Solving for the Low-Voltage/Large-Angle Power-Flow Solutions by Using the Holomorphic Embedding Method by Yang Feng A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved July 2015 by the Graduate Supervisory Committee: Daniel J. Tylavsky, Chair Dieter Armbruster Keith E. Holbert Lalitha Sankar ARIZONA STATE UNIVERSITY August 2015 ABSTRACT For a (N+1)-bus power system, possibly 2N solutions exists. One of these solutions is known as the high-voltage (HV) solution or operable solution. The rest of the solu- tions are the low-voltage (LV), or large-angle, solutions. In this report, a recently developed non-iterative algorithm for solving the pow- er-flow (PF) problem using the holomorphic embedding (HE) method is shown as being capable of finding the HV solution, while avoiding converging to LV solutions nearby which is a drawback to all other iterative solutions. The HE method provides a novel non-iterative procedure to solve the PF problems by eliminating the non-convergence and initial-estimate dependency issues appeared in the traditional iterative methods. The detailed implementation of the HE method is discussed in the report. While published work focuses mainly on finding the HV PF solution, modified holomorphically embedded formulations are proposed in this report to find the LV/large-angle solutions of the PF problem. It is theoretically proven that the pro- posed method is guaranteed to find a total number of 2N solutions to the PF problem and if no solution exists, the algorithm is guaranteed to indicate such by the oscilla- tions in the maximal analytic continuation of the coefficients of the voltage power se- ries obtained. After presenting the derivation of the LV/large-angle formulations for both PQ and PV buses, numerical tests on the five-, seven- and 14-bus systems are conducted i to find all the solutions of the system of nonlinear PF equations for those systems us- ing the proposed HE method. After completing the derivation of finding all the PF solutions using the HE method, it is shown that the proposed HE method can also be used to find only the PF solutions of interest (i.e. type-1 PF solutions with one positive real-part eigenvalue in the Jacobian matrix), with a proper algorithm developed. The closet unstable equilibrium point (closest UEP), one of the type-1 UEP’s, can be obtained by the proposed HE method with limited dynamic models included. The numerical performance as well as the robustness of the proposed HE method is investigated and presented by implementing the algorithm on the problematic cases and large-scale power system. ii ACKNOWLEDGEMENTS First and foremost, I would like to express my sincere thanks to Dr. Tylavsky, my advisor for being a commendable source of knowledge and inspiration. From the be- ginning of my graduate career, he has inculcated a passion for the subject, guided me through several challenges in research and shaped my writing skills. I express my sincere thanks to Muthu Kumar Subramanian, a master student graduated from ASU, Shruti Rao, a doctoral student and Yuting Li, a master student, currently at ASU. They all are hard-working team members and productive contributor in developing the algorithms. Besides, Muthu and Shruti have spent much of their valuable part time to shape my writing skills. Dr. Antonio Trias, AIA, deserves a special mention for the valuable inputs he gave to our research group. I would like to extend to my thanks to my graduate committee Dr. Armbruster, Dr. Holbert and Dr. Sankar for their valuable feedback and suggestions to my thesis document. I am grateful to the all the faculty members of power engi- neering for the wonderful learning experience they provided for the last five years since I joined ASU. I would like to express my gratitude to the School of Electrical, Computer and Energy Engineering for providing me the opportunity to work as Teaching Assistant. Finally, my heart is with my love, Fanjie Lin, my family, especially my mother, and my friends who have kept me grounded during the entire period of my study. iii TABLE OF CONTENTS Page ABSTRACT .................................................................................................................... i ACKNOWLEDGEMENTS ......................................................................................... iii TABLE OF CONTENTS .............................................................................................. iv LIST OF FIGURES ...................................................................................................... ix LIST OF TABLES ........................................................................................................ xi NOMENCLATURE .................................................................................................. xiii CHAPTER 1 INTRODUCTION ............................................................................................... 1 1.1 Power-Flow Problems .............................................................................. 1 1.2 Iterative Methods ..................................................................................... 1 1.3 Holomorphic Embedding ......................................................................... 3 1.3.1 Holomorphic Functions ................................................................. 3 1.3.2 Holomorphic Embedding Method ................................................. 3 1.4 Objectives ................................................................................................ 4 1.5 Organizations ........................................................................................... 5 2 LITERATURE REVIEW .................................................................................... 8 2.1 Iterative Methods ..................................................................................... 8 2.2 All the Solutions for a Power System .................................................... 11 2.3 Improve Convergence for Iterative Method .......................................... 11 iv CHAPTER Page 2.3.1 Step-Size Adjustment Newton’s Method..................................... 12 2.3.2 Decoupled Newton’s Methods ..................................................... 13 2.3.3 Miscellaneous Load-flow Method ............................................... 14 2.3.4 Non- Iterative Methods ................................................................ 15 2.3.5 Continuation Power Flow Method ............................................... 15 2.4 Finding All the Solutions for Power-Flow Problem .............................. 16 2.4.1 CPF Method ................................................................................. 17 2.4.2 Homotopy Method ....................................................................... 17 2.4.3 Groebner Basis ............................................................................. 18 2.5 Type-1 Algebraic Solutions for Power-Flow Problem .......................... 19 2.5.1 Type-1 PF Solutions .................................................................... 