehnt n (cid:2) 0 <P = q Q (cid:138) P <P < D . n +1 n n n Hence, |D (cid:138) P 2 | = D (cid:138) P 2 , |D (cid:138) P 2 | = D (cid:138) P 2 . cneiS P <P , ew get n +1 n +1 n +1 D (cid:138) P 2 >D (cid:138) P 2 , hwcihsi pmioelbissyb soitcelen of P . n +1 n +1 If q >q +1, enht n (cid:2) P = q Q (cid:138) P >P (cid:2) > D . n +1 n n n In this case, |D (cid:138) P 2 | = P 2 (cid:138) D , |D (cid:138) P (cid:2)2 | = P (cid:2)2 (cid:138) D , adn P 2 (cid:138) D > n +1 n +1 n +1 P (cid:2)2 (cid:138) D , hwhic is also pimossible. (cid:18) (cid:17) By eThorem 22. adn ,2(3.1)ew see ahtt (cid:8) > 1 ( i =0 , 1 , 2 ,... ) . i+1 siTh eamsn ahtt eht exrpessoin 2(3.1) can be sued ot egvisu (cid:2) (cid:22) 1 D = q + , 2(3.2) 0 (cid:22) 2 q + 1 (cid:22) 3 q + 2 q 3 + . . . (cid:2) a semiregular 45 edunitconrafocitn exapsnoin of D . A berumn of iscmonceptions utincon e ot crialucet ocn recgnin eht ccilcy ohetm.d Oen of ehste si ahtt ti asweredvresidcoyb Lagragne. siTh, as eel-S suin ahs deptoni o,tu si ont eht ac.es Lagragne amed esu of selpmideunitcon rfaocisnt,hciwhodluwont encessarylibe eht saemas eht serimegalur-nitcon deu rfaoitcsn ylticilpmi deyolpmeyb eht cilccy ohtem.d Onetf eht aglormhti siadretttubiotaraahBskI,ItubasoidtennemybarahSknalku,hS 55 araBhask amed on alcmi ot bgnie eht orgianiotr of eht ohtem,d adn asa,avedyJaowh edorkw ni eht 10ht ruytcen or eareirl, ahd eredvsidco a tarainv of eht -hect ,euqin ti smees ahtt ti tsumevahbnee eolpvededhcumearreil ahtn eht emit of ara.ahBsk,aniyFllrehte si eht b,feile perahsp eud ot,arennyT 65 ahtt eht cyclic method esdervi rfom rGeek in(cid:148)uences. There seems, in spite of a-nT renys(cid:144)aan,sisylotbeelttilsodilecnedivenippusortof.sihtehTselpmiafctsi that,astionedenmearlier,ewdonotr eallywknowhatthereeGksknewabout ehtllePaeuqoit.nahWtewodw,onkre,vewohsiahttehtaidnInohtemsd-sid yalpa otsihry of aetsydteolnempvedadntrnemeen(cid:147)pu ot adn gnidulcni eht reyvocsidofehtcilcycohtem,dadnsihteryvrtsognylgusgestsahttes(cid:144)laHkn 75 position that the Indians edolvev the hniqueect yb eshemseltv si het correct oen. 63 2 ylraEyrtoHsifo thellePnqoEtuia 4.2 tamreF dna Hsi srosseccuS ehT sotry of ehtllePeqauoitnrsseemu htiw ehtahgnellec 85 siseud ni 1657 ot ·rF ecieln ni apracliutr adn aeacihmmtatisn ni geenralybera.mtFeramtFahd omts,ylekilrhtoguh sih ,hraeesrc coem ot rocegezin eht atladnufnem anrute of eht lleP auoeqit.n eH assk ofr a rpoof of eht gniwofoll:tnaetmset enviGyan p[]eosvitibremun [ D ] erwahvet ahtt si ont a sauqr,e rehte areaoslnegvianetin(cid:147)nibremunofauqsreshscuaht,t fi ehtsauqresi deilpitlum otni eht engvibermun adn ytinu si adedd ot eht rpo,tcud eht rtluse si a auqsre. It next requests a general rule yb whic h sooitulsn of eht rpomelb ocdlu be eerenitddm a,dn as exealpsm, asks orf soisontul enwh D =109 , 149 , 433. ehT sotry of woh eht ocesdn aprt of siht ahgnellec asw redeawsn yb erkrBocnu adn asillW ahs bnee eryv ellw otdl yb eliW 95 adn aMoheny 06 and eends on elaboration here. Instead, ew will tentcon esourselv with giv- ing a somewhat tereni(cid:3)d accoun t rofm ahtt veddirpo yb eliW 16 concerning ers(cid:144)krBocnueuqinhcet ofr osgnivl eht ellP auqeoit.neW aehpmezis aht,t a-l ohtguhers(cid:144)krBocnuohtemdsitaneleviuqot wahtewllwircsedbie,ehdidont kniht abotu ti ni etiuq siht.yaw Let P,Q,R (cid:3) Z , ewhre Q (cid:12)=0, P 2 (cid:138) QR = D > 0 , adn D is not anegtralni square. Put F ( X,Y )= QX 2 (cid:138) 2 PXY + RY 2 2(3.3) adnelt (cid:15) adn (cid:15) (cid:2) onedeteht rezosof F ( ,x 1.)cniSe D siontaauqsre,ewwkon ahtt (cid:15),(cid:15) (cid:2) (cid:12)(cid:3) Q . erkBrocnu ssmee ot evah desu eht gniwofoll r,tleus aohtlguh eh sevdirpoon rpoof of .ti orpPosiiton 2.3. seoSupp (cid:15)> 1 nda (cid:15) (cid:2) < 0 .fI F ( X,Y )=1 ,erehw X,Y (cid:3) Z nda X >Y > 1 , neth (cid:5) (cid:15) (cid:6) <X/Y < (cid:5) (cid:15) (cid:6) +1 . .foorP ecniS F ( X,Y )=1,ewyamasesmu ahtt X = qY + Z , ewrhe 0 <Z < Y . sloA, |Q || X (cid:138) (cid:15) (cid:2)Y || X (cid:138) (cid:15)Y | =1 . 2(3.4) ecniS (cid:15) (cid:2) < 0,ewget |X (cid:138) (cid:15) (cid:2)Y | = X (cid:138) (cid:15) (cid:2)Y >X > 1.slAo, X (cid:138) (cid:15)Y =( q (cid:138) (cid:15) ) Y + Z ; su,ht fi q (cid:138) (cid:15) < (cid:138) 1, ehnt X (cid:138) (cid:15)Y < (cid:138) Y + Z (cid:7) (cid:138) 1, adn fi q (cid:138) (cid:15) > 0, ehnt X (cid:138) (cid:15)Y >Z (cid:4) 1. In either case, |X (cid:138) (cid:15)Y | > 1,hciwhsi pmiosselbiyb.2(3.4) tI swofollahtt (cid:15) (cid:138) 1 <q <(cid:15) or q = (cid:5) (cid:15) (cid:6) . (cid:18) (cid:17) fI ew etutssibtu X = qY + Z ni 2(,3.3)ew gte F (cid:2)( Y,Z )= Q (cid:2)Y 2 (cid:138) 2 P (cid:2)YZ + R (cid:2)Z 2 , 4.2 tmreaFnda sHirsossSeucc 73 where Q (cid:2) = q 2 Q (cid:138) 2 qP + R , P (cid:2) = P (cid:138) qQ , R (cid:2) = Q , adn P (cid:2)2 (cid:138) Q (cid:2)R (cid:2) = D . 2(3.5) It is easy ot wsho ahtt (cid:2) (cid:2) P (cid:2) (cid:138) D 1 P (cid:2) + D 1 = (cid:6) , = (cid:6) . Q (cid:2) P + D (cid:138) q Q (cid:2) P (cid:138) D (cid:138) q Q Q us,Thfi (cid:11) adn (cid:11) (cid:2) areehtzerosof F (cid:2)( ,x 1,) enht (cid:11) =1 / ( (cid:15) (cid:138) q ,) (cid:11) (cid:2) =1 / ( (cid:15) (cid:2) (cid:138) q .) If (cid:15)> 1, (cid:15) (cid:2) < 0, adn q = (cid:5) (cid:15) (cid:6) , ehnt (cid:11) > 1, (cid:11) (cid:2) < 0. htiW ehste rpaneirmily aoisnt,osberv ew can won go on ot esdcrbie ers(cid:144)krBocnu reyv gnioinesu .euqinhcet eW ppusose T,U si a sooituln of T 2 (cid:138) DU 2 =1 adn tup Q =1, P =0, R = (cid:138) D , X = T , adn X = U .eW 0 0 0 0 (cid:2) 1 (cid:2) evah F ( X ,X )= Q X 2 (cid:138) 2 P X X + R X 2 =1 adn (cid:15) = D , (cid:15) (cid:2) = (cid:138) D 0 0 1 0 0 0 0 1 0 1 0 0 are eht zeros of F ( ,x 1.) gnPittu q = (cid:5) (cid:15) (cid:6) adn gnitutssibtu q X + X ofr 0 0 0 0 1 2 X ni F ( X ,X ) ew get F ( X ,X )=1 0( <X <X .) reHe, 0 0 0 1 1 1 2 2 1 Q = q 2 Q (cid:138) 2 q P + R , P = P (cid:138) q Q , R = Q . 1 0 0 0 0 0 1 0 0 0 1 0 eWtup (cid:15) =1 / ( (cid:15) (cid:138) q ,) q = (cid:5) (cid:15) (cid:6) ,adn X = q X + X 0( <X <X ) adn 1 0 0 1 1 1 1 2 3 3 2 ocetupm F ( X ,X ) =(1,) .cte nI a,ftc fi F ( X ,X )=1 0( <X <X ,) 2 2 3 i i i+1 i+1 i ewtup 1 (cid:15) = , 2(3.6) i (cid:15) (cid:138) q i(cid:138) 1 i(cid:138) 1 q = (cid:5) (cid:15) (cid:6) , adn i i X = q X + X 2(3.7) i i i+1 i+2 ni F ot oatnbi F ( X ,X )=1 hwti i i+1 i+1 i+2 Q =( P 2 (cid:138) D ) /Q , P = P (cid:138) q Q , R = Q , i+1 i+1 i i+1 i i i i+1 i yb2.(3.5) sA eht ecnseuqe { X } is a strictly ecdreasi ng or(f increasing i ) sequence i of peovsitiegters,ni siht rpocesssutm coem ot a ahtl htwi X =1, X =0 j j +1 ofr soem j (cid:4) 0.oTdn(cid:147) T adn U , all that is necessaryis to proceedardkwbac sguni 2(3.7) ocne all ehtaeulsvof q ,q ,q ,...,q evahbnee .denimreted 0 1 2 j (cid:138) 1 eWlliw won yfilpmeex 26 eht rposecs ofr eht case of T 2 (cid:138) 13 U 2 =1 . 2(3.8) reHe, (cid:26) (cid:2) (cid:27) F ( X ,X )= X 2 (cid:138) 13 X 2 , q = 13 =3; 0 0 1 0 1 0 (cid:28) (cid:2) (cid:29) 3+ 13 F ( X ,X )= (cid:138) 4 X 2 +6 X X + X 2 , q = =1; 1 1 2 1 1 2 2 1 4 83 2 ylraEyrtoHsifo thellePnqoEtuia (cid:28) (cid:2) (cid:29) 1+ 13 F ( X ,X )=3 X 2 (cid:138) 2 X X (cid:138) 4 X 2 , q = =1; 2 2 3 2 2 3 3 2 3 (cid:28) (cid:2) (cid:29) 2+ 13 F ( X ,X )= (cid:138) 3 X 2 +4 X X +3 X 2 , q = =1; 3 3 4 3 3 4 4 3 3 (cid:28) (cid:2) (cid:29) 1+ 13 F ( X ,X )=4 X 2 (cid:138) 2 X X (cid:138) 3 X 2 , q = =1; 4 4 5 4 4 5 5 4 4 (cid:28) (cid:2) (cid:29) 3+ 13 F ( X ,X )= (cid:138) X 2 +6 X X +4 X 2 , q = =6; 5 5 6 5 5 6 6 5 1 (cid:28) (cid:2) (cid:29) 3+ 13 F ( X ,X )=4 X 2 (cid:138) 6 X X (cid:138) X 2 , q = =1; 6 6 7 6 6 7 7 6 4 (cid:28) (cid:2) (cid:29) 1+ 13 F ( X ,X )= (cid:138) 3 X 2 +2 X X +4 X 2 , q = =1; 7 7 8 7 7 8 8 7 3 (cid:28) (cid:2) (cid:29) 2+ 13 F ( X ,X )=3 X 2 (cid:138) 4 X X (cid:138) 3 X 2 , q = =1; 8 8 9 8 8 9 9 8 3 (cid:28) (cid:2) (cid:29) 1+ 13 F ( X ,X )= (cid:138) 4 X 2 +2 X X +3 X 2 , q = =1; 9 9 01 9 9 01 01 9 4 F ( X ,X )= X 2 (cid:138) 6 X X (cid:138) 4 X 2 . 01 01 11 01 01 11 11 eWeosberv ahtt F ( X ,X ) = 1 can be easily edhievac with X = 1 01 01 11 01 adn X =0.eWcan wondn(cid:147) 11 X = q X + X =1 , X = q X + X =2 , X =3 , 9 9 01 11 8 8 9 01 7 X =5 , X =33 , X =38 , 6 5 4 X =71 , X =109 , X =180 , 3 2 1 X =649 , 0 adn tup T =649, U =180 as a sooitunl of 2.(3.8) erkrBocnudesu sih ohtemd ot dn(cid:147) osoitulsn of realsvetluc(cid:2)id llePeauq- oit,sn gnidulcni x 2 (cid:138) 433 y 2 = 1. siTh asw a amojr eaft of caaclluoit,n as eht aeulv of y si a bermun of 19 gid.sti er,evwoH rehtien eh onr asillW onr ·rF eceiln asw aelb ot vedirpo a rpoof ahtt eht ellP eqoaiutn codlu ysaawl be edsovl on-rn(tviaiyll) ofr yan peosviti on-nsqaureaeulv of D .eramtF 36 otok oncite of siht adn asetdt ahtt eh ahd hscu a rpoof y(cid:141)b emasn of netesced ylud adn arpporpaiylet (cid:142)a.deilpp,ofnUranutyletreamtFdedivrpo on rurefht ofrniaoimtncocnergninsihrpoofahntsih.taomnHnf 46 a,dnhtiwgraerets-cu cess,eilW 56 evahdaetpmettotrocertsntcuawhtreams(cid:144)tFohtemdtgimhevah b.nee elihW ew yamreven reayll wonk ahwt siht a,sw ti si ersselehtven eryv eylkil ahtteramtFdid evah a rpoo.f eTh afct ahtt eh seelcetd 109, 149, adn 4.2 tmreaFnda sHirsossSeucc 93 433 ofr aesulv of D as ahgnellec eaxselpm si apralucitryl esgugevits baceesu eht correspgonidnellP eqaouistnevahalrgeaeulsvof t adn u . ehT ohtemd of erkBrocnuasw omde(cid:147)id adn dednetxe yb Erelu, owh re- aziled a,htt as si taappren rfom 2(3.6,) eudnitcon rfaocisnt codlu be sued ot evdirpo an tecnie(cid:2) aglomhrti ofr sovlgni eht ellP eqoaiut.n er,evwoH enev rhotguh eh ahd evdsied all of eht pmitoratn otosl, eh sutj ellf sohrt of v-rpo gni ahtt sih ohetmdodluworkwofryanon-nsqaure D . sAtionedenm earlier, eht teoelnmpedv of hscu a qienuhetc asw r(cid:147)st oden yb Lagragne ni a reraht ysmulcork,whciwhehalrete.dvrpmioorFrurefhtofniramoitnonsihtapr-cit alurylretgnietsniaprtofaamehmacittl,otsihryehtrearedsirreefredots(cid:144)lieW book.In ehtenxtearhtpcewlwliedscrbieLagragnes(cid:144)ohetmd ofsgunielpsmi deunitocnrfaoitcsn ot eosvleht ellPauqeoit.n 66 04 tsNeonda rsneeecRfe Ntose dna secneRrefe 1 1nK.0o[] 2 2.W1h][i 3 9,1]Dc[i.loVII, h.C.21 4 37seL,[]pp..644(cid:133)124Aerombeilsseccaeucorsrofemosfothsisi79seL,[]p..001 5 2,7]arF[.loVII, p.,785 teno.342 6 2,7]arF[.loVI, p..904 7 08hoT[,].loVII,p..602(cid:133)302 8 thaT ,si a th(cid:147)fndaxithsfo bthofo theselma ndafo the.selmaef 9 99Ac[]r ndan2e0.L][ 01 0uK,8r[] p.;4212,7]arF[.loVII,p.,885 teno;54278jDi[,] p.,893 teno.2 11 uK0r[8.] 21 2,7]arF[.loVI, pp..804(cid:133)704 31 See9,1]cDi[.loVII,pp..343(cid:133)243 41 See,]0t8A[mp.(cid:2)551 ro2,1]Ha[ep..023 51 roF the lniagiro keerG noiresv fo the uimlhocs nda a hrnecFn,otialntrsa ees 1,7A]c[rpp..371(cid:133)171 61 ,Seerof,xpmeela]h39S[cnad5t.9]aW[ 71 .]u03rW[roFaeromylisaebeilsseccano,isrevees2,1H]a[e pp..323(cid:133)913 81 78Dj[i,] p.,993 tneo.3 91 b6u9a,]P[II. ,1 p.;535(cid:133)43521Ha[e,] p. xxxv. 02 2,7]arF[.loVI, p..904 12 78jDi[,] p.;9932,7]arF[.loVII, p.,095 tneo.652 22 6K,8n[]o p..592 32 0uK,8r[] p..421 Seeosla2,7]arF[.loVII,p.,095 tneo.752 42 6,Hm4][ooBko XII,sneil,031(cid:133)721 p..291 52 S1,t[6r];1.2.62u,9]hT[oBko VI, .2 62 .]0t8A[m 72 46ie,B][ p..942 82 8.9]raV[ 92 2,7]arF[p..904 03 roFaytnhegltntemaetrfo,thsieesb,K5]n[7ohC.II.Anotianlastrfothetnaveler krowfonhoTe si ni78w,]oF[p..85 13 78w,]oF[pp..201(cid:133)101 23 a,5K]7n[o p..731 33 2,1]Ha[e pp..89(cid:133)19 43 See2,1H]a[ex1xxxxi(cid:133)c;K[n a,5]7o pp..931(cid:133)631 53 b5K7n[.o] 63 78w.]oF[ 73 b5K7n[,o] pp.;162(cid:133)5527,8]woF[h.C .2 83 b5K7n[,o] p..852 93 1,8]Ha[e.loVI, pp.;212(cid:133)202 ,v][d4W5 pp..971(cid:133)561 04 78w,]oF[p..54 14 78w,]oF[notiSce(b3)..2 24 a,5K]7n[o p.;83178w,]oF[pp..44(cid:133)24 34 78w,]oF[h.C .3 44 78w,]oF[p.,05 pp..55(cid:133)45 54 4n.8a]T[ tsNeondarsneeecRfe 14 64 28,Ss][etraPI. 74 owTulfeussuecros rof tshilairtemaera D2S[6] nda7.6S]ir[ 84 4,6]Ha[e p..182 94 71lo,C][ p..363 05 36]Sl[enda 5.7]Sl[e 15 hsTisirenveytlixecpildte,tasbuttismeestobeticpimlinithe kuttaka prossec tthadulowbe duesto (cid:147)nd P . n+1 25 5Hn,6[a] p..202 35 See.]A[yy04 45 See §83fo.loVI fo75re.]P[ 55 ,]4u5Sh[p. 1 nda p..02 65 7n,3a]T[p.(cid:2).042 75 H5n,[6a] pp..402(cid:133)302 85 2,1]reF[pp..533(cid:133)333 AnhsinlEgnoisrevnac beuondfni 4,6H]a[epp..682(cid:133)582 95 4.8]ieW[ 06 4h9aM[.] 16 4,8]ieW[pp..79(cid:133)29 26 hsTi xpmeeal fos(cid:144)rekuonrcBnac be uonfd ni2,1]reF[.loVIII, p..084 It si osla dtepneirrni2Wh1[i,] pp..55(cid:133)35 36 2,1]reF[p..334 46 49Hf[o.] 56 9;7]ieW[48ie,]W[notSice XIII. 66 roFtnhroea ppesrevticeno tshieesdrsadEw5d0Ew[,] pp..211(cid:133)56 3 duenitnoC nositcarF 1.3 lareneG deutninoCtscnaoriF elihW eht seuqinhcet of eht aidInn amaamiechitstn adn ohtes of er,krBocnu Eelru,adnLagragneofrsovlgniehtellPeqaoiutnareter(cid:3)iednotsoemedgree, yehtacnallbede(cid:147)inuybcoredisngniehtoehtryofwahtareacdellsrimegealur uedintconracftions. fI ew evahowt ssecneuqe of getersni { a } ofr n (cid:4) 1 adn { q } ofr n (cid:4) 0 n n adn soem ceolpxmbemrun (cid:8) , ewtup (cid:8) = (cid:8) adn en(cid:147)ed 0 a (cid:8) = j +1 . j +1 (cid:8) (cid:138) q j j Then a generaluedintconracftion 1 expansion of (cid:8) can be engiv as a 1 (cid:8) = q + 3(1.) 0 0 a 2 q + 1 a 3 q + 2 . . . a i q + i(cid:138) 1 a i+1 q + . i (cid:8) i+1 nIehtcaserewhe (cid:8) siriraoitan,l3(1.)sisadiotbe ralugerimes 2 fiehtgniwoofll oh:dl 1. |a | =1 ( i (cid:4) 1.) i 2. q (cid:4) 1 ,q + a (cid:4) 1 ( i (cid:4) 1.) i i i+1 3. q + a (cid:4) 2 yletin(cid:147)ni .noetf i i+1 orFexael,pm fi (cid:8) si real adn q = (cid:5) (cid:8) +1 / 2 (cid:6) , het nearestegertni to (cid:8) , adn n n n sign a =sgi(n (cid:8) (cid:138) q ) ( n (cid:4) 0,) ewevahawht si caelld eht tseraneregntie n +1 n n dntnouiecntociarf expansion of (cid:8) .

Description:
Pell's equation is a very simple, yet fundamental Diophantine equation which is believed to have been known to mathematicians for over 2000 years. Because of its popularity, the Pell equation is often discussed in textbooks and recreational books concerning elementary number theory, but usually not
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.