Simulation of Stochastic Processes with Given Accuracy and Reliability Series Editor Nikolaos Limnios Simulation of Stochastic Processes with Given Accuracy and Reliability Yuriy Kozachenko Oleksandr Pogorilyak Iryna Rozora Antonina Tegza First published 2016 in Great Britain and the United States by ISTE Press Ltd and Elsevier Ltd Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Press Ltd Elsevier Ltd 27-37 St George’s Road The Boulevard, Langford Lane London SW19 4EU Kidlington, Oxford, OX5 1GB UK UK www.iste.co.uk www.elsevier.com Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. For information on all our publications visit our website at http://store.elsevier.com/ © ISTE Press Ltd 2016 The rights of Yuriy Kozachenko, Oleksandr Pogorilyak, Iryna Rozora and Antonina Tegza to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library Library of Congress Cataloging in Publication Data A catalog record for this book is available from the Library of Congress ISBN 978-1-78548-217-5 Printed and bound in the UK and US Contents Introduct.i..o.n. ........................... . ix Chapte1r.T heD istribuotfit ohneE stimatfeostr h eN ormo f Sub-GaussiSatno chasPtriocc esse.s. .............. 1.T1h.se p aocfse u b-Garuasnsdvioaamrn i aanbsdlu ebs- Gaussian stochparsotcie.cs. s.e.s... ................. 2 . 1.L1E..x ponemnotmieoanfslt u sb -Garuasnsdvioaamrn i ables 8 1.1T.h2se.u o mfi ndepesnudbe-nGtar uasnsdvioaamrn i ables 9 1.31.S. ub-Gasutsoscihpaarnso tcie.cs s.e s. .. . . . . 1.0 . . . 1.T2h.se p aocfse t rsicutbl-yG aruasnsdvioaamrn i aanbsdlt ersi ctly sub-Gaussian st.o.c.h.a.s..t..i..c. .p.r.o..c.e sse1s5 . . 1.2S.t1r.is cutbl-yG asutsoscihpaarnso tcie.cs .s e.s . . . .2 .2 . . . 13..T hees tiomfca otnevse rrgaetonefscs te r siuctbl-yG aruasnsdioamn seriinGe( sT). . . . . . . . . . . . . .2 .4 . . . . . . . . . . . . . . . . . . 1AT.h dei streisbtuitomiftao htnnee o sro mfs ub-Gasutsoscihaans tic proceisLnps (eT.s) .. . . . . . . . . . . . .2 8. . . . . . . . . . . . . . . . 15..T hdei streisbtuitomifato htnnee o sro mfs ub-Gasutsoscihaans tic proceisnss oemOser lsipcazc. e.s. ................. 30 . . 16..C onverrgaeetnsect ei omfsa ttreisscu tbl-yG aruasnsdsioeamrn i es inO rlsipcaz.c e.s . . . . . . . . . . . . 3.4 . . . . . . . . . . . . . . . . . 17..S triscutbl-yG aruasnsdsioeamrnw i ietushn corroerol lattheodg onal ite.m s. . . . . . . . . . . . . . . .4 2. . . . . . . . . . . . . . . . . . . 18..U nifcoornmv eregsetnicomefsa utbe-sG aruasnsdsioeamrn i es 48 19..C onveregsetniocmfesa ttreis cutbl-yG aruasnsdsioeamrn i es inq T). . . . . . . . . . . . . . . .5 8. . . . . . . . . . . . . . 1.O.1T hees tiomfta htneeo rdmi stroifLb pu-tpiroon.c e.s .s e.s 69 vi SimulatoifoS nt ochasPtriocc essweist Ghi veAnc curacayn dR eliability Chapte2r. S imulatioofSn t ochastPirco cessePsr esentiendt he Formo fS erie.s. ............................... ..7 1 2.G1e.n earpaplr ofaocmrho edcseo lnr sutction of stochparsotciecs ses ................. .7.1. ........... 2.K2a.r hunen-Loetveec henfxiospqriau mneus lioaoftn i on stochparsotcie.cs. s.e.s. ............... . 73 2.2K.a1r.h unemno-dLoeofsle t vresi uctbl-yG aussian stochparsotcie.cs. s.e.s. .......... ..... 74 2.2A.c2c.u raanrcdey l iaobfti hKleLi m toydi enLl 2( T.). .. 75 22... 3Accaunrrdae clyi aobfti hKleLim toydi enLl p (Tp )>, 0 75 22..A4c.c uraanrcdey l iaobfti hKleLim toydi enLl u ( T.) 77 22..A5c.c uraanrcdey l iaobfti hKleLim toydi enClC T) 79 2..F 3ourier expafnossrii mounl oatfte icohnn ique stochparsotcie.cs. s.e.s. ........... ..... 84 2..13F.o urmioedorefs l t riscutbl-yG asutsoscihpaarnso tciecs s 85 2..23A.c curaanrcdey l iaobfti hFlem-i otdyie nLl 2( T.). .. 85 2..33A.c curaanrdce yl iaobfti hFle-i mtoyid nLe pl( Tp )>, 0 86 2..43A.c curaanrcdey l iaobfti hFlem-i otdyie nLl u ( T.) 88 2..53A.c curaanrcdey l iaobfti hFlem-i otdyie nCl ( T) 90 2.S4i.m uloafst tiaotnis otnoacrhpyar sotcwieicst sh discsrpeetce.t r.u m. . . . . . . . . . . .9 .3 . . . . . . . . . . . . . . . . . . 2.4T.h1me.o doefsl t rsiucbt-lGya sutsastiipaornno acwreiysdt sih s crete spec.t.r.u.m. .................... ...9.4. .... 2.24A..c curaanrcdey l iaobfti hDle(i Tt)y- mionLd 2e(lT. ). .. 95 2..34A.c curaanrcdey l iaobfti hDle(i Tt)y- moLdpe(lTp )>i, n 0 95 2.4A.c4c.u raanrcdey l iaobfti hDle( i Tt)y- mionLd u(e Tl.) 97 2.4A.c5c.u raanrcdey l iaobfti hDle(i Tt)y- mionCd (eT.l). L10 2.A5p.p liocfFa otiuorenix epra ntsosi iomnu loafst tiaotni onary stochparsotcie.cs. s.e.s. .............. ....1.0.2 2..15T. hmeo doefals tatipornoacirenwys h sia cc ho rrefluantcitoino n cabner epreisnteh nfeto erodmfa F oursieerwrii etsh posictoievfefi c.i.e.n.t.s. .................. . .1.0.3 . Chapte3r. S imulatioofnG aussiaSnt ochastPirco cessewsi th RespecttoO utpuPtr ocessoefst heS ystem. ............. 150 31..T hien equfaoltrihe texi peosn meonmteionafttl hs qe u adfroartmisc ofGa usrsainadnvo amr i.a. b l.e .s . . . . . . . .1 0.7 . . . . . . . . . . . . 32.T. hsep aocfse q uare-rGaanudsvosamir aianan bsdlq eusa re-Gaussian stochparsotcie.cs. s.e.s. .................. .1.61. ..... 3.T3.hd ei stroifsb uuptrieoomnfsu qmusa re-Gaussian stochparsotcie.cs. s.e.s. ........................ . 117 34..T hees timoafdt iisotnrsfi obsruu tpiroeonmf u m d square-sGtaoucshpsarisoatcniei csnt s hees s[0pT,aj .c.e. ...... 1.6 2 Contentsv ii 35.A.c curanardce yl iaobfsi iEmtuylo afGt aiuosnss tioacnh astic procewsisrteehss petchte topour topcouefsts o sms ey s.t e.m . . 133 36..M odceoln stroufsc ttaitoiGnoa nuasrssyti oacnh parsotcwieicst sh discsrpeetcewt irrtuehms pteoocu ttp pruotc ess 144 3..S7 imuloafGt aiuosnss tioacnh fiaesl.tdisc 175 . 3..l7S.i mulaGtaiuosnfs iioeaoflnn sd psh eres 116 Chapte4r.T heC onstructoifot nh eM odelo fG aussiaSnt ationary Processes 169 . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .... . . . Chapte5r.T heM odelionfgG aussiaSnt ationRaarnyd om Processweist ah CertaAicnc uracayn dR eliabi.l.i.t.y. 118 5.R1e.E abainladic tcyui rnLa pc(yT p) �, 1 o ft hmeo defloGsra ussian statiroannadprorymo ces.ses. . . 118 . . . . . . . . . . . . . . . . . . . . . . 5.1T.h1ae.c cuorfma ocdye sltiantgi Goanuasrpsyri oacne sses inL p(T[]O1), ::, :;P :::;2 . . . . . . . . . . .. .. 1 .8 2. . . . . . . . . . . . . 5. l..T 2haec cuorfma ocdye sltiantgi Goanuasprsryio acne sses Lp(T[]Oa),pt � 1 . . . . . . . . . . . . . 1.88 . . . . . . . . . . . 5.31.T. haec cuorfma ocdye Glaiunsgss tiaatnir oannadprorymo cesses inno romfOs r lsipcazc. e.s. .................1.99. .... 5.T2h.e acacnurdre alciyao bfti hmEeot dyse tla tiroannadprorymos csees int huen ifmoertm.r i.c . . . . . . . . . .. .. 2.0 2. . . . . . . . . . . . . . . 