19 2.5.2 The Closest Unstable Equilibrium Point...................................... 21 3 THE HIGH-VOLTAGE SOLUTION USING THE HOLOMORPHIC EMBEDDING METHOD ................................................................................. 23 3.1 Embedded PBE’s ................................................................................... 23 3.2 Power Series Expansion ......................................................................... 27 3.3 Power Series Coefficients ...................................................................... 29 3.4 Maximal Analytic Continuation ............................................................ 32 3.5 Padé Approximant ................................................................................. 35 v CHAPTER Page 3.5.1 Direct/Matrix Method .................................................................. 35 3.5.2 Viskovatov Method ...................................................................... 38 3.6 Curve Following in HE .......................................................................... 41 4 TWO-BUS LOW-VOLTAGE SOLUTION ...................................................... 45 4.1 Theoretical Derivation ........................................................................... 46 4.1.1 Embedding ................................................................................... 48 4.1.2 Continued Fraction....................................................................... 48 4.1.3 The LV Solution .......................................................................... 49 4.2 Numerical Example for a Two-Bus System .......................................... 59 4.3 Conclusion ............................................................................................. 63 5 MULTI-BUS LOW-VOLTAGE/LARGE-ANGLE FORMULATIONS .......... 64 5.1 Germ ...................................................................................................... 64 5.2 Solution Existence ................................................................................. 65 5.3 Unique Germ-to-Solution Mapping ....................................................... 66 5.4 Finding All Possible Germs for the HE PBE’s ...................................... 66 5.4.1 LV Formulation for PQ Buses and Finding 2NPQ Germs ............. 67 5.4.2 Large-Angle Formulation for PV Buses and Finding 2NPV Germs .. ...................................................................................................... 71 5.4.3 Finding 2N Germs for a Multi-Bus Lossless System ................... 73 vi CHAPTER Page 5.4.4 Finding 2N Germs for a Practical Multi-Bus System ................... 75 5.5 The Guarantee to Find All the PF Solutions .......................................... 78 5.6 Discussions ............................................................................................ 79 5.7 Numerical Tests ..................................................................................... 80 5.7.1 Five & Seven-Bus System ........................................................... 80 5.7.2 14-Bus System ........................................................................... 102 6 FINDING THE TYPE-1 POWER-FLOW SOLUTIONS USING THE PROPOSED HOLOMORPHIC EMBEDDING METHOD ............................ 106 6.1 Type-1 PF Solutions ............................................................................ 106 6.2 The Closest Unstable Equilibrium Point.............................................. 112 6.3 Conclusion ........................................................................................... 115 7 NUMERICAL PERFORMANCE OF THE HOLOMORPHIC EMBEDDING METHOD ........................................................................................................ 117 7.1 Numerical Performance for Heavily Loaded System .......................... 117 7.1.1 43-Bus System ........................................................................... 118 7.1.2 Multi-Precision Complex (MPC) Application ........................... 125 7.2 Precision Issue for the LV Solution of the 43-bus System .................. 133 7.3 Large Systems ...................................................................................... 136 7.4 Conclusion ........................................................................................... 141 vii CHAPTER Page 8 CONCLUSION ................................................................................................ 142 8.1 Summary .............................................................................................. 142 9 REFERENCES ................................................................................................ 144 APPENDIX A ALL SOLUTIONS FOR IEEE-14 BUS SYSTEM ............................................... 152 B TYPE-1 SOLUTIONS FOR IEEE-118 BUS SYSTEM ........................................ 165 viii LIST OF FIGURES Figure Page 2.1 Convergence Problems for Iterative Methods ....................................................... 28 3.1 Radius of Convergence of Power Series f (s) ........................................................ 51 1 3.2 Regions for f (s) and f (s) Representing 1/(1-s) ..................................................... 52 1 2 3.3 Two-Bus Example with Shunt Reactance.............................................................. 60 3.4 Two-Bus Model: Curve Following in HE ............................................................. 61 4.1 Two-Bus Example without Shunt Reactance ........................................................ 63 4.2 Solution of NR Method from Different Starting Points......................................... 79 4.3 Solution of Proposed LV HE Formulation from Different Starting Points ........... 80 4.4 Solution of HV HE Formulation from Different Starting Points ........................... 80 5.1 Two-Bus System with the PV Bus Model ............................................................. 90 5.2 Five-Bus System .................................................................................................... 98 5.3 HV Solution (1111).............................................................................................. 104 5.4 LV PBE’s Applied to V (0111)........................................................................... 105 1 5.5 LV PBE’s Applied to V & V (0110) ................................................................... 106 1 4 5.6 LV PBE’s Applied to V (1110)........................................................................... 107 4 5.7 LV PBE’s Applied to V &V (0011) .................................................................... 108 1 2 5.8 LV PBE’s Applied to V (1101)........................................................................... 109 3 5.9 LV PBE’s Applied to V &V (1001) .................................................................... 110 2 3 5.10 LV PBE’s Applied to V (1011)......................................................................... 111 2 ix
Description: