Polish Botanical Journal 55(2): 391–407, 2010 SOIL ZYGOMYCETOUS FUNGI IN BIEBRZA NATIONAL PARK (NORTHEAST POLAND)* JULIA BUDZISZEWSKA, ABIBA BOULAHDJEL, MATEUSZ WILK & MARTA WRZOSEK Abstract. Although zygomycetous fungi are frequently isolated from forest soils, little is known about their diversity in peatland soils. We assessed the diversity of soil zygomycetes in Biele Suchowolskie fen after a long-lasting fi re and com- pared it with previous reports on peatland soil fungi. The zygomycetous assemblage of the Biebrza mires appeared to be diverse and unique, due to the absence of some common species and the accumulation of species sharing specifi c characters of sporangia morphology. Key words: Zygomycota, Kickxellales, Mortierellales, Mucorales, peatland, Biebrza National Park Julia Budziszewska, Abiba Boulahdjel, Marta Wrzosek, Department of Plant Systematics and Geography, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland; e-mail: [email protected] Mateusz Wilk, Department of Plant Ecology and Nature Protection, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland INTRODUCTION Peatland is a general term describing an area still relatively little is known about the diversity with natural accumulation of peat layer at the of microfungi in peatland ecosystems. Thanks surface (Joosten & Clarke 2002). Peatland covers to growing interest in the role of peatland soil ca 3% of the Earth’s terrestrial and freshwater fungi in the global carbon cycle under changing surface, most of it located in the Northern Hemi- climate (Blodau 2002), some basic research on sphere (Joosten & Clarke 2002). Most peatlands this subject has been done in the last ten years have been strongly affected by human activity (Thormann et al. 2003; Thormann 2006; Thor- in recent centuries, especially by drainage for mann & Rice 2007). In their extensive literature agricultural or forestry purposes (Strack 2008). review, Thormann and Rice (2007) gave a sum- As peat has high carbon content of at least 30% mary of all species of peatland fungi, compiled of its dry mass (Joosten & Clarke 2002), mel- from a wide range of peer-reviewed mycological iorated peatlands can easily burn under low publications and internet databases. There were moisture conditions and subsequently smolder 276 ascomycetous fungi reported from peatlands, for long periods of time (Kuhry 1994). Because but they comprise only 0.4% of all species within of the importance of these areas for sustaining Ascomycota, while the 55 zygomycetous species global biodiversity, in 2003 the Ramsar Con- found in peatlands represent more than 5% of vention promulgated ‘Guidelines for Global all species within Zygomycota. Mucor (13 spe- Action on Peatlands’ in order to promote their cies), Mortierella (20) and Umbelopsis (5) are global conservation. Although these guidelines the dominant zygomycetous genera isolated from also emphasize the need to inventory peatlands, peatlands (Thormann & Rice 2007). Mortierella alpina Peyronel, Mucor hiemalis Wehmer, Um- belopsis ramanniana (Möller) W. Gams and Um- * This paper is dedicated to Professor Tomasz Majewski on the occasion of his 70th birthday. belopsis vinacea (Dixon-Stew.) Arx are the most 392 POLISH BOTANICAL JOURNAL 55(2). 2010 frequently reported species (Thormann & Rice long-lasting fi re. We also compared this diversity 2007). Thus, the dominant zygomycetous species with fi ndings from previous reports on peatland appear similar to those from forest ecosystems soil Zygomycota. on mineral soil (Domsch et al. 1993). One of the largest and most well-preserved peatland areas in the European Temperate Zone is MATERIALS AND METHODS Biebrza National Park, which is protected under The study was done in the area of Biele Suchowolskie the Ramsar Convention (Gwiazdowicz & Klemt fen in the middle basin of the Biebrza River within 2004). Although there are numerous works on Biebrza National Park (Mętrak et al. 2008). In 2008, the plant and animal biodiversity of this region fi ve study areas, 1 ha each, were designated (Kania et al. (Banaszuk 2004), the soil microfungi of Biebrza 2006; Mętrak et al. 2008; Wójcik 2010): peatlands have been analyzed only by Tyszkie- W2 – (53°36′N, 23°03′E) Caricion nigrae Koch wicz (2004 a, b). In 2002, 1030 ha of the Biele 1926 emend. Klika 1934 alliance; moderately mucked peat-muck soil (Mt II); mean pH (in KCl) 6.58; periodi- Suchowolskie fen in Biebrza National Park burned cally fl ooded; unburnt. due to desiccation resulting from drainage (Kania W3 – (53°38′N, 23°04′E) Salicetum pentandro-cin- et al. 2006). This deep-seated, long-lasting fi re ereae (Almq. 1929) Pass. 1961 association with Urtica infl uenced hydrological conditions (Mętrak et al. dioica L.; moderately mucked peat-muck soil (Mt II); 2008), considered one of the most important fac- mean pH (in KCl) 6.39; moist; burnt. tors shaping wetland habitats (Tołpa et al. 1967; W5 – (53°37′N, 23°02′E) Filipendulion alliance Pałczyński 1975). Recent research showed that with Deschampsia caespitosa (L.) Beauv.; variable even short-term perturbations in moisture condi- moisture conditions; mineral soil (no specifi c data) on tions can change the microbial community (Kim et mineral upland; unburnt. al. 2008). Such signifi cant changes in fungal com- W7 – (53°37′N, 23°03′E) wet meadow with Festuca rubra L.; moderately mucked peat-muck soil (Mt II); munity composition after drainage were confi rmed mean pH (in KCl) 6.29; very moist; unburnt. by Peltoniemi et al. (2009), who also showed that W8 – (53°38′N, 23°03′E) Salicetum pentandro- basidiomycetes are more sensitive to hydrological cinereae association with Urtica dioica L.; moderately changes than ascomycetes; however, they did not mucked peat-muck soil (Mt II); mean pH (in KCl) 6.28; interpret the data on zygomycetes from drained moist; burnt. peatlands. In September 2008, 21 samples (1 kg each) from Traditionally, the phylum Zygomycota is divided the top 20 cm of the soil, including litter and M hori- 1 into two classes: Zygomycetes and Trichomycetes zons (term after Dobrzański & Zawadzki 1995) were (White et al. 2006). In recent taxonomic studies collected at each site and brought undisturbed to the laboratory in sealed plastic bags. In October 2009, 9 this polyphyletic phylum is subdivided into four supplementary samples (100 g each) of surface soil (only monophyletic groups: Mucoromycotina, Kickx- M1 horizon) were taken at each site. In the laboratory, ellomycotina, Zoopagomycotina and Entomoph- the litter and M layers were analyzed independently. 1 thoromycotina (Hibbett et al. 2007). In this paper The soil microfungi were isolated by the soil dilution we keep the term Zygomycota to determine all plate method on potato dextrose agar (Bills et al. 2004) genera and species traditionally included in this and by Warcup soil plate techniques (Warcup 1950). The group. The phylum comprises over 1000 species, low-nutrient agar was also used to detect oligotrophic ubiquitously distributed worldwide (Kirk et al. species (e.g., Mortierella). Litter samples from four sites 2008) and including common saprobionts in soil (W2, W3, W7, W8) were tested with the moist chamber method in order to detect the microfungi growing ob- and dung as well as facultative or obligate parasites ligately on leaf litter (Krug 2004). After three days of (Benjamin 1979). initial incubation at room temperature for up to one The main purpose of the present study was to month, all emerging fungi were recorded and subse- determine the diversity of soil- and litter-inhabiting quently identifi ed according to the available literature zygomycetous fungi from Biele Suchowolskie fen (Linder 1943; Linnemann 1953; Benjamin 1958; Ben- in Biebrza National Park (Poland) after a severe jamin 1959; Barnett 1960; Embree 1963; Mehrotra et J. BUDZISZEWSKA ET AL.: SOIL ZYGOMYCETOUS FUNGI IN BIEBRZA NATIONAL PARK 393 al. 1963; Zycha et al. 1969; Mehrotra & Kakkar 1970; nities, hydrological conditions, or the occurrence Chien 1971; Pidopliczko & Milko 1971; Milko 1974; of fi re at the sites. Note, however, that sites W5, Gams 1977; Skirgiełło et al. 1979; Domsch et al. 1993; W7 and W8 are all close to each other, while W2 Kwaśna et al. 1999a, b; Kwaśna et al. 2002; Zheng and W3 are the most distant from each other. We & Chen 2001; Watanabe 2002; Hoffmann et al. 2007). observed some patterns in the fungal communities: Digital images were recorded with a Nikon DX 1200 A. caerulea was typical of mineral soils, and on camera. Jaccard’s similarity index was calculated using peat soils it was replaced by A. glauca (Fig. 1); EstimateS (Colwell 2009). both species are usually treated as ubiquitous saprobionts (Domsch et al. 1993). RESULTS AND DISCUSSION The data in Table 1 show that several common After analysis of 150 samples a total of 41 species Mucorales representatives are very rare or absent of zygomycetes (including 39 exclusively from on the Biebrza mires. Mucor plumbeus Bonord., peat soil) were found in the soils from Biebrza Mucor racemosus Bull. and Zygorhynchus moel- National Park (Table 1). Only the literature re- leri Vuill., all of which are usually frequent in view by Thormann and Rice (2007) gives more soil samples (Domsch et al. 1993; Jóźwiak 2008), (50) zygomycetous species, but only 17 of those appeared only occasionally. Instead, Mucor are on the list of species we found; our results varians Povah, M. hiemalis f. corticola, Mucor add 22 taxa to the list of peat fungi they com- ramosissimus Samouts. and Mucor fl avus Schrank piled. Among the isolates from Biebrza National were the most common species. According to De Park, Mortierella ambigua B. S. Mehrotra and Bellis et al. (2007), the plant community is the Mortierella capitata Marchal were recorded for main factor shaping microfungal assemblages; the fi rst time from Poland. There were also two there are no important differences in host prefer- species of Coemansia that could not be identifi ed ences or nutritional requirements between the ma- as known species according to Linder (1943), jority of the species enumerated above (Domsch Badura and Badurowa (1964) or Kwaśna et et al. 1993). al. (1999a, 2002). The fi rst isolate, called ‘Co- Members of the family Umbelopsidaceae Meyer emansia spiralis-like’ according to the key pro- and Gams (2003), which are usually dominants in vided by Linder (1943), differs in many aspects sandy or forest soils and in the rhizosphere of dif- from all species included in the ‘spiralis complex’ ferent trees (Domsh et al. 1993; Jóźwiak 2008), (Kwaśna et al. 2002). The second, ‘Coemansia were also rare or not found in our samples from the interrupta-like’ according to Linder (1943), dif- Biebrza fens, as well as in Tyszkiewicz’s (2004a, b) fers in spore dimensions from the typical descrip- research. Krzemieniewska and Badura (1954b) tion of the species. As both Coemansia spp. were isolated only once, we do not describe them as new species. Site W5 on mineral soil and W7 on peaty soil appeared to have the most diverse and richest com- munities of zygomycetes (Table 2). Absidia caer- ulea Bainier, Absidia glauca Hagem, Mortierella elongata Linnem. and Mucor hiemalis f. corticola (Hagem) Schipper were the most abundant species from Biebrza National Park (Table 2). As indicated by Jaccard’s similarity index, the highest similarity of fungal communities was between sites W5 and W7 and between sites W7 and W8. Similarity was lowest between sites W2 and W3 (Table 3). These Fig. 1. Frequency of selected species at different sites in Biele similarities do not correlate with the plant commu- Suchowolskie fen. 394 POLISH BOTANICAL JOURNAL 55(2). 2010 data extracted from selected publications. Only taxa identifi ed to species level are presented. 345b, Krzemieniewska & Badura 1954a, Krzemieniewska & Badura 1954b, Badura & Ba-101112Brown 1958, Christensen & Whittingham 1965, Soderstrom & Baath 1978, Widden 16171819ham 1967, Christensen et al. 1962, Apinis 1964, Christensen 1968, Sewell 1959, 961ks2r9e1addl2Pannk34W eeaaryvvalltg g45608Prrid11111Cneennnn nnnssElE75 iiiaaii0ee7eaesssss 21 n RRrnvnnnnnnnndduośrrooorooa nnteieeeeecccwacctaashccLhasssrsslleiieteNggtiiiii3 wwuWWWRrWWhat1nnoion wcool8 EEan sai ttkknnnznnsfoan zozzr,,,,nrrrrrkkosnnnnbeeesseeo bsdmiiiinuuhhhehhacaaaauooiMMtttttSsdttttBLuuuPrriiii1iieoorrrrt 1Wooo ,aBBBBninn,,,,,asssPdddddled i nnnnn ,,,,,,dptttta,AAAAAAaaaayaaaaaemneeeellllllSwSSSSSaooooorrrraoGUGUUUUGUGCtPPPPPScI llllllllllllllllaaaaaaaaaaaaaaaarrrrrrrrrrrrrrrreeeeeeeeeeeeeeeetttnnnnnnnnnnnnnnnnaaaiiiiiiiiiiiiiiiieeemmmmmmmmmmmmmmmmppp –––+++++––––––++–+–––––++––––+––++++––++++++–+––––+++++––––––+–––––––––––––––––––––––––––––+––––––––––+–––––++––+––++––––––––––––––––––++––––––––––––––––++–––––––––––––––––––––++–––––––––––––+––––––––––––––––––+++–+––––––––––––––++––––––––––––––––––––––––––––––––––––––+–––––––––––+––––––––––––––––––––––––––+––––––––+––––––––––––––––––––+––– Table 1. List of zygomycetous fungi from Biele Suchowolskie fen, compared with 12Studies on peat soil are highlighted in grey. present study, Tyszkiewicz 2004a, 6789durowa 1964, Jóźwiak 2008, Thormann & Rice 2007, Sampo et al. 1997, 1314151987, Wicklow 1973, Gochenaur & Backus 1967, Gochenaur & Whitting20 Morrall & Vanterpool 1968. 11111kkkkkrrrrraaaaaPPPPP lllllaaaaannnnnoooooiiiiittttt Site / Soil typeaaaaaNNNNN aaaaazzzzzrrrrrbbbbbeeeeeiiiiiBBBBB ,,,,,dddddnnnnnaaaaallllloooooPPPPP ,,,,,52738WWWWW eeeeetttttiiiiisssssTaxon larettttnaaaaieeeempppp Absidia caerulea Bainier+––++Absidia cylindrospora var. cylindrospora Hagem+––++Absidia glauca Hagem+–+++Absidia macrospora Váňová–––––Absidia scabra Cocc.–––––Absidia spinosa var. spinosa Lendn.–––––Actinomucor elegans (Eidam) C. R. Benj. & Hesselt.–––––Backusella lamprospora (Lendn.) Benny & R. K. Benj.–––––Circinella umbellata Tiegh. & G. Le Monn. –––––Coemansia aciculifera Linder–––––Coemansia erecta Bainier–––––Coemansia pectinata (Coem.) Bainier–––––Coemansia reversa Tiegh. & G. Le Monn.–––––‘Coemansia interrupta-like’–+–––‘Coemansia spiralis-like’––––+Coemansia thaxteri Linder–+––+Cunninghamella elegans Lendn.+++++Cunninghamella sp.––+–+ J. BUDZISZEWSKA ET AL.: SOIL ZYGOMYCETOUS FUNGI IN BIEBRZA NATIONAL PARK 395 –––– – – –––+––––––––––––––––– – ––––––––– nt.) o –––– – – ––––––+–––––––––––++– – –++–––––– (c –––– – – ––––––––––––––––––––– – ––+–––––– +––– – – –+–+–+–––––+++––––++– + ––+–+–++– +––– – – ––––––––––––––––––––– – ––––––––– +––– – – –––+–––––––––+––––––– – –+––––––– –––– – – –––+––––––––––––––––– – –+––––––– –––– – – –––+––––––––––––––––– – ––––––––– –––– – – ––––––––––––––––––––– – ––––––––– –––– – – ––++––––––––––––––+–– – +–+––+––– –––– – – ––––––––––+–––––––––– – –++–––––– –––– – – –––+––+–––––––––––––– – ––+–––––– –––– – – –––+––––––––––––––+–– – ––+–––––– –––– – – –––+–+–––––++––++++++ – +++–++––+ –––– + – +––+–––––+––––++–––++ – ––––––––+ ––+– – – –––+–+++––––––––––––– – ––––+–+–– –––+ – – –––––+++––––––––––––– – –––+––––– –––+ – – –––––+++––––––––––––– – –––+––+–– –––– – – ––+––––––––––––––––+– – –+––––––– –––– + + –––+––+––––+–+––––––– – –+––––––+ –+–– + + –––––––––––+–+––––––– – ––––––––+ –––– + + –––++–+–+––+––––––––– – –+––––––+ –––– – – ––––+––––––+–+––––––– – –+––––––+ –––– + + –––––––––––+––––––––– – –+––––––+ Gongronella butleri (Lendn.) Peyronel & Dal VescoHelicocephalum sp.Helicostylum pulchrum (Preuss) Pidopl. & MilkoKickxella alabastrina Coem.Lentamyces parricida (Renner & Muskat ex Hesselt. & J. J. Ellis) K. Hoffm. & K. VoigtLichtheimia hyalospora (Saito) Kerst. Hoffm., Walther & K. VoigtLichtheimia corymbifera (Cohn) Vuill.Lichtheimia ramosa (Zopf) Vuill.Mortierella alliacea Linnem.Mortierella alpina PeyronelMortierella ambigua B. S. MehrotraMortierella bainieri CostantinMortierella bisporalis (Thaxt.) Björl.Mortierella candelabrum Tiegh. & G. Le Monn.Mortierella capitata MarchalMortierella dichotoma Linnem. ex W. GamsMortierella echinula Linnem.Mortierella elongata Linnem.Mortierella exigua Linnem.Mortierella gamsii MilkoMortierella gemmifera M. EllisMortierella globulifera O. Rostr. Mortierella horticola Linnem.Mortierella humicola Oudem.Mortierella humilis Linnem. ex W. GamsMortierella hyalina var. hyalina (Harz) W. GamsMortierella jenkinii (A. L. Sm.) NaumovMortierella lignicola (G. W. Martin) W. Gams & R. MoreauMortierella macrocystis W. GamsMortierella minutissima var. minutissima Tiegh.Mortierella parvispora Linnem.Mortierella pilulifera Tiegh.Mortierella polycephala Coem.Mortierella pulchella Linnem.Mortierella pusilla Oudem.Mortierella reticulata Tiegh. & G. Le Monn.Mortierella sp. 396 POLISH BOTANICAL JOURNAL 55(2). 2010 02nawehctaksaS ,adanaC larenim –––––––+––––++––––––– 91selaW dna dnalgnE ,niatirB taerG larenim –––++–+–––––+–––––––– 81nisnocsiW nrehtron ,ASU larenim ––––––––––––++––––––– 71dnalgnE ,niatirB taerG larenim ––––+––––+––++––––+–– 61nisnocsiW nrehtuos ,ASU larenim ––––––––+–––+–––––––– 51nisnocsiW nrehtuos ,ASU larenim –––––––––++–+–––––––– 41nisnocsiW nrehtuos ,ASU larenim –––––––––+––+–––––––– 31nisnocsiW ,ASU larenim ––––––––––––––––––––– 21dnalgnE nrehtron ,niatirB taerG larenim –––––––+––––––––––––– 11nedewS larenim –––+––––––––++––––––– 01nisnocsiW nrehtron ,ASU taep –––––––––+––++––––––– 9dnalgnE nrehtuos ,niatirB taerG larenim –––+––––––––+–––––––– 8tnomdeiP ,ylatI larenim ––––––––––––+–––––––– 7erutaretil fo noitalipmoc taep ++–++––+–++++++++–+–+ 6kraP ytiC anśeL awokdoP ,dnaloP larenim –––––––+––––+–––––++– 5evreseR azsbuL ,dnaloP larenim –––––+––++++++++––+–+ 4evreseR eciwokzsuM ,dnaloP larenim –––––+–––––++–+–––+–+ 3evreseR eciwokzsuM ,dnaloP larenim –––––+–++–++++++–++–+ 2kraP lanoitaN azrbeiB ,dnaloP taep ––––––––––––––+–––––– 1kraP lanoitaN azrbeiB ,dnaloP ,8W etis taep ––+––––+++–++–+–––––– 1kraP lanoitaN azrbeiB ,dnaloP ,3W etis taep ––––––––++–+––––––––– 1kraP lanoitaN azrbeiB ,dnaloP ,7W etis taep –––––––+++–++–+–––––– 1kraP lanoitaN azrbeiB ,dnaloP ,2W etis taep –––––––++––++–+–––––– 1kraP lanoitaN azrbeiB ,dnaloP ,5W etis larenim ––+––––+++–++–+–––––– per er chipper hipp Table 1. Continued. Site / Soil type Taxon Mortierella stylospora Dixon-Stew.Mortierella turfi cola Y. LingMortierella verrucosa Linnem.Mortierella verticillata Linnem.Mortierella zychae Linnem.Mucor circinelloides f. griseocyanus (Hagem) SMucor circinelloides f. janssenii (Lendn.) SchipMucor circinelloides Tiegh.Mucor fl avus BainierMucor fragilis BainierMucor genevensis Lendn.Mucor hiemalis f. corticola (Hagem) Schipper Mucor hiemalis WehmerMucor hiemalis f. silvaticus (Hagem) Schipper Mucor mucedo Fresen.Mucor odoratus TreschewMucor piriformis A. Fisch.Mucor plasmaticus Tiegh.Mucor plumbeus Bonord.Mucor racemosus f. racemosus Fresen. Mucor racemosus f. sphaerosporus (Hagem) Sc J. BUDZISZEWSKA ET AL.: SOIL ZYGOMYCETOUS FUNGI IN BIEBRZA NATIONAL PARK 397 –––––––––––––––––––––––––––––––+++++–– 9 –––––––––+––––––––––––––––––––––+–+––+ 15 ––––––––––––––––––––––––––––––––++++–– 9 +––––––––+–––+–+––––––+–+––––+–––+––++ 35 –––––––––––––––––––––––––––––––––––––– 7 ––––––––––––––––+––+––––––––––––+––+–– 15 –––––––––––––––+–––––––––––––––––––––– 6 –––––––––––––––––––––––––––––––––––––+ 2 ––––––––––––––––––––––––––––––––––+––– 3 ––––––+–––––––––––––––––––––––––++++–– 14 –––––––––––––––––––––––––––––––++–++–– 10 ––––––––––––––––––––––––––––––––+–+––+ 11 –––––––––––––––––––––––––––––––++–+––+ 10 +–+–+––+–+––––––+–––––––+–––+––+++++–+ 50 ++–––––+–+––+–+–+–+––––––––––––++–+––+ 30 +–++–––––+–+––––++–+–+––––+–+–––––+––+ 36 +––+–––––+–+––––+–––++––––––––––––+––+ 26 +––++––––+++––––++–+++––––––+–+–––+––+ 39 ––––––––––––––+––––––––––––––––––––––– 6 –+–––+––++––+–+––––––––––+–+––––––+––– 31 ++–––+––++–––+–––––––––––+–++––––––––– 22 ++–––+–––+––+++–+––––––––––+–––––––––– 27 –+–––+–––+––––+–+––––––––+–––––––––––– 19 ++–––+–––+––+++–+––––––+–––––––––––––+ 26 Mucor racemosus Fresen.Mucor ramosissimus Samouts.Mucor saturninus HagemMucor strictus HagemMucor subtilissimus Oudem.Mucor varians PovahMucor zonatus MilkoParasitella parasitica (Bainier) Syd.Pilaira anomala (Ces.) J. Schröt.Piptocephalis cylindrospora BainierPiptocephalis dichotomica Krzemien. & BaduraPiptocephalis fusispora Tiegh.Piptocephalis lepidula (Marchal) P. Syd.Piptocephalis microcephala Tiegh.Rhizopus arrhizus var. arrhizus A. Fisch.Rhizopus microsporus var. microsporus Tiegh.Rhizopus stolonifer (Ehrenb.) Vuill. Rhopalomyces elegans var. elegans CordaSpiromyces minutus R. K. Benj.Syncephalastrum racemosum Cohn ex J. Schröt. Syncephalis aurantiaca Vuill.Syncephalis cordata Tiegh. & G. Le Monn.Syncephalis fasciculata Tiegh.Syncephalis nodosa Tiegh. Syncephalis pendula Tiegh.Syncephalis penicillata IndohSyncephalis radiata IndohSyncephalis sphaerica Tiegh.Syncephalis tenuis Thaxt. Syzygites megalocarpus Ehrenb. Thamnidium elegans LinkUmbelopsis angularis W. Gams & M. Sugiy.Umbelopsis isabellina (Oudem.) W. GamsUmbelopsis nana (Linnem.) ArxUmbelopsis ramanniana (Möller) W. GamsUmbelopsis vinacea (Dixon-Stew.) ArxZygorhynchus heterogamus (Vuill.) Vuill. Zygorhynchus moelleri Vuill. Total number of species 398 POLISH BOTANICAL JOURNAL 55(2). 2010 Table 2. Species abundance at sites W2, W3, W5, W7 and W8 in Biebrza National Park. Site / Soil type site W5 site W2 site W7 site W3 site W8 Taxon mineral peat peat peat peat 1 Absidia caerulea Bainier 18 0 0 2 2 2 Absidia cylindrospora var. cylindrospora Hagem 6 0 0 3 1 3 Absidia glauca Hagem 3 0 6 8 4 4 ‘Coemansia interrupta-like’ 0 1 0 0 0 5 ‘Coemansia spiralis-like’ 0 0 0 0 1 6 Coemansia thaxteri Linder 0 1 0 0 1 7 Cunninghamella elegans Lendn. 4 4 10 4 3 8 Cunninghamella sp. 0 0 2 0 1 9 Helicocephalum sp. 0 0 0 1 0 Lentamyces parricida (Renner & Muskat ex Hesselt. 10 2 0 4 6 1 & J. J. Ellis) K. Hoffm. & K. Voigt Lichtheimia hyalospora (Saito) Kerst. Hoffm., Walther 11 3 0 1 1 7 & K. Voigt 12 Mortierella alpina Peyronel 0 0 1 0 1 13 Mortierella ambigua B. S. Mehrotra 0 1 1 0 0 14 Mortierella bisporalis (Thaxt.) Björl. 0 0 1 0 1 15 Mortierella capitata Marchal 0 0 1 0 0 16 Mortierella elongata Linnem. 6 2 7 4 3 17 Mortierella gamsii Milko 0 1 0 2 2 18 Mortierella minutissima var. minutissima Tiegh. 2 1 1 0 2 19 Mortierella sp. 2 2 1 2 3 20 Mortierella verrucosa Linnem. 1 0 0 0 1 21 Mucor circinelloides Tiegh. 1 1 3 0 1 22 Mucor fl avus Bainier 7 8 1 1 2 23 Mucor fragilis Bainier 2 0 1 1 1 24 Mucor hiemalis f. corticola (Hagem) Schipper 9 10 7 2 3 25 Mucor hiemalis Wehmer 4 2 2 0 1 26 Mucor mucedo Fresen. 4 1 2 0 2 27 Mucor racemosus Fresen. 2 0 2 2 0 28 Mucor ramosissimus Samouts. 10 5 2 5 8 29 Mucor varians Povah 2 4 4 2 1 30 Pilaira anomala (Ces.) J. Schröt. 0 0 0 2 2 31 Piptocephalis cylindrospora Bainier 3 1 1 2 1 32 Piptocephalis lepidula (Marchal) P. Syd. 4 0 1 0 1 33 Piptocephalis microcephala Tiegh. 2 0 1 1 0 34 Rhizopus arrhizus var. arrhizus A. Fisch. 2 13 4 0 1 35 Rhizopus stolonifer (Ehrenb.) Vuill. 5 5 3 0 0 36 Syncephalis nodosa Tiegh. 2 0 0 0 0 37 Syncephalis penicillata Indoh 0 1 0 1 1 38 Syncephalis sphaerica Tiegh. 0 0 5 1 3 39 Syncephalis tenuis Thaxt. 0 0 0 1 0 40 Umbelopsis ramanniana (Möller) W. Gams 0 0 0 0 1 41 Zygorhynchus moelleri Vuill. 1 0 0 0 0 reported that Umbelopsis ramanniana (Möller) gest that Umbelopsidaceae are absent from moist Gams was a common fungus from beech forest places. Marfenina (1999), however, stated out that on hill slopes (Central Poland) but was completely this species disappears under anthropopression, absent from stream valleys. Those results sug- so perhaps its absence can be explained by the J. BUDZISZEWSKA ET AL.: SOIL ZYGOMYCETOUS FUNGI IN BIEBRZA NATIONAL PARK 399 Table 3. Jaccard’s similarity index for zygomycetous com- DESCRIPTIONS OF SOME NOTEWORTHY STRAINS munities from Biebrza National Park. FROM THE BIELE SUCHOWOSLKIE FEN site W5 site W2 site W7 site W3 site W8 ‘Coemansia interrupta-like’ Fig. 2 site W5 1 REFERENCES: Linder 1943. site W2 0.424 1 site W7 0.617 0.483 1 NOTE. Colonies at fi rst white, a few days later site W3 0.470 0.322 0.441 1 becoming straw yellow (Ridgway 2005); sporo- site W8 0.552 0.470 0.611 0.514 1 phores up to 8 mm long, 10–15 μm in diameter, distantly septate, irregularly branched in the upper lack of some trees or shrubs stimulating fungal part, branches fertile, bearing sporocladia, but also growth or synthesis pathways. Possibly members sterile; some branches very long with a short fer- of Umbelopsidaceae are present on peat ground tile region and with a sterile tip, the fertile region (as in Thormann & Rice 2007) but in places rich becoming somewhat zigzag; sporocladia long- in species of the Ericaceae family. Perhaps erica- stipitate, the stipe 1-celled and 10–15 μm long, ceous plants are factors stimulating Umbelopsi- sporocladia 25–32 μm long × 7–10 μm wide, 6–7 daceae growth on peatland. Sewell (1959) showed celled, with terminal cell sterile, curved; pseudo- that U. ramanniana and Umbelopsis isabellina phialides ovoid, with neck, 3 μm long; conidia (Oudem.) W. Gams were especially frequent in yellow in mass, fusiform, 10–12 × 1.5 μm. Ac- heathland soil and in the rhizosphere of Calluna cording to Linder (1943) the spores as well as spp. In another study, U. ramanniana was often pseudophialides of Coemansia interrupta Linder found in forestry cultivated soils (spruce nursery) are much longer [12.5–14.5(–18.0) × 2.5 μm and but nearly absent from nearby agricultural culti- 5.5–7.0 × 3.5 μm respectively]. Moreover, our vated soil (Hýsek & Brožová 2001). The infl uence specimen was characterized by sporocladia emerg- of ericaceous plants as well as spruce and other ing irregularly, at an acute angle from the sporo- trees on Umbelopsidaceae growth ought to be more phore, and they form nearly the same axis with closely examined. the stipe cell, while Linder pointed out that the At the beginning of sporogenesis the spores basal cells of sporocladia are angularly upturned in of a large number of zygomycetous species (e.g., C. interrupta so that the sporocladia approximately Piptocephalis microcephala Tiegh., Syncephalis parallel the main sporophore’s axis. sphaerica Tiegh., Coemansia spp.) present in the SPECIMEN EXAMINED: plot W2, peat soil, Biebrza Biebrza fens are very closely compacted in a sticky National Park, unburnt area. fl uid forming a spore drop (Figs 3 & 4). Spores produced in sticky, mucilaginous masses are usu- ‘Coemansia spiralis-like’ Fig. 3 ally typical for insect-dispersed fungi (Deacon REFERENCES: Linder 1943; Kwaśna et al. 2002. 2006). We found many nematodes, mites (Aca- rina), springtails (Collembola) and millipedes NOTE. Colonies at fi rst white, a few days later (Myriapoda) in our probes. Further research on barium yellow (Ridgway 2005); sporophores aris- insect-fungus interaction on peatlands would be ing from substrate in groups of 5–8, branching in useful in interpreting these results. the upper part, often divided into 3–4 branches, spi- We conclude that the zygomycetous Mycota rally twisted at tips; sporophores up to 4 mm high, of the Biebrza fens is diverse, and unique for its 11–15 μm in diameter, regularly septate; fertile re- absence of some common zygomycetous species gions 75–160 μm long; sporocladia short-stipitate, (e.g., U. isabellina, M. plumbeus, M. racemosus) the stipe 1-celled and 4–5 μm long, sporocladia and the abundance of species characterized 25–30 μm long × 7.5–12.0 μm wide, 6–7-celled, by spores liberated in sticky, mucilaginous with terminal cell sterile, slightly curved; sporo- masses. cladia in the lower parts of fertile regions mature 400 POLISH BOTANICAL JOURNAL 55(2). 2010 A B Fig. 2. Coemansia sp. ‘interrupta-like’. A – sporophore bearing sporocladia, B – sporocladia. Scale bars = 50 μm. earlier than those on the upper part, which often or very rarely branched in the lower part, 1 cm remain shorter, not divided into cells; pseudophi- or more long, 8–15 μm in diameter, regularly alides long and thin, up to 3.8 μm long; conidia septate, cells quite long, some of them bearing yellowish in mass, fusiform, 13–20 × 1.5–2.0 μm. one sporocladium on the upper part; sporoclad- Our specimen is similar to the Coemansia spiralis ial stipe elongated and composed of one or two Eidam description given by Kwaśna et al. (2002) cells which together measure 28–32 × 5–6 μm; but differs substantially in type of ramifi cation. Our sporocladia 5–8(–10) septate, 38–45 × 4–8 μm, specimen’s sporophores emerge from the media in the sterile terminal cell short or long, somewhat groups and are always furcate in the upper part, curved and tapering to a rounded apex; pseudo- similarly to Coemansia furcata (Kurihara et al. phialides numerous at lower surface of sporo- 2000). The twisting of the fertile region of the cladial cells, ellipsoid, 3.3–4.5 × 2.5 μm; conidia sporophore as well as some microscopic characters narrow, fusiform, slightly rounded at apex, 15–18 distinguish it from the latter species. × 2–3 μm. Our specimens differ from C. thaxteri (Linder 1943) in spore dimensions, (18.0–)21.0– SPECIMEN EXAMINED: plot W8, peat soil, Biebrza 23.5(–25.0) μm, but the other features accord National Park, burnt area. with the original description so we identify it as Coemansia thaxteri Linder Fig. 4 C. thaxteri. REFERENCES: Linder 1943. SPECIMENS EXAMINED: plots W8 and W2, peat soil, NOTE. Sporophores whitish, erect, simple Biebrza National Park, burnt and unburnt areas.