ebook img

Smoothing Spline ANOVA Models PDF

175 Pages·2012·2.18 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Smoothing Spline ANOVA Models

Smoothing Spline ANOVA Models Chong Gu DepartmentofStatistics PurdueUniversity June 21, 2012 ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 1/45 Outline 1 Introduction Cubic Spline and Penalized Likelihood Functional ANOVA Decomposition R Package gss 2 Estimation and Inference Splines as Bayes Estimates Efficient Approximation Cross-Validation Bayesian Confidence Intervals Kullback-Leibler Projection 3 Regression Models Non-Gaussian Regression Regression with Correlated Data 4 Density and Hazard Estimation Density and Conditional Density Hazard and Relative Risk ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 2/45 Outline 1 Introduction Cubic Spline and Penalized Likelihood Functional ANOVA Decomposition R Package gss 2 Estimation and Inference Splines as Bayes Estimates Efficient Approximation Cross-Validation Bayesian Confidence Intervals Kullback-Leibler Projection 3 Regression Models Non-Gaussian Regression Regression with Correlated Data 4 Density and Hazard Estimation Density and Conditional Density Hazard and Relative Risk ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 2/45 Outline 1 Introduction Cubic Spline and Penalized Likelihood Functional ANOVA Decomposition R Package gss 2 Estimation and Inference Splines as Bayes Estimates Efficient Approximation Cross-Validation Bayesian Confidence Intervals Kullback-Leibler Projection 3 Regression Models Non-Gaussian Regression Regression with Correlated Data 4 Density and Hazard Estimation Density and Conditional Density Hazard and Relative Risk ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 2/45 Outline 1 Introduction Cubic Spline and Penalized Likelihood Functional ANOVA Decomposition R Package gss 2 Estimation and Inference Splines as Bayes Estimates Efficient Approximation Cross-Validation Bayesian Confidence Intervals Kullback-Leibler Projection 3 Regression Models Non-Gaussian Regression Regression with Correlated Data 4 Density and Hazard Estimation Density and Conditional Density Hazard and Relative Risk ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 2/45 Outline 1 Introduction Cubic Spline and Penalized Likelihood Functional ANOVA Decomposition R Package gss 2 Estimation and Inference Splines as Bayes Estimates Efficient Approximation Cross-Validation Bayesian Confidence Intervals Kullback-Leibler Projection 3 Regression Models Non-Gaussian Regression Regression with Correlated Data 4 Density and Hazard Estimation Density and Conditional Density Hazard and Relative Risk ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 3/45 Cubic Smoothing Spline ◮ Problem: Observing Y = η(x )+ǫ , i = 1,...,n, where x [0,1] i i i i ∈ and ǫ N(0,σ2), one is to estimate η(x). i ∼ ◮ Method: Minimize n1 Pni=1(cid:0)Yi −η(xi)(cid:1)2+λR01(cid:0)η′′(x)(cid:1)2dx. ◮ Solution: Piecewise cubic polynomial, with η(3)(x) jumping at knots ξ < ξ < < ξ (ordered distinctive x ); linear on [0,ξ ] [ξ ,1]. 1 2 q i 1 q ··· ∪ ◮ Smoothing Parameter: As λ , η(x) gets smoother; at λ = 0 , one + ↑ interpolates data, at λ = , η(x) = β +β x. 0 1 ∞ ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 4/45 Cubic Smoothing Spline ◮ Problem: Observing Y = η(x )+ǫ , i = 1,...,n, where x [0,1] i i i i ∈ and ǫ N(0,σ2), one is to estimate η(x). i ∼ ◮ Method: Minimize n1 Pni=1(cid:0)Yi −η(xi)(cid:1)2+λR01(cid:0)η′′(x)(cid:1)2dx. ◮ Solution: Piecewise cubic polynomial, with η(3)(x) jumping at knots ξ < ξ < < ξ (ordered distinctive x ); linear on [0,ξ ] [ξ ,1]. 1 2 q i 1 q ··· ∪ ◮ Smoothing Parameter: As λ , η(x) gets smoother; at λ = 0 , one + ↑ interpolates data, at λ = , η(x) = β +β x. 0 1 ∞ ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 4/45 Cubic Smoothing Spline ◮ Problem: Observing Y = η(x )+ǫ , i = 1,...,n, where x [0,1] i i i i ∈ and ǫ N(0,σ2), one is to estimate η(x). i ∼ ◮ Method: Minimize n1 Pni=1(cid:0)Yi −η(xi)(cid:1)2+λR01(cid:0)η′′(x)(cid:1)2dx. ◮ Solution: Piecewise cubic polynomial, with η(3)(x) jumping at knots ξ < ξ < < ξ (ordered distinctive x ); linear on [0,ξ ] [ξ ,1]. 1 2 q i 1 q ··· ∪ ◮ Smoothing Parameter: As λ , η(x) gets smoother; at λ = 0 , one + ↑ interpolates data, at λ = , η(x) = β +β x. 0 1 ∞ ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 4/45 Cubic Smoothing Spline ◮ Problem: Observing Y = η(x )+ǫ , i = 1,...,n, where x [0,1] i i i i ∈ and ǫ N(0,σ2), one is to estimate η(x). i ∼ ◮ Method: Minimize n1 Pni=1(cid:0)Yi −η(xi)(cid:1)2+λR01(cid:0)η′′(x)(cid:1)2dx. ◮ Solution: Piecewise cubic polynomial, with η(3)(x) jumping at knots ξ < ξ < < ξ (ordered distinctive x ); linear on [0,ξ ] [ξ ,1]. 1 2 q i 1 q ··· ∪ ◮ Smoothing Parameter: As λ , η(x) gets smoother; at λ = 0 , one + ↑ interpolates data, at λ = , η(x) = β +β x. 0 1 ∞ ChongGu (PurdueUniversity) SmoothingSplineANOVAModels June21,2012 4/45

Description:
Cubic Spline and Penalized Likelihood. Functional ANOVA Cubic Smoothing Spline. ▷ Problem: gss suites have syntax similar to lm and glm.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.