5.2T.h1ae.c cuorfsa icmyu loafst tiaotniG oanuasprsryio acnew sistehs bounsdpeedc t.r.u.m. ........ ...........2 02 . . . . . . . . 5.2A.p2p.l iocLfap t(iD.op)nr octeshseieonssr i ym uloaGfta iuosns ian - statiroannadprorymo ce.s s.e s. . . . . . . .. .. 2 3.1 . . . . . . . . . . . . 53.A.p pliocfSa Utbicospnp( aD.t)ch ee tofiorn ytd h aec cuorfma ocdye ling fosrt atiGoanuasprsryi oacne .s s.e s. . . . . . . .2 .2 .2 . . 54.G. eneramloidozefGel ad u ssstiaatni pornoacreys ses 214 Chapte6r.S imulatoifoCn o xR andomP rocesse.s 215 . 6.R1a.n dCoompx r oce.s .s e.s . . . . . . . . .2 5.1 . . . . 6.S2i.m uloaflto iGgoa nu sCsoipxar nos cseaesasd emaanrdr pirvoacle ss inac tuarial .m a.t h.e .m a.t i.c s. . . . . .2 .5 3. . . . . . . . . . . . . . 63..S implmiefitehodofs d i mullaoGtgai unsgCs oipxar no ces.s es2 68 . . 6.4S.i muloaftt ihCoeon x p rocwehsesdn e nsiisgt eyn erbayat ed homogelnoeGgoa uuss fiseila.dn . . . . . . . . .2 0.8 . . . . . . . . . . . 65.S.i muloaflto iGgoa nu sCsoipxar no cwehsetsnh d ee nsigiset nye rated byt hien homogene.o u.s . fi.e l.d . . . . .. .. 2.68 . . . . . . . . . . . . . 66..S imuloaftt hiCeoo npx r ocwehsetsnh d ee nsiigste yn erbaytt heed squGaarues rsainadnpo rmo ce.s .s . . . .. .. . .. .. 2.9 .2 . . . 6..7S imuloaftt ihsoeqn u aGraeu ssCioaxpn r ocwehsesdn e nsiist y generbayaht oemdo gefineelod.u .s. ... . . . .. .. 2.99 . . . . viiiS imulatoifoS nt ochasPtriocc essweist Ghi veAnc curacayn dR eliability 68..S imuloaftt hiseoq nu Gaarues Csoipxar no cwehsetsnh dee nsiist y generbayat nie ndh omogfieenl.ed o..u s. . . . . .. .. 3.0 1. . . . . . . . . Chapte7r.O n theM odelionfgG aussiaSnt ationParroyc essweist h AbsolutCeolnyt inuous Spec.t.ru.m. ...............3.50. . Chapte8r.S imulatioofGn a ussiaIns otroRpaincd omF ieldosn a Sphere ... .............................. 351 . . . . 81.S.i muloafrt ainodfinoe mlw di gtihv aecnc uarnardce yl iability inL2 (S.I l.) . . . . . . . . . . . . . .3 .2 3. . . . . . . . . . . . . . . . . . 8.2S.i muloafrt ainodfinoe mwl idgt ihv aecnc uarnardce yl iability inL p(SPn ;:)::2, 3 2 4 Bibliography 352 Index 333 Introduction The problem of simulation of stochastic process has been a matter of active research in recent decades. It has become an integral part of research, development and practical application across many fields of study. That is why one of the actual problems is to build a mathematical model of stochastic process and study its properties. Because of the powerful possibilities of computer techniques, the problemsofnumericalsimulationshavebecomeespeciallyimportantandallowusto predictthebehaviorofarandomprocess. There are various simulation methods of stochastic processes and fields. Some of them can be found in [OGO96, ERM82, CRE93, KOZ07a]. Note that in most publicationsdealingwithsimulationofstochasticprocesses,thequestionofaccuracy andreliabilityisnotstudied. In this book, the methods of simulation of stochastic processes and fields with given accuracy and reliability are considered. Namely, models are found that approximate stochastic processes and fields in different functional spaces. This meansthatatfirstweconstructthemodelandthenusesomeadequacyteststoverify it. In most books and papers that are devoted to the simulation of stochastic processes, the modeling methods of exactly Gaussian processes and fields are studied.Itisknownthatthereisaneedtosimulatetheprocessesthatareequaltothe sum of various random factors, in which effects of each other are independent. According to the central limit theorem, such processes are close to Gaussian ones. Hence,theproblemofsimulationofGaussianstochasticprocessesandfieldsisahot topicinsimulationtheory. Let us mention that in this book only centered random processes and fields are considered, since simulation of determinate function can be made without any difficulties. x SimulationofStochasticProcesseswithGivenAccuracyandReliability NotethatallresultsinthisbookareapplicableforGaussianprocess. Chapter1dealswiththespaceofsub-Gaussianrandomvariablesandsubclasses of this space containing strictly sub-Gaussian random variables. Different characteristics of these random variables are considered: sub-Gaussian standard, functionalmoments,etc.Specialattentionisdevotedtoinequalitiesestimating“tails” of the distribution of a random variable, or a sum of a random variable in the some functional spaces. These assertions are applied in investigation of accuracy and reliabilityofthemodelofGaussianstochasticprocess. In Chapter 2, general approaches for model construction of stochastic processes with given accuracy and reliability are studied. Special attention is paid to Karhunen–Loève and Fourier expansions of stochastic processes and their applicationtothesimulationofstochasticprocesses. Chapter 3 is devoted to the model construction of Gaussian processes, that is considered as input processes on some system of filter, with respect to output processes in a Banach space C(T) with given accuracy and reliability. For this purpose,square-Gaussianrandomprocessesareconsidered;theconceptofthespace of square-Gaussian random variables is introduced and the estimates of distribution of a square-Gaussian process supremum are found. We also consider the particular casewhenthesystemoutputprocessisaderivativeoftheinitialprocess. Chapter 4 offers two approaches to construct the models of Gaussian stationary stochasticprocesses.Themethodsofmodelconstructionaregeneralizedonthecase ofrandomfields.Theproposedmethodsofmodelingcanbeappliedindifferentareas ofscienceandtechnology,particularlyinradio,physicsandmeteorology.Themodels canbeinterpretedasasetofsignalswithlimitedenergy,harmonicsignalsandsignals withlimiteddurations. InChapter5,thetheoremsonapproximationofamodeltotheGaussianrandom process in spaces L1([0,T]) and Lp([0,T]), p > 1 with given accuracy and reliability are proved. The theorems are considered on estimates of the “tails” of norm distributions of random processes under different conditions in the space Lp(T), where T is some parametric set, p ≥ 1. These statements are applied to investigatethepartitionselectionoftheset[0,Λ]suchthatthemodelapproximatesa Gaussian process with some accuracy and reliability in the space Lp([0,T]) when p ≥ 1. A theorem on model approximation of random process with Gaussian with givenaccuracyandreliabilityinOrliczspaceLU(Ω)thatisgeneratedbythefunction U isalsopresented. InChapter6,weintroducerandomCoxprocessesanddescribetwoalgorithmsof their simulation with some given accuracy and reliability. The cases where an intensity of the random Cox processes are generated by log Gaussian or square
Description: