ebook img

Simulation of nonGaussian Long-Range-Dependent Traffic using Wavelets PDF

12 Pages·2005·0.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Simulation of nonGaussian Long-Range-Dependent Traffic using Wavelets

Ribeiro et al(cid:2)(cid:2) Simulation of nonGaussian Long(cid:3)Range(cid:3)Dependent Traffic (cid:0) Simulation of nonGaussian Long(cid:2)Range(cid:2)Dependent Tra(cid:3)c using Wavelets (cid:0) Vinay J(cid:2) Ribeiro(cid:3) Rudolf H(cid:2) Riedi(cid:3) Matthew S(cid:2) Crouse(cid:3) and Richard G(cid:2) Baraniuk Departmentof Electrical and ComputerEngineering Rice University (cid:2)(cid:3)(cid:4)(cid:4) SouthMain Street Houston(cid:5) TX (cid:6)(cid:6)(cid:4)(cid:4)(cid:7)(cid:5) USA April (cid:2)(cid:3)(cid:4) (cid:2)(cid:5)(cid:5)(cid:5) Abstract scaling property for all a(cid:2)(cid:20) fd H Inthispaper(cid:2)wedevelopasimpleandpowerfulmultiscalemodel B(cid:4)at(cid:5) (cid:21) a B(cid:4)t(cid:5)(cid:3) (cid:4)(cid:0)(cid:5) for the synthesis of nonGaussian(cid:2) long(cid:3)range dependent (cid:4)LRD(cid:5) network tra(cid:6)c(cid:7) Although wavelets e(cid:8)ectively decorrelate LRD withequalityin(cid:4)(cid:11)nite(cid:3)dimensional(cid:5)distribution(cid:7) Theincrement data(cid:2) wavelet(cid:3)based models have generally been restricted by a processG(cid:4)k(cid:5)(cid:0)B(cid:4)k(cid:22)(cid:0)(cid:5)(cid:2)B(cid:4)k(cid:5)(cid:2)calledfractional Gaussian noise Gaussianity assumption that can be unrealistic for tra(cid:6)c(cid:7) Us(cid:3) (cid:4)fGn(cid:5)(cid:2) has an autocorrelationof the form ing a multiplicative superstructure on top of the Haar wavelet (cid:0) (cid:4) (cid:0)H (cid:0)H (cid:0)H transform(cid:2) we exploit the decorrelating properties of wavelets rG(cid:14)k(cid:15)(cid:21) (cid:4)jk(cid:22)(cid:0)j (cid:2)(cid:16)jkj (cid:22)jk(cid:2)(cid:0)j (cid:5)(cid:5) (cid:4)(cid:16)(cid:5) (cid:16) while simultaneously capturing the positivity and (cid:9)spikiness(cid:10) of nonGaussian tra(cid:6)c(cid:7) This leads to a swift O(cid:4)N(cid:5) algorithm for The parameterH(cid:2) (cid:20)(cid:6)H (cid:6)(cid:0)(cid:2) is known as the Hurst parameter(cid:7) (cid:11)tting and synthesizing N(cid:3)point data sets(cid:7) The resulting model It simultaneously rules the large(cid:3)scale behavior and the degree belongs to the class of multifractal cascades(cid:2) a set of processes of local (cid:9)spikiness(cid:7)(cid:10) In particular(cid:2) for all t with rich statistical properties(cid:7) We elucidate ourmodel(cid:12)s ability H to capture the covariance structure of real data and then (cid:11)t it B(cid:4)t(cid:22)s(cid:5)(cid:2)B(cid:4)t(cid:5)(cid:3)s (cid:4)(cid:17)(cid:5) to real tra(cid:6)ctraces(cid:7) Queueingexperimentsdemonstratethe ac(cid:3) (cid:4)more precisely(cid:2)B(cid:4)t(cid:22)s(cid:5)(cid:2)B(cid:4)t(cid:5)isa zero(cid:3)meanGaussianprocess curacyofthemodel formatchingrealdata(cid:7) Ourresultsindicate (cid:0)H of variance s (cid:5)(cid:2) meaning that fBm has (cid:9)in(cid:11)nite slope(cid:10) every(cid:3) that the nonGaussiannature of tra(cid:6)c has a signi(cid:11)cante(cid:8)ect on where(cid:7) Processes approximating fBm(cid:23)fGn can be synthesized queuing(cid:7) almost e(cid:8)ortlessly in the wavelet domain due to the amazing decorrelating e(cid:8)ect of the wavelet transform (cid:14)(cid:24)(cid:15)(cid:7) A strong argument for the fBm(cid:23)fGn models in networks is (cid:2) Introduction that in many cases tra(cid:6)c can be viewed as the superposition Tra(cid:6)c models play a signi(cid:11)cant r(cid:13)ole in the analysis and charac(cid:3) of a large number of independent individual ON(cid:23)OFF sources(cid:2) terizationof networktra(cid:6)candnetworkperformance(cid:7) Accurate with the ON durations heavy(cid:3)tailed (cid:14)(cid:25)(cid:2)(cid:26)(cid:15)(cid:7) In this case(cid:2) sub(cid:3) models enhance our understanding of these complex signalsand tracting the mean arrival rate and normalizing properly(cid:2) the systems by allowing us to study the e(cid:8)ect of various model pa(cid:3) aggregated ON(cid:23)OFF sources (cid:4)cumulative arrivals(cid:5) converge to rameters on network performance through simulation(cid:7) GaussianfBmbythecentrallimit theorem(cid:4)CLT(cid:5)(cid:14)(cid:0)(cid:2)(cid:17)(cid:15)(cid:7) A(cid:9)self(cid:3) The presence of long(cid:2)range dependence (cid:4)LRD(cid:5) in modern net(cid:3) similar(cid:10)tra(cid:6)carrivalmodel(cid:4)oftheincrementsprocess(cid:5)is(cid:2)thus(cid:2) work tra(cid:6)c was demonstrated convincingly in the landmark simply an (cid:9)fGn(cid:22)mean(cid:10) model with given variance and H(cid:7) The paper by Leland et(cid:7) al(cid:7) (cid:14)(cid:0)(cid:15)(cid:7) There(cid:2) measurements of tra(cid:6)c fBm(cid:23)fGn models have found wide use in networking(cid:2) since their load on an Ethernet were attributed to fractal behavior or self(cid:2) Gaussianity and strong scaling (cid:4)(cid:0)(cid:5) allows analysts to perform similarity(cid:2) i(cid:7)e(cid:7)(cid:2) to the fact that the data (cid:9)looked statistically analytical studies of queueing behavior (cid:14)(cid:27)(cid:18)(cid:0)(cid:17)(cid:15)(cid:7) similar(cid:10) (cid:4)(cid:9)bursty(cid:10)(cid:5) on all time(cid:3)scales(cid:7) These features are inade(cid:3) Unfortunately(cid:2) the fBm(cid:23)fGn models have severe limitations quately described by classical tra(cid:6)c models(cid:2) such as Markov or for network tra(cid:6)c applications(cid:7) First(cid:2) real(cid:3)world tra(cid:6)c traces Poisson models(cid:7) In particular(cid:2) the LRD of data tra(cid:6)c can lead do not exhibit the strict self(cid:3)similarity of (cid:4)(cid:0)(cid:5) or (cid:4)(cid:16)(cid:5) and are at to higher packet losses than that predicted by classical queuing best merely asymptotically self(cid:3)similar(cid:7) In other words(cid:2) the sin(cid:3) analysis (cid:14)(cid:0)(cid:2)(cid:16)(cid:15)(cid:7) gleparameterH isnotsu(cid:6)cienttocapturethecomplicatedcor(cid:3) These(cid:11)ndings were immediately followedby the development relation structure of real network processes(cid:7) Indeed(cid:2) convincing ofnew fractal tra(cid:6)cmodels(cid:14)(cid:17)(cid:18)(cid:19)(cid:15)(cid:7) The fractional Brownian mo(cid:2) evidencehasbeenproducedestablishingtheimportanceofshort(cid:3) tion(cid:4)fBm(cid:5)(cid:2)themostbroadlyappliedfractalmodel(cid:2)istheunique termcorrelationsforbu(cid:8)ering(cid:14)(cid:0)(cid:24)(cid:18)(cid:0)(cid:26)(cid:15)andso(cid:3)calledrelevanttime Gaussian process with stationary increments and the following scales have been discovered (cid:14)(cid:0)(cid:27)(cid:15)(cid:7) The wavelet(cid:3)domain indepen(cid:3) (cid:0) dent Gaussian (cid:4)WIG(cid:5) model generalizes fBm(cid:23)fGn by allowing a This work was supported by the National Science Foundation(cid:2) grant more (cid:28)exible scaling relation than (cid:4)(cid:0)(cid:5)(cid:7) By matching both long no(cid:3) MIP(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:6)(cid:9)(cid:10)(cid:2) by DARPA(cid:11)AFOSR(cid:2) grant no(cid:3) F(cid:6)(cid:5)(cid:12)(cid:13)(cid:14)(cid:15)(cid:5)(cid:8)(cid:15)(cid:16)(cid:15)(cid:14)(cid:7)(cid:16)(cid:9)(cid:2) and by Texas Instruments(cid:3) Email(cid:17) fmcrouse(cid:2) riedi(cid:2) vinay(cid:2) richbg(cid:18)rice(cid:3)edu(cid:3) and short(cid:3)term correlations(cid:2) the WIG model more completely URL(cid:17) www(cid:3)dsp(cid:3)rice(cid:3)edu(cid:3) matches the correlation structure of a target data set (cid:14)(cid:0)(cid:19)(cid:15)(cid:7) (cid:16) Proceedings SigMetrics (cid:4)(cid:5)(cid:5)(cid:6) Atlanta(cid:6) GA 8000 LBL(cid:3)TCP(cid:3)(cid:17) data 8000 WIG synthesis 8000 MWM synthesis 6000 6000 6000 → → → mber of bytes 24000000 mber of bytes 24000000 mber of bytes 24000000 nu nu nu 0 0 0 −2000 −2000 −2000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000 time (1 unit = 6 ms) → time (1 unit = 6 ms) → time (1 unit = 6 ms) → 14000 14000 14000 12000 12000 12000 →10000 →10000 →10000 mber of bytes 468000000000 mber of bytes 468000000000 mber of bytes 468000000000 nu nu nu 2000 2000 2000 0 0 0 −2000 −2000 −2000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 time (1 unit = 6 ms) → time (1 unit = 6 ms) → time (1 unit = 6 ms) → 20000 20000 20000 15000 15000 15000 → → → mber of bytes 150000000 mber of bytes 150000000 mber of bytes 150000000 nu nu nu 0 0 0 −5000 −5000 −5000 0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000 time (1 unit = 6 ms) → time (1 unit = 6 ms) → time (1 unit = 6 ms) → (cid:4)a(cid:5) (cid:4)b(cid:5) (cid:4)c(cid:5) Figure (cid:0)(cid:29) Bytes(cid:2)per(cid:2)time arrival process at di(cid:3)erent aggregation levels for (cid:4)a(cid:5) wide(cid:2)area TCP tra(cid:6)c at the Lawrence Berkeley Laboratory (cid:4)trace LBL(cid:2)TCP(cid:2)(cid:7)(cid:5) (cid:8)(cid:9)(cid:10)(cid:11)(cid:12) (cid:4)b(cid:5) one realization of the state(cid:2)of(cid:2)the(cid:2)art wavelet(cid:2)domain independent Gaussian (cid:4)WIG(cid:5) model (cid:8)(cid:9)(cid:13)(cid:11)(cid:12) and (cid:4)c(cid:5) one realizationofthemultifractalwaveletmodel(cid:4)MWM(cid:5)synthesis(cid:14) Thetop(cid:12)middleandbottomplotscorrespondtobytesarrivinginintervalsof (cid:2)ms(cid:12)(cid:3)(cid:8) msand(cid:8)(cid:9) msrespectively(cid:14) Thetopandmiddleplotscorrespondtothesecondhalfof themiddleandbottomplots(cid:12) respectively(cid:12)as indicatedbytheverticaldottedlines(cid:14) TheMWMtracescloselyresembletherealdataclosely(cid:12)whiletheWIGtraces(cid:4)withtheirlargenumber of negative values(cid:5) donot(cid:14) Second(cid:2) the Gaussianity of fBm(cid:23)fGn(cid:23)WIG models can be un(cid:3) Initssimplestform(cid:2)theMWMiscloselyrelatedtothewavelet(cid:3) realistic for certain types of tra(cid:6)c(cid:2) for instance when the stan(cid:3) basedconstructionoffBm(cid:23)fGn(cid:2)havingasfewparameters(cid:4)mean(cid:2) dard deviation of the data exceeds the mean(cid:7) In this case(cid:2) the variance(cid:2) H(cid:5)(cid:7) However(cid:2) the MWM framework boasts the (cid:28)exi(cid:3) fBm(cid:23)fGn(cid:23)WIG output signals take on a considerable number of bility to additionally match the short(cid:3)term correlations like the negative values (cid:4)see Figure (cid:0)(cid:5)(cid:7) WIG model(cid:7) Third(cid:2) in many networking applications(cid:2) we are nowhere near The MWM has a bursty demeanor that matches that of real the Gaussian limit(cid:2) in particular on small time scales(cid:7) Indeed(cid:2) tra(cid:6)c much more closely than fBm(cid:23)fGn(cid:7) The TCP tra(cid:6)c we variousauthorshaveobservedmarginalsthatdi(cid:8)ersubstantially have studied here exhibits local scaling similar to (cid:4)(cid:17)(cid:5)(cid:2) but with fromGaussian(cid:7) Usuallythesedistributionshavebeenobservedto an exponent Ht that depends on t(cid:7) This has been termed mul(cid:2) be heavy tailed (cid:14)(cid:16)(cid:20)(cid:2) p(cid:7) (cid:17)(cid:24)(cid:30)(cid:15)(cid:2) (cid:14)(cid:16)(cid:0)(cid:15)(cid:7) Consequently(cid:2) methods aimed tifractal behavior and was reported for the (cid:11)rst time in (cid:14)(cid:16)(cid:19)(cid:15) and at(cid:11)ttingmarginalshavebeendeveloped(cid:14)(cid:16)(cid:16)(cid:2)(cid:16)(cid:17)(cid:15)(cid:7) Also(cid:2)morever(cid:3) subsequently in (cid:14)(cid:16)(cid:24)(cid:18)(cid:16)(cid:27)(cid:15)(cid:7) Amazingly(cid:2) the statistical properties of satile models such as fractional ARIMA (cid:14)(cid:16)(cid:30)(cid:15) have been applied Ht asarandomvariableintcanbedescribedcompactlythrough towardsbettermatching theshort(cid:3)rangeandlong(cid:3)rangecorrela(cid:3) a function T(cid:4)q(cid:5) that controls the scaling behavior of the sample tion structure present in real traces(cid:7) momentsoforderq(cid:7) Thispowerfulrelation(cid:2)calledthe multifrac(cid:2) In this paper(cid:2) we propose a new non(cid:3)linear model for network talformalism(cid:2)tiesburstiness(cid:2)higher(cid:3)orderdependencestructure(cid:2) tra(cid:6)c data(cid:7) The multifractal wavelet model (cid:4)MWM(cid:5) is based on and moments of marginalstogether in one uni(cid:11)ed theory(cid:7) a multiplicative cascade in the wavelet domain that by design Fitting the MWM to real tra(cid:6)c traces results in an excellent guarantees a positive output(cid:7) Since each sample of the MWM match(cid:2) far better than the WIG model(cid:2) visually (cid:4)see Figure (cid:0)(cid:5) process is obtained as a product of several positive independent and(cid:2) as we will see(cid:2) in the multifractal partition function T(cid:4)q(cid:5)(cid:2) randomvariables(cid:2)theMWM(cid:12)smarginaldensityisapproximately the burstiness as measured by the multifractal spectrum(cid:2) the lognormal(cid:2) a heavier(cid:3)tailed distribution than the Gaussian(cid:7) The marginals(cid:2)and the queueing behavior(cid:7) Since these propertiesall MWM is thus a more natural (cid:11)t for positive arrival processes(cid:2) dependonthesmalltime(cid:3)scalebehavior(cid:2)itappearsthatthemul(cid:3) especially those with a standard deviation much larger than the tiplicativeMWMapproachismoreappropriatethan anadditive mean (cid:4)as observed in the traces we have studied(cid:5)(cid:7) Gaussian one(cid:7) Ribeiro et al(cid:2)(cid:2) Simulation of nonGaussian Long(cid:3)Range(cid:3)Dependent Traffic (cid:17) In this paper(cid:2) we summarize the impact of LRD on network(cid:3) with (cid:8) a positive constant that depends on the service rate at ing in Section (cid:16)(cid:7) After introducing the wavelet transform and the queue (cid:14)(cid:0)(cid:20)(cid:2)(cid:0)(cid:0)(cid:15)(cid:7) The decay of the tail queue distribution for describing the WIG model in Section (cid:17)(cid:2) we derive the MWM in fGn with H (cid:2) (cid:0)(cid:7)(cid:16) is much slower than the exponential decay Section (cid:30)(cid:7) Section (cid:19) reports on the results of simulation exper(cid:3) predicted by short(cid:3)range dependent (cid:4)SRD(cid:5) classical models (cid:14)(cid:16)(cid:15)(cid:7) iments with real data traces(cid:7) We give an intuitive introduction This corresponds to the case H (cid:21)(cid:0)(cid:7)(cid:16)(cid:7) to multifractal cascades in Section (cid:24) and close with conclusions Even though (cid:4)(cid:24)(cid:5) shows that LRD processes have higher tail in Section (cid:25)(cid:7) queueprobabilitiesthan SRD processes(cid:2)thereis still anongoing discussion on the e(cid:8)ect of LRD on queuing(cid:2) with researchers arguing both for and against its importance (cid:14)(cid:0)(cid:25)(cid:18)(cid:0)(cid:27)(cid:2)(cid:17)(cid:16)(cid:18)(cid:17)(cid:30)(cid:15)(cid:7) (cid:3) Long(cid:4)range Dependence in Network Tra(cid:5)c (cid:6) Wavelets and LRD Processes The discovery of LRD in data tra(cid:6)c (cid:14)(cid:0)(cid:2)(cid:0)(cid:30)(cid:15) has incited a revo(cid:3) lution in network design(cid:2) control and modeling(cid:7) Intuitively(cid:2) the (cid:7)(cid:2)(cid:3) Wavelet transform strong correlations present in a LRD process are responsible for Thediscretewavelettransformprovidesamultiscalesignalrepre(cid:3) its (cid:9)bursty(cid:10) nature(cid:7) Thus(cid:2) LRD tra(cid:6)c arrives in bursts that(cid:2) sentationofaone(cid:3)dimensionalsignalc(cid:4)t(cid:5) interms ofshiftedand upon entering a queue(cid:2) cause excessive bu(cid:8)er over(cid:28)ows that are dilated versions of a prototype bandpass wavelet function (cid:9)(cid:4)t(cid:5) notpredictedbytraditionalnon(cid:3)LRDtra(cid:6)cmodelssuchasPois(cid:3) and shifted versions of a lowpass scaling function (cid:10)(cid:4)t(cid:5) (cid:14)(cid:17)(cid:19)(cid:15)(cid:7) For son and Markovmodels (cid:14)(cid:16)(cid:15)(cid:7) special choices of the wavelet and scaling functions(cid:2) the atoms j(cid:3)(cid:0) j (cid:0)(cid:2)(cid:3) Long(cid:4)range dependence (cid:5)LRD(cid:6) (cid:9)j(cid:2)k(cid:4)t(cid:5) (cid:0) (cid:16) (cid:9) (cid:16) t(cid:2)k (cid:3) Consider a discrete(cid:3)time(cid:2) wide(cid:3)sense stationary random pro(cid:3) (cid:10)j(cid:2)k(cid:4)t(cid:5) (cid:0) (cid:16)j(cid:3)(cid:0) (cid:10)(cid:2)(cid:16)jt(cid:2)k(cid:3)(cid:3) j(cid:3)k (cid:4)ZZ (cid:4)(cid:25)(cid:5) cess fXt(cid:3) t (cid:4) ZZg with auto(cid:3)covariance function rX(cid:14)k(cid:15) (cid:21) (cid:2) (cid:3) formanorthonormalbasis(cid:2)andwehavethesignalrepresentation cov(cid:4)Xt(cid:3)Xt(cid:2)k(cid:5)(cid:7) A change in time scale can be represented by (cid:3)m(cid:4) (cid:14)(cid:17)(cid:19)(cid:15) forming the aggregate process Xt (cid:2) which is obtained by aver(cid:3) agingXt overnon(cid:3)overlappingblocksoflength m replacingeach (cid:2) block by its mean c(cid:4)t(cid:5) (cid:21) uJ(cid:0)(cid:2)k(cid:10)J(cid:0)(cid:2)k(cid:4)t(cid:5) (cid:22) wj(cid:2)k(cid:9)j(cid:2)k(cid:4)t(cid:5)(cid:3) (cid:4)(cid:26)(cid:5) Xk jX(cid:6)J(cid:0)Xk (cid:3)m(cid:4) Xtm(cid:0)m(cid:2)(cid:5)(cid:22)(cid:5)(cid:5)(cid:5)(cid:22)Xtm Xt (cid:21) m (cid:5) (cid:4)(cid:30)(cid:5) (cid:3) (cid:3) with wj(cid:2)k (cid:0) c(cid:4)t(cid:5)(cid:9)j(cid:2)k(cid:4)t(cid:5)dt(cid:2) and uJ(cid:0)(cid:2)k (cid:0) c(cid:4)t(cid:5)(cid:10)J(cid:0)(cid:2)k(cid:4)t(cid:5)dt(cid:7) Denotetheauto(cid:3)covarianceofXt(cid:3)m(cid:4) byrX(cid:3)m(cid:4)(cid:14)k(cid:15)(cid:7) TheprocessX is Without loss ofRgenerality(cid:2) we will assume J(cid:7) (cid:21)R(cid:20)(cid:7) said to exhibit LRD if its auto(cid:3)covariance decays slowly enough In this representation(cid:2) k indexes the spatial location of anal(cid:3) (cid:2) to render k(cid:6)(cid:0)(cid:2)rX(cid:14)k(cid:15) in(cid:11)nite (cid:14)(cid:17)(cid:20)(cid:15)(cid:7) Equivalently(cid:2) the power ysis and j indexes the scale or resolution of analysis (cid:31) larger (cid:3)m(cid:4) j corresponds to higher resolution with j (cid:21) (cid:20) indicating the spectrum SPX(cid:4)f(cid:5) is singular near f (cid:21) (cid:20) and m rX (cid:14)(cid:20)(cid:15) (cid:6) (cid:7) coarsest scale or lowest resolution of analysis(cid:7) In practice(cid:2) we as m (cid:6) (cid:7)(cid:7) work with a sampled or (cid:11)nite(cid:3)resolution representation of c(cid:4)t(cid:5)(cid:2) An important class of LRD processes are the asymptotically replacing the semi(cid:3)in(cid:11)nite sum in (cid:4)(cid:26)(cid:5) with a sum over a (cid:11)nite second(cid:2)order self(cid:2)similar processes(cid:2) which maybe de(cid:11)ned by the (cid:0)H(cid:0)(cid:0) number of scales (cid:20) (cid:10) j (cid:10) n(cid:2)(cid:0)(cid:3) n (cid:4)ZZ(cid:7) Using (cid:11)lter bank tech(cid:3) property rX(cid:14)k(cid:15) (cid:8) k for some H (cid:4) (cid:4)(cid:0)(cid:7)(cid:16)(cid:3)(cid:0)(cid:5)(cid:2) or equivalently niques(cid:2) the wavelettransformandinversewavelettransformcan by (cid:14)(cid:17)(cid:20)(cid:15) (cid:3)m(cid:4) (cid:3)m(cid:4) (cid:0)H(cid:0)(cid:0) becomputedinO(cid:4)N(cid:5)operationsforalength(cid:3)N signal(cid:7) Formore var(cid:4)X (cid:5)(cid:21)rX (cid:14)(cid:20)(cid:15)(cid:6)m (cid:4)(cid:19)(cid:5) information on wavelet systems and their construction(cid:2) see (cid:14)(cid:17)(cid:19)(cid:15)(cid:7) asm(cid:6)(cid:7)(cid:7) Inwords(cid:2)theseprocesses(cid:9)looksimilar(cid:10)onallscales(cid:2) In the Haar wavelet transform (cid:4)see Figure (cid:16)(cid:5)(cid:2) the prototype at least from point of view of second(cid:3)order statistics(cid:7) The fGn(cid:2) scaling and wavelet functions are given by issuch aprocesswhere the Hurst parameter H is the same as in (cid:4)(cid:0)(cid:5)(cid:7) (cid:0)(cid:3) (cid:20)(cid:10)t(cid:6)(cid:0)(cid:7)(cid:16) (cid:0)(cid:3) (cid:20)(cid:10)t(cid:6)(cid:0) To estimate H by the variance(cid:2)time plot method(cid:2) we (cid:11)t a (cid:10)(cid:4)t(cid:5)(cid:21) and (cid:9)(cid:4)t(cid:5)(cid:21)(cid:5) (cid:2)(cid:0)(cid:3) (cid:0)(cid:7)(cid:16)(cid:10)t(cid:6)(cid:0) straight line through the plot of an estimate of logvar(cid:4)X(cid:3)m(cid:4)(cid:5) (cid:4) (cid:20)(cid:3) else (cid:6) (cid:20)(cid:3) else(cid:7) against log(cid:4)m(cid:5)(cid:7) More reliable estimators have also been de(cid:3) (cid:7) TheHaarscalingandwaveletcoe(cid:6)cientscanberecursivelycom(cid:3) vised (cid:14)(cid:16)(cid:30)(cid:15)(cid:2) in particular an unbiased one based on wavelets (cid:14)(cid:17)(cid:0)(cid:15)(cid:7) puted via (cid:14)(cid:17)(cid:19)(cid:15) (cid:0)(cid:2)(cid:0) Impact of LRD on networking uj(cid:0)(cid:5)(cid:2)k (cid:21) (cid:16)(cid:0)(cid:5)(cid:3)(cid:0)(cid:4)uj(cid:2)(cid:0)k(cid:22)uj(cid:2)(cid:0)k(cid:2)(cid:5)(cid:5)(cid:3) (cid:0)(cid:5)(cid:3)(cid:0) (cid:4)(cid:27)(cid:5) Thepre(cid:3)eminentLRDmodelatpresentisthefGn(cid:7) Itspopularity wj(cid:0)(cid:5)(cid:2)k (cid:21) (cid:16) (cid:4)uj(cid:2)(cid:0)k(cid:2)uj(cid:2)(cid:0)k(cid:2)(cid:5)(cid:5)(cid:5) stemsfromthefactthatitisasecond(cid:3)orderself(cid:3)similarGaussian process (cid:4)(cid:16)(cid:5)(cid:2) and thus is analytically tractable(cid:7) In addition(cid:2) it is (cid:7)(cid:2)(cid:0) Modeling LRD data completely described by just two parameters (cid:31) variance and Wavelets serve as an approximate Karhunen(cid:3)Lo eve or decorre(cid:3) H(cid:7) When fGn is input to an in(cid:11)nite(cid:3)length queue with constant lating transform for fBm (cid:14)(cid:24)(cid:15)(cid:2) fGn(cid:2) and more general LRD sig(cid:3) service rate(cid:2) the tail queue distributions decay asymptotically nals (cid:14)(cid:17)(cid:24)(cid:15)(cid:7) Hence(cid:2) modelingand processingof these signalsin the with a Weibullian law wavelet domain is often more e(cid:6)cient and powerful than in the (cid:0)(cid:0)(cid:0)H P(cid:14)Q(cid:2)x(cid:15)(cid:9)exp(cid:4)(cid:2)(cid:8)x (cid:5)(cid:3) (cid:4)(cid:24)(cid:5) time domain(cid:7) (cid:30) Proceedings SigMetrics (cid:4)(cid:5)(cid:5)(cid:6) Atlanta(cid:6) GA φ (t) j,k j/2 U 2 j,k U W j,k j,k 0 k2-j (k+1)2-j U U j+1,2k j+1,2k+1 ψ (t) j/2 j,k 1 1 2 √2 √2 0 k2-j (k+1)2-j Uj+2,4k Uj+2,4k+1 Uj+2,4k+2 Uj+2,4k+3 Uj+1,2k Uj+1,2k+1 (cid:4)a(cid:5) (cid:4)b(cid:5) (cid:4)c(cid:5) Figure (cid:16)(cid:29) (cid:4)a(cid:5) TheHaarscaling andwaveletfunctions(cid:0)j(cid:2)k(cid:10)t(cid:11)and(cid:2)j(cid:2)k(cid:10)t(cid:11)(cid:14) (cid:4)b(cid:5)Binarytreeofscalingcoe(cid:6)cients fromcoarse to(cid:15)nescales(cid:14) (cid:4)c(cid:5) Recursiveschemefor calculating theHaar scaling coe(cid:6)cients Uj(cid:0)(cid:2)(cid:2)(cid:3)k and Uj(cid:0)(cid:2)(cid:2)(cid:3)k(cid:0)(cid:2) at scale j(cid:12)(cid:3) as sums and di(cid:3)erences of thescaling and wavelet coe(cid:6)cients Uj(cid:2)k andWj(cid:2)k atscale j (cid:4)normalizedby(cid:3)(cid:3)p(cid:8)(cid:5)(cid:14) FortheWIG model(cid:12) theWj(cid:2)k(cid:16)saremutuallyindependentandidentically (cid:3) distributedwithin scale according to Wj(cid:2)k N(cid:10)(cid:4)(cid:4)(cid:5)j(cid:11)(cid:14) (cid:2) Thevarianceofthewaveletcoe(cid:6)cientsofcontinuous(cid:3)timefBm balance of this paper(cid:7) decayswith scaleaccordingtoapowerlawinH (cid:14)(cid:24)(cid:15)(cid:7) ForfGn(cid:2) an Since the scaling coe(cid:6)cients uj(cid:2)k represent the local mean of exact power(cid:3)law in H also holds for decay of the Haar wavelet the signal at di(cid:8)erent scales and shifts(cid:2) they are non(cid:3)negative if coe(cid:6)cient variances (cid:14)(cid:17)(cid:24)(cid:15)(cid:7) This power(cid:3)law decay(cid:2) along with the and only if the signal itself is non(cid:3)negative! that is(cid:2) c(cid:4)t(cid:5) (cid:11) (cid:20) (cid:12) decorrelation property of wavelets(cid:2) has led to fast(cid:2) robust algo(cid:3) uj(cid:2)k (cid:11)(cid:20)(cid:3) (cid:13)j(cid:3)k(cid:7) Thisconditionleadsusdirectlytoconstraintson rithms for estimation (cid:14)(cid:17)(cid:24)(cid:2)(cid:17)(cid:25)(cid:15)(cid:7) the Haar wavelet coe(cid:6)cients(cid:7) Solving (cid:4)(cid:27)(cid:5) for uj(cid:2)(cid:0)k and uj(cid:2)(cid:0)k(cid:2)(cid:5)(cid:2) GaussianLRDprocessescanbeapproximatelysynthesizedby we (cid:11)nd (cid:0)(cid:5)(cid:3)(cid:0) generating wavelet coe(cid:6)cients as independent zero(cid:3)mean Gaus(cid:3) uj(cid:2)(cid:0)k (cid:21) (cid:16) (cid:4)uj(cid:0)(cid:5)(cid:2)k(cid:22)wj(cid:0)(cid:5)(cid:2)k(cid:5)(cid:3) (cid:0)(cid:5)(cid:3)(cid:0) (cid:4)(cid:0)(cid:20)(cid:5) sian random variables(cid:2) identically distributed within scale ac(cid:3) uj(cid:2)(cid:0)k(cid:2)(cid:5) (cid:21) (cid:16) (cid:4)uj(cid:0)(cid:5)(cid:2)k(cid:2)wj(cid:0)(cid:5)(cid:2)k(cid:5)(cid:3) (cid:0) (cid:5) (cid:0) cordingtoWj(cid:2)k (cid:8)N(cid:4)(cid:20)(cid:3)(cid:4)j(cid:5)(cid:2) with(cid:4)j thewavelet(cid:3)coe(cid:6)cientvari(cid:3) which corresponds to moving down the tree in Figure (cid:16)(cid:4)b(cid:5) one ance at scale j (cid:14)(cid:0)(cid:19)(cid:15)(cid:7) scale level at a time(cid:7) (cid:0) A power(cid:3)law decay for the (cid:4)j(cid:12)s leads to approximate wavelet Now(cid:2) combining (cid:4)(cid:0)(cid:20)(cid:5) with the constraint uj(cid:2)k (cid:11) (cid:20)(cid:2) we obtain synthesis of fBm or fGn (cid:14)(cid:24)(cid:15)(cid:7) However(cid:2) while networktra(cid:6)c may the condition exhibit LRD consistent with fBm or fGn(cid:2) it may have short(cid:3) term correlations that vary considerably from pure fBm or fGn c(cid:4)t(cid:5)(cid:11)(cid:20)(cid:12)jwj(cid:2)kj(cid:10)uj(cid:2)k(cid:3) (cid:13) j(cid:3)k(cid:5) (cid:4)(cid:0)(cid:0)(cid:5) (cid:0) scaling(cid:7) Such LRD processes can be modeled by setting (cid:4)j to matchthe measuredor theoreticalvariancesofthe wavelet coef(cid:3) (cid:7) Multifractal Wavelet Model (cid:11)cients of the desired process (cid:14)(cid:0)(cid:19)(cid:15)(cid:7) We call the resulting model thewavelet(cid:3)domainindependentGaussian(cid:4)WIG(cid:5)model(cid:14)(cid:0)(cid:19)(cid:15)(cid:4)see Letussummarizeourbasicwavelet(cid:3)basedapproachformodeling Figure(cid:16)(cid:4)c(cid:5)(cid:5)(cid:7) Foralength(cid:3)N signal(cid:2)theWIGischaracterizedby nonGaussian LRD network tra(cid:6)c(cid:7) As with the WIG we will approximatelylog(cid:0)N parameters(cid:7) characterize the Haar wavelet variance decay as a function of The WIG model assumes Gaussianity even though network scale to capture the short(cid:3)range and long(cid:3)range correlations(cid:7) In tra(cid:6)c signals (cid:4)such as loads and interarrival times(cid:5) can be contrasttotheWIG(cid:2)wewillenforcetheconstraint(cid:4)(cid:0)(cid:0)(cid:5)toensure highly nonGaussian(cid:7) Not only are these signals strictly non(cid:3) the non(cid:3)negativity of the model output(cid:7) negative(cid:2) but they can exhibit (cid:9)spiky(cid:10) behavior corresponding To keep things clear(cid:2) we will introduce three di(cid:8)erent pro(cid:3) to a marginal distribution whose right(cid:3)side tail decays much cesses(cid:29) the continuous(cid:3)time model output c(cid:4)t(cid:5)(cid:2) its integral D(cid:4)t(cid:5)(cid:2) more slowly than that of a Gaussian(cid:7) We seek a more accurate and a discrete(cid:3)time approximationC(cid:14)k(cid:15) to c(cid:4)t(cid:5)(cid:7) These three sig(cid:3) marginalcharacterizationforthesespiky(cid:2)non(cid:3)negativeLRDpro(cid:3) nals are related by cesses(cid:2)yetwishtoretainthedecorrelatingpropertiesofwavelets (cid:0)n and the simplicity of the WIG model(cid:7) (cid:3)k(cid:2)(cid:5)(cid:4)(cid:0) n n C(cid:14)k(cid:15)(cid:0) c(cid:4)t(cid:5)dt(cid:21)D(cid:4)(cid:4)k(cid:22)(cid:0)(cid:5)(cid:16) (cid:5)(cid:2)D(cid:4)k(cid:16) (cid:5)(cid:5) (cid:4)(cid:0)(cid:16)(cid:5) Zk(cid:0)(cid:0)n (cid:7)(cid:2)(cid:7) Modeling non(cid:4)negative data with the Haar Here(cid:2)c(cid:4)t(cid:5)andD(cid:4)t(cid:5)playr(cid:13)olesanalogoustofGnandfBm(cid:2)respec(cid:3) wavelet tively(cid:7) In order to model non(cid:3)negative signals using the wavelet trans(cid:3) For notational simplicity(cid:2) we will assume that both c(cid:4)t(cid:5) and n form(cid:2) we must develop conditions on the scaling and wavelet D(cid:4)t(cid:5) live on (cid:14)(cid:20)(cid:3)(cid:0)(cid:15) and that C(cid:14)k(cid:15) is a length(cid:3)(cid:16) discrete(cid:3)time sig(cid:3) coe(cid:6)cient values for c(cid:4)t(cid:5) in (cid:4)(cid:26)(cid:5) to be non(cid:3)negative(cid:7) While cum(cid:3) nal(cid:7) Thus(cid:2) there is only one scaling coe(cid:6)cient U(cid:7)(cid:2)(cid:7) in (cid:4)(cid:26)(cid:5)(cid:7) (cid:4)A (cid:0) bersomefor ageneralwaveletsystem(cid:2) theseconditionsaresim(cid:3) more general case is treated in (cid:14)(cid:16)(cid:27)(cid:15)(cid:7)(cid:5) We will primarily focus on plefortheHaarsystem(cid:4)seeFigure(cid:16)(cid:5)(cid:2) onwhichwefocusforthe C(cid:14)k(cid:15)(cid:7) (cid:2) For the Haar wavelet transform(cid:2) C(cid:14)k(cid:15) relates directly to the We usecapital letterswhen weconsider the underlying variablesto be (cid:11)nest(cid:3)scale scaling coe(cid:6)cients(cid:29) random(cid:3) (cid:3) Theconditionsarestraightforwardalsoforcertainbiorthogonalwavelet n(cid:3)(cid:0) n systems(cid:3) C(cid:14)k(cid:15) (cid:21) (cid:16) Un(cid:2)k(cid:3) k (cid:21)(cid:20)(cid:3)(cid:0)(cid:3)(cid:5)(cid:5)(cid:5)(cid:16) (cid:2)(cid:0)(cid:5) (cid:4)(cid:0)(cid:17)(cid:5) Ribeiro et al(cid:2)(cid:2) Simulation of nonGaussian Long(cid:3)Range(cid:3)Dependent Traffic (cid:19) A U j,k W j,k j,k Table (cid:0)(cid:29) Comparisonofthetree(cid:2)basedWIGandMWMmodels(cid:14) For approximating a signal with a strict fGn covariance structure(cid:12) both the WIG and MWM require only three parameters (cid:4)mean(cid:12) variance(cid:12) and H(cid:5)(cid:14) WIG MWM Additive Multiplicative 1 1 Gaussian Asymptotically Lognormal √2 √2 LRD matched LRD matched U U Monofractal Multifractal j+1,2k j+1,2k+1 log(cid:0)N (cid:22)(cid:16) parameters log(cid:0)N (cid:22)(cid:16) parameters O(cid:4)N(cid:5) synthesis O(cid:4)N(cid:5) synthesis Figure (cid:17)(cid:29) MWM construction(cid:17) At scale j(cid:12) generate the multiplier This result can be derived by iteratively applying (cid:4)(cid:0)(cid:19)(cid:5) (cid:14)(cid:16)(cid:27)(cid:15)(cid:7) Aj(cid:2)k (cid:6)(cid:10)pj(cid:4)pj(cid:11)(cid:12)andthenformthewaveletcoe(cid:6)cient as theproduct (cid:2) Sincethescalingcoe(cid:6)cientsaregeneratedsimultaneouslywith Wj(cid:2)k (cid:13)Aj(cid:2)kUj(cid:2)k(cid:14) Atscalej(cid:12)(cid:3)ofthistree(cid:12)formthescalingcoe(cid:6)cients the wavelet coe(cid:6)cients(cid:2) there is no need to invert the wavelet inthesame manneras theWIGmodel in Figure (cid:18)(cid:14) transform(cid:7) The (cid:11)nest(cid:3)scale scaling coe(cid:6)cients Un(cid:2)k are in fact the MWM output process (cid:4)(cid:0)(cid:17)(cid:5)(cid:7) The total cost for computing N (cid:8)(cid:2)(cid:3) The model MWM signal samples is O(cid:4)N(cid:5)(cid:7) In fact(cid:2) synthesis of a trace of (cid:5)(cid:8) length (cid:16) data points takes just (cid:26) seconds of workstation cpu The positivity constraints (cid:4)(cid:0)(cid:0)(cid:5) on the Haar wavelet coe(cid:6)cients time(cid:7) suggest a very simple multiscale(cid:2) multiplicative signal model for positiveprocesses(cid:7) In the multifractal wavelet model (cid:4)MWM(cid:5) we compute the wavelet coe(cid:6)cients recursively by (cid:8)(cid:2)(cid:0) (cid:0) multipliers All that remainsis to choosean appropriatedistribution for the Wj(cid:2)k (cid:21)Aj(cid:2)k Uj(cid:2)k(cid:3) (cid:4)(cid:0)(cid:30)(cid:5) multipliers Aj(cid:2)k(cid:7) For simplicity of development(cid:2) we will assume that the Aj(cid:2)k(cid:12)s are mutually independent and independent of with Aj(cid:2)k a random variable supported on the interval (cid:14)(cid:2)(cid:0)(cid:3)(cid:0)(cid:15)(cid:7) Uj(cid:2)k(cid:7) We will also assume that the Aj(cid:2)k(cid:12)s are symmetric about Together with (cid:4)(cid:0)(cid:20)(cid:5)(cid:2) we obtain (cid:4)see Figure (cid:17)(cid:5) (cid:20) and identically distributed within scale! it iseasily shown that (cid:0)(cid:5)(cid:3)(cid:0) these two conditions are necessary for the resulting process to Uj(cid:2)(cid:0)k (cid:21) (cid:16) (cid:4)(cid:0)(cid:22)Aj(cid:2)(cid:5)(cid:2)k(cid:5)Uj(cid:0)(cid:5)(cid:2)k(cid:3) (cid:0)(cid:5)(cid:3)(cid:0) (cid:4)(cid:0)(cid:19)(cid:5) be (cid:11)rst(cid:3)order stationary (cid:14)(cid:16)(cid:27)(cid:15)(cid:7) This leads us to the choice of the Uj(cid:2)(cid:0)k(cid:2)(cid:5) (cid:21) (cid:16) (cid:4)(cid:0)(cid:2)Aj(cid:2)(cid:5)(cid:2)k(cid:5)Uj(cid:0)(cid:5)(cid:2)k(cid:5) symmetric beta distribution(cid:3) (cid:11)(cid:4)p(cid:3)p(cid:5) (cid:4)see Figure (cid:30)(cid:5) for the Aj(cid:2)k(cid:12)s See(cid:14)(cid:17)(cid:26)(cid:15)forasimilarmodelusedasanintensitypriorforwavelet(cid:3) Aj(cid:2)k (cid:8)(cid:11)(cid:4)pj(cid:3)pj(cid:5)(cid:3) (cid:4)(cid:0)(cid:26)(cid:5) based image estimation(cid:7) TogeneratearealizationofanMWM process(cid:2)weperformthe with pj the beta parameter at scale j(cid:7) The beta distribution following coarse(cid:3)to(cid:3)(cid:11)nesynthesis(cid:29) is compactly supported(cid:2) easily shaped(cid:2) and amenable to closed(cid:3) formcalculations(cid:7) ThevarianceofarandomvariableA(cid:8)(cid:11)(cid:4)p(cid:3)p(cid:5) (cid:0)(cid:7) Set j (cid:21) (cid:20)(cid:7) Fix or compute the coarsest (cid:4)root(cid:5) scaling coef(cid:3) is (cid:11)cient U(cid:7)(cid:2)(cid:7)(cid:2) establishing the global mean of the signal(cid:7) (cid:0) var(cid:14)A(cid:15)(cid:21) (cid:5) (cid:4)(cid:0)(cid:27)(cid:5) (cid:16)p(cid:22)(cid:0) (cid:16)(cid:7) At scale j(cid:2) generate the random multipliers Aj(cid:2)k and calcu(cid:3) late each Wj(cid:2)k via (cid:4)(cid:0)(cid:30)(cid:5) for k (cid:21)(cid:20)(cid:3)(cid:5)(cid:5)(cid:5)(cid:3)(cid:16)j (cid:2)(cid:0)(cid:7) IntheMWM(cid:2)thepj playar(cid:13)oleanalogoustothe(cid:4)j(cid:0)oftheWIG model(cid:7) With one beta parameter per wavelet scale(cid:2) the MWM (cid:17)(cid:7) At scale j(cid:2) use Uj(cid:2)k and Wj(cid:2)k in (cid:4)(cid:0)(cid:20)(cid:5) to calculate Uj(cid:2)(cid:5)(cid:2)(cid:0)k uses approximately log(cid:0)N parameters for a trace of length N(cid:7) and Uj(cid:2)(cid:5)(cid:2)(cid:0)k(cid:2)(cid:5)(cid:2) the scaling coe(cid:6)cients at scale j (cid:22) (cid:0)(cid:2) for Distributions with more parameters (cid:4)e(cid:7)g(cid:7)(cid:2) discrete distributions j k(cid:21)(cid:20)(cid:3)(cid:5)(cid:5)(cid:5)(cid:3)(cid:16) (cid:2)(cid:0)(cid:7) or mixtures of betas(cid:5) could be used to capture high(cid:3)order data momentsatacostofincreasedmodelcomplexity(cid:14)(cid:16)(cid:27)(cid:15)(cid:7) SeeTable (cid:30)(cid:7) Iterate steps (cid:16) and (cid:17)(cid:2) replacing j by j (cid:22)(cid:0) until the (cid:11)nest (cid:0) for a comparison of the WIG and MWM properties(cid:7) scale j (cid:21)n is reached(cid:7) We can express the signal C(cid:14)k(cid:15) directly as a product (cid:4)or cas(cid:3) (cid:8)(cid:2)(cid:7) Covariance matching cade(cid:5)oftherandommultipliers(cid:0)(cid:14)Aj(cid:2)k(cid:7) Decomposingeachshift n(cid:0)(cid:5) (cid:4) n(cid:0)(cid:5)(cid:0)i Thepj(cid:12)sallowustocontrolthewaveletenergydecayacrossscale(cid:2) k into a binary expansion k (cid:21) i(cid:6)(cid:7) ki(cid:16) (cid:2) we can write since (cid:0)n(cid:3)(cid:0) (cid:0)n Pn(cid:0)(cid:5)(cid:4)(cid:0)(cid:22)(cid:4)(cid:2)(cid:0)(cid:5)ki(cid:2)Ai(cid:2)ki(cid:5) var(cid:4)Wj(cid:0)(cid:5)(cid:2)k(cid:5) (cid:21) (cid:16)var(cid:14)Aj(cid:0)(cid:5)(cid:2)k(cid:15) (cid:21) (cid:16)pj (cid:22)(cid:0) (cid:5) (cid:4)(cid:16)(cid:20)(cid:5) C(cid:14)k(cid:15)(cid:21)(cid:16) Un(cid:2)k (cid:21)(cid:16) U(cid:7)(cid:2)(cid:7) (cid:3) (cid:4)(cid:0)(cid:24)(cid:5) var(cid:4)Wj(cid:2)k(cid:5) var(cid:14)Aj(cid:2)k(cid:15) (cid:4)(cid:0)(cid:22)var(cid:14)Aj(cid:0)(cid:5)(cid:2)k(cid:15)(cid:5) pj(cid:0)(cid:5)(cid:22)(cid:0) (cid:16) iY(cid:6)(cid:7) Thus(cid:2) to model a given process with the MWM(cid:2) we can select with the pj(cid:12)s to match the signal(cid:12)stheoretical wavelet(cid:3)domainenergy i(cid:0)(cid:5) decay(cid:7) Or(cid:2) given training data(cid:2) we can select the parameters k(cid:7) (cid:0)(cid:20)(cid:3) and ki (cid:21) ki(cid:4)(cid:16)i(cid:0)(cid:5)(cid:0)j(cid:3) i(cid:21)(cid:0)(cid:3)(cid:5)(cid:5)(cid:5)(cid:3)n(cid:2)(cid:0)(cid:5) (cid:4)(cid:0)(cid:25)(cid:5) to match the sample variances of the wavelet coe(cid:6)cients as a Xj(cid:6)(cid:7) function of scale(cid:7) (cid:24) Proceedings SigMetrics (cid:4)(cid:5)(cid:5)(cid:6) Atlanta(cid:6) GA 4 p=0.2 The second real data set is one of the famous Ethernet data p=1 3 p=2 traces collected at Bellcore Morristown Research and Engineer(cid:3) → p=10 A ing facility (cid:14)(cid:0)(cid:15)(cid:7) The trace (cid:4)BC(cid:3)pAug(cid:26)(cid:27)(cid:5) began at (cid:0)(cid:0)(cid:29)(cid:16)(cid:19) on Au(cid:3) of 2 df gust(cid:16)(cid:27)(cid:2)(cid:0)(cid:27)(cid:26)(cid:27)(cid:2)andranforabout(cid:17)(cid:0)(cid:30)(cid:16)(cid:7)(cid:26)(cid:16)seconds(cid:4)until(cid:0)(cid:2)(cid:20)(cid:20)(cid:20)(cid:2)(cid:20)(cid:20)(cid:20) p 1 packets had been captured(cid:5)(cid:7) As in the case of the LBL(cid:3)TCP(cid:3)(cid:17) data set(cid:2) we obtain a data trace by summing the bytes of pack(cid:3) 0 −1 −0.5 0 0.5 1 ets that arrived in consecutive time intervals of (cid:16)(cid:5)(cid:24) ms(cid:7) We use a → (cid:0)(cid:7) the (cid:11)rst (cid:16) data points of this trace in our experiments(cid:7) This Figure (cid:30)(cid:29) Probability density function of a (cid:6)(cid:10)p(cid:4)p(cid:11) random variable trace has mean (cid:17)(cid:30)(cid:19)(cid:7)(cid:26) bytes(cid:23)(cid:4)unit time(cid:5) and standard deviation A(cid:14) For p (cid:13) (cid:4)(cid:7)(cid:8)(cid:12) A resembles a binomial random variable(cid:12) and for (cid:25)(cid:20)(cid:17)(cid:7)(cid:30)bytes(cid:23)(cid:4)unit time(cid:5)(cid:7) TheBC(cid:3)pAug(cid:26)(cid:27)traceisapproximately p(cid:13) (cid:3) it has a uniform density(cid:14) For p (cid:8)(cid:3) the density appears like a a second(cid:3)order self similar process with H (cid:21)(cid:20)(cid:5)(cid:25)(cid:27) (cid:14)(cid:17)(cid:25)(cid:15)(cid:7) truncatedGaussian density(cid:12) andas pincreases(cid:12) thedensityresembles a Gaussian densitymore and moreclosely(cid:14) (cid:9)(cid:2)(cid:0) Physical Interpretation The MWM multipliers have a simple interpretation as recur(cid:3) To complete the modeling(cid:2) we must choose the parameter p(cid:7) sively partitioning the arriving bytes into smaller and smaller of the model and characterize the distribution of the coarsest time intervals(cid:7) For instance(cid:2) the value U(cid:7)(cid:2)(cid:7) determines the total scaling coe(cid:6)cient U(cid:7)(cid:2)(cid:7)(cid:7) From (cid:4)(cid:0)(cid:30)(cid:5) and (cid:4)(cid:0)(cid:27)(cid:5) we obtain number of bytes in the entire trace(cid:7) The value A(cid:7)(cid:2)(cid:7) determines (cid:0) how many of these packets will be placed in the (cid:11)rst half of the (cid:4)(cid:16)p(cid:7)(cid:22)(cid:0)(cid:5)var(cid:4)W(cid:7)(cid:2)(cid:7)(cid:5)(cid:21)IE(cid:14)U(cid:7)(cid:2)(cid:7)(cid:15)(cid:3) (cid:4)(cid:16)(cid:0)(cid:5) trace(cid:7) The value A(cid:5)(cid:2)(cid:7) then determines how many of these bytes (cid:0) which allows us to obtain p(cid:7) from estimates of IE(cid:14)U(cid:7)(cid:2)(cid:7)(cid:15) and will be placed in the (cid:11)rst quarter of the trace(cid:2) and so on(cid:7) var(cid:4)W(cid:7)(cid:2)(cid:7)(cid:5)(cid:7) When trained on real network data(cid:2) the behavior of the mul(cid:3) To precisely model U(cid:7)(cid:2)(cid:7)(cid:2) we would have to use a strictly tipliers Aj(cid:2)k changes with scale(cid:2) with extremely low variance at non(cid:3)negative probability density function to ensure the non(cid:3) coarse scales and high variance at (cid:11)ne scales(cid:7) Amazingly(cid:2) this negativity of the MWM output(cid:7) However(cid:2) in practice a Gaus(cid:3) is consistent with both the small(cid:3)scale behavior of actual tra(cid:6)c sianmodelatthecoarsestscale(cid:4)requiringIE(cid:14)U(cid:7)(cid:2)(cid:7)(cid:15)andvar(cid:14)U(cid:7)(cid:2)(cid:7)(cid:15)(cid:5) and the large(cid:3)scale properties resulting from the superposition is usually su(cid:6)cient if enough scales are employed (cid:4)so that of a large number of souces (cid:14)(cid:25)(cid:2)(cid:26)(cid:15)(cid:7) At (cid:11)ne scales multiplicative IE(cid:14)U(cid:7)(cid:2)(cid:7)(cid:15)(cid:15) standard deviation of U(cid:7)(cid:2)(cid:7)(cid:5)(cid:7) schemes with large variances produce bursts like those in real data (cid:4)recall Figure (cid:0)(cid:5)(cid:7) At coarse scales(cid:2) the scaling coe(cid:6)cients (cid:4)which correspondto the arrivalof tra(cid:6)coverlargetime scales(cid:5) (cid:8) Experimental Results involve only a handful of low(cid:3)variance multipliers Aj(cid:2)k(cid:7) From (cid:4)(cid:0)(cid:19)(cid:5) we can write(cid:2) for example(cid:2) at the third(cid:3)coarsest scale(cid:29) In this section(cid:2) we perform experiments with real data traces to demonstratethe MWM(cid:12)s capacityto capture important proper(cid:3) fd U(cid:7)(cid:2)(cid:7) U(cid:0)(cid:2)(cid:7) (cid:21) (cid:4)(cid:0)(cid:22)A(cid:7)(cid:2)(cid:7)(cid:5)(cid:4)(cid:0)(cid:22)A(cid:5)(cid:2)(cid:7)(cid:5) ties of real data(cid:7) As expected(cid:2) the MWM does an excellent job (cid:16) in capturing the correlation structure of real data sets(cid:7) We also fd U(cid:7)(cid:2)(cid:7) observethattheMWMperformswellinmatchingthemarginals (cid:9) (cid:4)(cid:0)(cid:22)A(cid:7)(cid:2)(cid:7)(cid:22)A(cid:5)(cid:2)(cid:7)(cid:5) (cid:4)(cid:16)(cid:16)(cid:5) (cid:16) andhigher(cid:3)ordermomentsofrealdata(cid:7) RecallthattheGaussian WIGmodelisalsocapableofcapturingthecorrelationstructure Thus(cid:2) for a (cid:11)xed U(cid:7)(cid:2)(cid:7) at the coarsest scale(cid:2) to a (cid:11)rst(cid:3)order ap(cid:3) oftrainingdata(cid:7) Wethushavetwomodels(cid:2)bothofwhichcapture proximation(cid:2) the MWM is additive at the coarsescales provided the correlation structure of real data but with the MWM com(cid:3) therandomvariablesAj(cid:2)k aresmallin amplitude(cid:7) Moreover(cid:2)the ing closerto matchingthe marginalsand higher(cid:3)ordermoments(cid:7) Aj(cid:2)k are approximately Gaussian for these low(cid:3)variance (cid:4)high(cid:3) Equipped with these models(cid:2) we are in an excellent position to p(cid:5) symmetric (cid:11) multipliers (cid:14)(cid:17)(cid:27)(cid:15)(cid:7) Hence(cid:2) coarse(cid:3)resolutionMWM perform queuing experiments to study if the correlation struc(cid:3) outputs will exhibit an additive(cid:2) Gaussian(cid:3)like behavior consis(cid:3) tureis byitself su(cid:6)cienttocapturethe queuingbehaviorofreal tent with that of the previously justi(cid:11)ed ON(cid:23)OFF models and tra(cid:6)c(cid:7) notions of client behavior as a superposition of sources (cid:14)(cid:25)(cid:2)(cid:26)(cid:15)(cid:7) (cid:9)(cid:2)(cid:3) Real data (cid:9)(cid:2)(cid:7) Matching of Real Data Weuse twowell(cid:3)knownrealdatatracesinourexperiments(cid:7) The In order to study how well the MWM and WIG models can (cid:11)rst (cid:4)LBL(cid:3)TCP(cid:3)(cid:17)(cid:5) contains two hours(cid:12) worth of wide(cid:3)area TCP match real data(cid:2) we train them on the the real data traces(cid:7) To tra(cid:6)c between the Lawrence Berkeley Laboratory and the rest (cid:11)ttheWIGandMWMmodelstothedata(cid:2)weusetheprocedure of the world (cid:14)(cid:0)(cid:30)(cid:15)(cid:7) This data contains the following informa(cid:3) outlined in Sections (cid:17)(cid:7)(cid:16) and (cid:30)(cid:7)(cid:17)(cid:2) which involves taking a Haar tion about each packet(cid:29) the time(cid:3)stamp(cid:2) (cid:4)renumbered(cid:5) source wavelet transform of the real data and estimating the variances (cid:0) host(cid:2) (cid:4)renumbered(cid:5) destination host(cid:2) source TCP port(cid:2) destina(cid:3) (cid:4)j of the wavelet coe(cid:6)cients at each scale(cid:7) We estimate these tionTCPport(cid:2)andnumberofdatabytes(cid:7) Inourexperimentswe variances only at the (cid:0)(cid:19) (cid:11)nest scales(cid:2) because at coarser scales useonly the time(cid:3)stamp and databytes information(cid:7) We form a there are not a su(cid:6)cient number of coe(cid:6)cients to obtain good datatracebycountingthenumberofbytesofpacketsthatarrive variance estimates(cid:7) As a result(cid:2) we synthesize data traces of (cid:0)(cid:7) (cid:5)(cid:9) in consecutive time intervals of (cid:24) ms and use the (cid:11)rst (cid:16) data maximumlength(cid:16) datapoints(cid:7) ForboththeMWMandWIG(cid:2) points in our simulation experiments(cid:7) This trace has a sample wemodelthecoarsest(cid:3)scalescalingcoe(cid:6)cientU(cid:7)(cid:2)(cid:7) asaGaussian mean of (cid:16)(cid:19)(cid:25)(cid:7)(cid:19) bytes(cid:23)(cid:4)unit time(cid:5) and sample standard deviation random variable with mean and variance equal to the sample of (cid:19)(cid:24)(cid:16)(cid:7)(cid:24) bytes(cid:23)(cid:4)unit time(cid:5)(cid:7) mean and variance of the scaling coe(cid:6)cients of the real data Ribeiro et al(cid:2)(cid:2) Simulation of nonGaussian Long(cid:3)Range(cid:3)Dependent Traffic (cid:25) 2x 104 LBL(cid:3)TCP(cid:3)(cid:17) data 2x 104WIG synthesized data 2x 1M04 WM synthesized data 1.5 1.5 1.5 1 1 1 0.5 0.5 0.5 0 0 0 −2000 −1000 0 1000 2000 3000 4000 −2000 −1000 0 1000 2000 3000 4000 −2000 −1000 0 1000 2000 3000 4000 7000 7000 7000 6000 6000 6000 5000 5000 5000 4000 4000 4000 3000 3000 3000 2000 2000 2000 1000 1000 1000 0 0 0 −4000 −2000 0 2000 4000 6000 8000 −4000 −2000 0 2000 4000 6000 8000 −4000 −2000 0 2000 4000 6000 8000 3000 3000 3000 2500 2500 2500 2000 2000 2000 1500 1500 1500 1000 1000 1000 500 500 500 0 0 0 −5000 0 5000 10000 −5000 0 5000 10000 −5000 0 5000 10000 (cid:4)a(cid:5) (cid:4)b(cid:5) (cid:4)c(cid:5) Figure (cid:19)(cid:29) Histograms of the bytes(cid:2)per(cid:2)times process at di(cid:3)erent aggregation levels for (cid:4)a(cid:5) wide(cid:2)area TCP tra(cid:6)c at the Lawrence Berkeley Laboratory (cid:4)trace LBL(cid:2)TCP(cid:2)(cid:7)(cid:5) (cid:8)(cid:9)(cid:10)(cid:11)(cid:12) (cid:4)b(cid:5) one realization of the WIG model(cid:12) and (cid:4)c(cid:5) one realization of the MWM synthesis(cid:14) The top(cid:12) middle andbottomplotscorrespondtobytesarrivinginintervalsof(cid:2)ms(cid:12)(cid:3)(cid:8)msand(cid:8)(cid:9)msrespectively(cid:14) Notethelargeprobabilitymassovernegative values for the WIG model(cid:14) 19 1 at this scale(cid:7) With trained models in hand(cid:2) we now generate 18 LBL−TCP−3 WIG 0.8 synthetic data traces(cid:7) 17 MWM theDuLeBLto(cid:3)TsCpaPc(cid:3)e(cid:17)ctornacster(cid:7)aiRntesc(cid:2)alwlefrpormeseFnitgu(cid:11)rteti(cid:0)ngthraetsuvltissuoanlllyytfhoer (m)Log(Var(X)2111456 αf()000...246 syntheticMWMlooksverysimilartotherealtrace(cid:7) Wecompare 13 0 LMBWLM−T C P −3 the marginals of MWM and WIG traces to that of the LBL(cid:3) 12 −0.2 TCP(cid:3)(cid:17)traceatthreedi(cid:8)erentaggregationlevels(cid:7) FromFigure(cid:19) 0 5 Log2(m) 10 15 0.6 0.8 1α 1.2 1.4 observe that the MWM marginalsare similar to that of the real (cid:4)a(cid:5) (cid:4)b(cid:5) datatrace(cid:2)whiletheGaussianWIGmarginalsdi(cid:8)ersigni(cid:11)cantly(cid:7) WealsoobservethattheWIGtraceshaveaconsiderablenumber Figure (cid:24)(cid:29) (cid:4)a(cid:5) Variance(cid:2)time plot of the LBL(cid:2)TCP(cid:2)(cid:7) data (cid:19) (cid:20)(cid:12) the of negative points(cid:2) a result of the low mean and high standard WIGdata (cid:19) (cid:20)(cid:12) and one realization of the MWM synthesis (cid:19)(cid:3)(cid:20)(cid:14) (cid:4)b(cid:5) (cid:4) (cid:5) deviation of the real data trace(cid:7) Multifractal spectra of the LBL(cid:2)TCP(cid:2)(cid:7) data and one realization of the MWM synthesis(cid:14) Wenext comparethecorrelationmatchingabilitiesofthe two models(cid:7) Wecomparethevariance(cid:3)timeplotsoftherealdata(cid:2)the MWMtraces(cid:2)andthe WIGtracesin Figure(cid:24)(cid:4)a(cid:5)(cid:7) Thevariance(cid:3) except for large values of (cid:12)(cid:7) This corresponds to a close match time plot estimates were obtained by averaging the empirical of the scaling of higher(cid:3)ordermoments(cid:2) but a somewhat less ac(cid:3) variance(cid:3)timeplotsof(cid:17)(cid:16)independent realizationsofthemodels(cid:7) curate match of the scaling of the negative moments(cid:7) We observethat(cid:2) asexpected(cid:2) both the MWM andWIG models do a good job of matching the correlation structure of the real data(cid:7) (cid:9)(cid:2)(cid:8) Queuing results We plot the multifractal spectra (cid:4)see Section (cid:24)(cid:5) of the LBL(cid:3) Much e(cid:8)ort has been exerted studying the e(cid:8)ect of the corre(cid:3) TCP(cid:3)(cid:17) data and the synthetic MWM trace in Figure (cid:24)(cid:4)b(cid:5) (cid:4)cal(cid:3) lation structure on queuing performance (cid:14)(cid:16)(cid:2)(cid:0)(cid:25)(cid:18)(cid:0)(cid:27)(cid:15)(cid:7) Gaussian culations for the negative moments of the WIG data become modelsthatcapturethecorrelationstructureoftra(cid:6)chavebeen numerically unstable and hence the spectra for the WIG is not proposed (cid:14)(cid:0)(cid:2)(cid:0)(cid:19)(cid:15) and theoretical results for the tail queue proba(cid:3) included(cid:5)(cid:7) We observe that the spectra match extremely well bility have been obtained (cid:14)(cid:27)(cid:2)(cid:0)(cid:0)(cid:2)(cid:30)(cid:20)(cid:15)(cid:7) These models are in many (cid:26) Proceedings SigMetrics (cid:4)(cid:5)(cid:5)(cid:6) Atlanta(cid:6) GA 0 cases appropriate for modeling data tra(cid:6)c(cid:7) For example(cid:2) the WIG model has been shown to capture the queuing behavior of −1 video tra(cid:6)c well (cid:14)(cid:0)(cid:19)(cid:15)(cid:7) For the WAN(cid:23)LAN data traces that we → consider here(cid:2) however(cid:2) this is not the case(cid:7) x)] −2 The multiplicative structure of the MWM captures both the Q> Wcoritrhelaittisoninshoefrtehnetraepapldroaxtiamaastweleylllaosgnthoermhaiglhmera(cid:3)orgrdinearlmdoismtreinbtus(cid:3)(cid:7) log[P(10−3 WIG+ WIG tion(cid:2) it also comes close to matching the marginals of the real MWM −4 LBL−TCP−3 data traces(cid:7) 90% conf.:WIG+ 90% conf.:WIG Intuitively(cid:2) the more tra(cid:6)c characteristics a model matches(cid:2) 90% conf.: MWM −5 the better will it match the queuing behavior of real tra(cid:6)c(cid:7) 0 2 4 6 8 Hence(cid:2) it is not surprising that a perfect (cid:11)tting of second(cid:3)order x= Queue size in bytes → x 104 (cid:4)a(cid:5) 0 correlationsand marginalsasdone in(cid:14)(cid:16)(cid:16)(cid:15)leads to a good match of queueing behavior(cid:7) Here(cid:2) we take a di(cid:8)erent approach comparing two simple and −1 quite related models in their ability to capture the queueing be(cid:3) → havior of the two real data sets(cid:7) With this experiment we hope x)] −2 > to shed some light on the impact of marginals and higher(cid:3)order P(Q correlations on queuing behavior(cid:7) g[10−3 In all experiments(cid:2) data traces are fed as input to an in(cid:11)nite lo WIG+ WIG MWM lengthsingle(cid:3)serverqueuewithlinkcapacity(cid:26)(cid:20)(cid:20)bytes(cid:23)unittime(cid:7) −4 BC−pAug89 90% conf.:WIG+ Weestimatethetailqueueprobabilitiesofthevariousdatatraces 90% conf.:WIG 90% conf.: MWM as −5 Pi(cid:14)Q(cid:2)x(cid:15)(cid:21) number of time instants Q(cid:2)x(cid:5) (cid:4)(cid:16)(cid:17)(cid:5) 0 0.5 x= Que1ue size in b1y.5tes → 2 x 105 total time duration of trace i (cid:4)b(cid:5) b Wealsoprovidecon(cid:11)denceintervalswithcon(cid:11)dencelevelof(cid:27)(cid:20)" Figure(cid:25)(cid:29) Comparisonofthequeuingperformanceofrealdatatraces L forthe estimated queue distribution (cid:4)(cid:0)(cid:7)L(cid:5)#i(cid:6)(cid:5)Pi(cid:14)Q(cid:2)x(cid:15)(cid:2) where with those of synthetic WIG and MWM traces(cid:14) In (cid:4)a(cid:5)(cid:12) we observe L is the total number of traces(cid:2) assuming that it is a Gaussian that the MWM synthesis matches the queuing behavior of the LBL(cid:2) b random variable (cid:14)(cid:30)(cid:0)(cid:15)(cid:7) TCP(cid:2)(cid:7) data closely(cid:12) while the WIG synthesis does not(cid:14) Even when With both real traces(cid:2) we performed the same queuing ex(cid:3) negativevaluesoftheWIGdataaresetto(cid:4)(cid:4)WIG(cid:12)(cid:5)(cid:12)theWIGtraces do not come close to matching the correct queuing behavior(cid:14) In (cid:4)b(cid:5)(cid:12) periment(cid:7) We (cid:11)rst trained the MWM and WIG models on the we observe a similar behavior with theBC(cid:2)pAug(cid:21)(cid:22) data(cid:14) real traces as described in Section (cid:19)(cid:7)(cid:17)(cid:7) We then synthesized (cid:30)(cid:26)(cid:20) (cid:5)(cid:9) MWM and WIG traces of length (cid:16) (cid:2) fed them as input to our theoretical queue and obtained their queuing behavior(cid:7) Recall modeling tra(cid:6)c with marginals similar to those of the real data that both the WIG and MWM capture the mean(cid:2) variance and traces considered here(cid:7) correlationstructure of the real data(cid:7) The results for the realtrace BC(cid:3)pAug(cid:26)(cid:27)areshown in Figure In Figure (cid:25)(cid:4)a(cid:5) we compare the average queuing behavior of (cid:25)(cid:4)b(cid:5) and are similar to those for the LBL(cid:3)TCP(cid:3)(cid:17)trace(cid:7) Clearly(cid:2) theMWMandWIGtracestothatoftherealtraceLBL(cid:3)TCP(cid:3)(cid:17)(cid:7) the MWM again performs far better than the WIG model in We observe that the MWM traces match the queuing behavior capturing the queuing behavior of the real data(cid:7) of the real data trace much better than the WIG traces(cid:7) From Thesequeuingexperimentsindicatethatthecorrelationstruc(cid:3) Figure(cid:19)wenoticethattheWIGdatatraceshaveaconsiderable ture of tra(cid:6)c is not the only factorthat decides the queuing be(cid:3) numberofnegativedatapoints(cid:7) ThisisbecausetheLBL(cid:3)TCP(cid:3)(cid:17) havior of data tra(cid:6)c(cid:7) Since the MWM outperforms the WIG data set has a large ratio of standard deviation to mean(cid:2) which model inmatchingqueuingbehavior(cid:2)weconcludethattheaddi(cid:3) when modeled by a Gaussian process leads to a large fraction tional tra(cid:6)c characteristicsof real data captured by the MWM(cid:2) of data points going negative(cid:7) In order to test whether these like marginals and higher order moments(cid:2) have a substantial ef(cid:3) negative values are the cause for the poor performance of the fect on the queuing behavior of tra(cid:6)c with statistics similar to WIG model(cid:2) we set negative values to zero in the WIG traces the real data sets that we considered here(cid:7) and obtained the queuing behavior of these new traces(cid:7) We call the new data traces WIG(cid:22)(cid:7) We see from Figure (cid:25)(cid:4)a(cid:5) that the queuing performance of the WIG(cid:22) traces is not substantially (cid:9) MWM is a Cascade better than that of the WIG traces(cid:7) Thus(cid:2) we conclude that the Gaussian WIG traces do not give WenowlinktheMWMwiththetheoryofcascades(cid:7) Thetechni(cid:3) a good approximation to the queuing behavior of the real data cal details in this section are not necessary for understanding or setinspiteofcapturingthecorrelationstructureoftherealdata applyingtheMWMandcanbeomittedona(cid:11)rstreading(cid:7) Multi(cid:3) trace(cid:7) Furthermore(cid:2) the ad hoc procedure of setting all negative plicative cascades generalize the self(cid:3)similarity of fractal models values to zero does not improve matters(cid:7) In fact(cid:2) the ad hoc such as fGn and fBm by o(cid:8)ering greater (cid:28)exibility and richer procedure used in creating the WIG(cid:22) data traces destroys the scaling properties(cid:2) including burstiness and scaling of higher(cid:3) statistics of the traces(cid:7) Other ad hoc procedures like excluding order moments (cid:14)(cid:16)(cid:19)(cid:2)(cid:16)(cid:27)(cid:15)(cid:7) Identifying the MWM algorithm with all negative data points or setting all negative points to their a multiplicative cascade allows us to bene(cid:11)t from the accumu(cid:3) absolute value also destroy the statistics of the traces(cid:7) This re(cid:3) lated theoretical and practical knowledge of the (cid:11)eld of multi(cid:2) veals some of the problems associated with Gaussian models for fractals(cid:2) including a precise understanding of the convergenceof Ribeiro et al(cid:2)(cid:2) Simulation of nonGaussian Long(cid:3)Range(cid:3)Dependent Traffic (cid:27) the MWM algorithm(cid:2) properties of the marginal distributions(cid:2) (cid:10)(cid:2)(cid:7) Measuring burstiness advantages over monofractal fGn models(cid:2) and a range of pos(cid:3) (cid:0)n For the ease of notation let kn(cid:16) (cid:6) t mean that t (cid:4) sible re(cid:11)nements and extensions(cid:7) For these reasons(cid:2) we (cid:11)nd it (cid:0)n (cid:0)n (cid:14)kn(cid:16) (cid:3)(cid:4)kn(cid:22)(cid:0)(cid:5)(cid:16) (cid:5) and n(cid:6)(cid:7)(cid:7) The strength of growth(cid:2) also useful to examine the MWM within the context of cascadesand calledthedegreeofH(cid:4)older continuity(cid:3)attimetofaprocessY(cid:4)t(cid:5) multifractals(cid:7) (cid:4)thatcorrespondstoD(cid:4)t(cid:5)oftheMWM(cid:5)withpositiveincrements The backbone of a cascade is a construction where one starts can be characterized by at a coarse scale and develops details of the process on (cid:11)ner scales iteratively in a multiplicative fashion(cid:7) The MWM is one (cid:12)(cid:4)t(cid:5) (cid:21) kn(cid:0)li(cid:0)mn(cid:5)t(cid:12)nkn where such cascade(cid:2) as (cid:4)(cid:0)(cid:19)(cid:5) and (cid:4)(cid:0)(cid:24)(cid:5) reveal(cid:7) In accordance with the notation for cascades(cid:2) setting n (cid:0) (cid:0)n (cid:0)n (cid:12)kn (cid:0) (cid:2) log(cid:0) Y(cid:4)(cid:4)kn(cid:22)(cid:0)(cid:5)(cid:16) (cid:5)(cid:2)Y(cid:4)kn(cid:16) (cid:5) (cid:5) (cid:4)(cid:16)(cid:24)(cid:5) n (cid:2) (cid:8) (cid:8) (cid:7) (cid:7) i (cid:4)(cid:0)(cid:22)(cid:4)(cid:2)(cid:0)(cid:5)ki(cid:0)(cid:2)Ai(cid:0)(cid:5)(cid:2)ki(cid:0)(cid:2)(cid:5) The smaller the (cid:12)(cid:4)t(cid:5)(cid:2) the(cid:8)larger the increments of Y(cid:2)(cid:8)and the M(cid:7) (cid:21)U(cid:7) and Mki (cid:21) (cid:3) (cid:20)(cid:6)i(cid:10)n(cid:3) (cid:16) (cid:9)burstier(cid:10)it is at time t(cid:7) The frequencyofoccurrenceofa given (cid:4)(cid:16)(cid:30)(cid:5) strength (cid:12)(cid:2) as visible from an analysis on coarse scales can be and substituting into (cid:4)(cid:0)(cid:24)(cid:5) leads us to (cid:4)see Figure (cid:26)(cid:4)a(cid:5)(cid:5) measured by the multifractal spectrum(cid:29) n C(cid:14)k(cid:15)(cid:21)(cid:16)(cid:0)nM(cid:7)(cid:7) Mi(cid:2)ki(cid:3) (cid:4)(cid:16)(cid:19)(cid:5) f(cid:4)(cid:12)(cid:5)(cid:29)(cid:21)(cid:4)li(cid:5)m(cid:7)nl(cid:5)im(cid:2)n(cid:0) log(cid:0)$fkn (cid:21) (cid:20)(cid:3)(cid:5)(cid:5)(cid:5)(cid:3)(cid:16)n(cid:2)(cid:0) (cid:4)(cid:16)(cid:25)(cid:5) Yi(cid:6)(cid:5) n (cid:29) (cid:12)kn (cid:4)(cid:4)(cid:12)(cid:2)(cid:13)(cid:3)(cid:12)(cid:22)(cid:13)(cid:5)g(cid:5) (cid:4) with the ki and ki de(cid:11)ned in the same way as for (cid:4)(cid:0)(cid:24)(cid:5)(cid:7) Byde(cid:11)nition(cid:2)f takesvaluesbetween(cid:20)and(cid:0)andisoftenshaped Our aim in this section is to both introduce and give an in(cid:3) like a (cid:16) and concave(cid:2) but not always(cid:7) The smaller f(cid:4)(cid:12)(cid:5) is(cid:2) the tuitive understanding of cascades to the reader(cid:7) After studying (cid:9)fewer(cid:10) points t will show (cid:12)(cid:4)t(cid:5)(cid:3)(cid:12)(cid:7) If (cid:12) denotes the value (cid:12)(cid:4)t(cid:5) the nature of the MWM(cid:12)s marginals(cid:2) we compare cascades with assumed by (cid:9)most(cid:10) points t then f(cid:4)(cid:12)(cid:5)(cid:21)(cid:0)(cid:7) Gaussian LRD processes such as the WIG(cid:7) As already hinted Note that this analysis via increments (cid:4)(cid:16)(cid:24)(cid:5) is su(cid:6)cient pro(cid:3) in the introduction(cid:2) cascades such as the MWM are ideal for vided Y(cid:4)t(cid:5) has no polynomial trends(cid:7) If(cid:2) on the other hand(cid:2) modeling burstiness(cid:7) We explain this here by developing the polynomial terms are present(cid:2) then the increment(cid:3)analysis will multifractal formalism (cid:4)for further details(cid:2) see (cid:14)(cid:16)(cid:27)(cid:15)(cid:5)(cid:7) yield f(cid:4)(cid:12)(cid:5) (cid:21) (cid:0) for (cid:12) (cid:21) k (cid:4) IIN where k is the order of the (cid:11)rst non(cid:3)vanishing derivative of Y(cid:7) Then one has to eliminate the polynomial in(cid:28)uence(cid:2) a(cid:5) via wavelets or(cid:2) b(cid:5) by subtracting the (cid:10)(cid:2)(cid:3) Lognormal marginals trend if known(cid:7) The known trend for self(cid:3)similar processes is none other than the (cid:9)mean arrival rate(cid:10)(cid:7) Multiplicative structures(cid:2) in particular the product representa(cid:3) i It is(cid:2) therefore(cid:2) important to mention that ouranalysisof real tion (cid:4)(cid:16)(cid:19)(cid:5)(cid:2) naturally lead to lognormal marginals(cid:7) If the Mki are tracesinSection(cid:19)showsnointegerscalingexponent(cid:12)(cid:4)t(cid:5)(cid:2)except allpositiveandidenticallydistributed(cid:2) thenC(cid:14)k(cid:15)willbeapprox(cid:3) for (cid:12)(cid:4)t(cid:5) (cid:21) (cid:0) for a small number of t(cid:2) that is(cid:2) f(cid:4)(cid:0)(cid:5) (cid:6) (cid:0)(cid:7) Thus(cid:2) imately lognormal by the CLT(cid:7) Figure (cid:19) shows that Gaussian we conclude that polynomial trends are not present in the real modeling seems un(cid:11)t in this network scenario! various other au(cid:3) tra(cid:6)c traces studied here(cid:7) Since we did not remove any trend thors make a case for marginal distributions(cid:2) including the log(cid:3) fromthe realdatapriorto ouranalysis(cid:2)thisresultsuggeststhat normal(cid:2)withtailsthataremuchheavierthantheGaussian(cid:14)(cid:16)(cid:20)(cid:2)p the data is not well characterizedby self(cid:3)similar models(cid:7) (cid:17)(cid:24)(cid:30)(cid:15)(cid:2)(cid:14)(cid:16)(cid:0)(cid:15)(cid:7) Wedonotclaimthatthelognormalisappropriatefor all tra(cid:6)c at all scales(cid:2) and for a limited number of scales a cas(cid:3) cade signal can behave di(cid:8)erently from a lognormal(cid:7) However(cid:2) (cid:10)(cid:2)(cid:8) Higher(cid:4)order moments and the MF spec(cid:4) this link betweencascadesanduseful marginalmodelsfor tra(cid:6)c trum points to the viability of cascades for providing realistic tra(cid:6)c Cascades such as the MWM possess rich multifractal spectra(cid:7) models(cid:7) Unlikecascades(cid:2)thestrongself(cid:3)similarityofthefBm(cid:4)(cid:0)(cid:5)forcesit tohaveatrivialmultifractalbehavior(cid:7) Tobeprecise(cid:2)forthefBm(cid:2) (cid:12)(cid:4)t(cid:5)(cid:21)H for all t(cid:7) To demonstrate this(cid:2) we will use information (cid:10)(cid:2)(cid:0) Cascades vs(cid:2) fGn about the scaling of higher(cid:3)order moments of the two types of Thereisafundamentaldi(cid:8)erencebetweencascademodelingand processes to obtain their multifractal spectra(cid:7) modelingviaself(cid:3)similarprocessessuchasfGnortheWIG(cid:2)which Let us de(cid:11)ne treattra(cid:6)casameanratesuperimposedwithfractalnoise(cid:7) Ad(cid:3) (cid:0) ditive self(cid:3)similar models (cid:9)hover(cid:10) around the mean with occa(cid:3) T(cid:4)q(cid:5) (cid:0) nl(cid:5)im(cid:2) (cid:2)nlog(cid:0)IE(cid:14)Sn(cid:4)q(cid:5)(cid:15)(cid:3) where (cid:4)(cid:16)(cid:26)(cid:5) sional outbursts in both positive and negative directions(cid:2) while (cid:0)n(cid:0)(cid:5) multiplicative cascades (cid:9)sit(cid:10) just above the zero line and emit (cid:0)n (cid:0)n q Sn(cid:4)q(cid:5) (cid:0) Y(cid:4)(cid:4)kn(cid:22)(cid:0)(cid:5)(cid:16) (cid:5)(cid:2)Y(cid:4)kn(cid:16) (cid:5) occasional positive jumps or spikes(cid:7) In mathematical terms this kXn(cid:6)(cid:7)(cid:8) (cid:8) distinctionisbestcapturedbyexaminingnegativemoments(cid:29) for (cid:0)n(cid:0)(cid:8)(cid:5) (cid:8) n self(cid:3)similarmodels(cid:2)thesearethenegativemomentsofthefractal (cid:21) (cid:16)n(cid:5)kn(cid:5) noise(cid:2)hencetheycaptureuninterestinglysmallvariationsaround kXn(cid:6)(cid:7) themean!forcascades(cid:2)ontheotherhand(cid:2)thesearethenegative moments of the processitself(cid:2) so they capture unnaturally small Notethat T isalwaysconcave(cid:2)sincelog(cid:0)IESn(cid:4)q(cid:5)isconcave(cid:7) For values and provide useful information(cid:7) a typical plot of T and f see Figure (cid:26) (cid:4)b(cid:5) and (cid:4)c(cid:5)(cid:7) (cid:0)(cid:20) Proceedings SigMetrics (cid:4)(cid:5)(cid:5)(cid:6) Atlanta(cid:6) GA M00 1.5 slope=α 1.5 0 1 0.15 (q,T(q)) 1−T(0)=1 slope=q q1=1 q0=0 . 0 M01 M00 0.5 M11.M00 1 →T(q) −0−.015 −T*(α) (0,T(0))=(0,−1)(1,T(1))=(1,0) *α→T() 0.05−T(1)=0 (α,T*(α)) −1.5 M02.M01.M00M21.M01.M00M22.M11.M00M23.M11.M00 −2−−.−3251 0 1 2 3 −0−.15−0.5−T(q)0 0.5 1 1.5 2 2.5 3 0 0.25 0.5 0.75 1 q → α → (cid:4)a(cid:5) (cid:4)b(cid:5) (cid:4)c(cid:5) Figure(cid:26)(cid:29) (cid:4)a(cid:5)(cid:17) TheMWMtranslatesimmediatelyintoamultiplicativecascadeinthetimedomain(cid:4)cf(cid:14) (cid:4)(cid:18)(cid:13)(cid:5)(cid:5)(cid:14) (cid:4)b(cid:5) (cid:4)c(cid:5)(cid:17) Wedemonstratethe (cid:0) (cid:6)(cid:7) LegendretransformT T inthesimplecaseofconcave(cid:12)di(cid:3)erentiablefunctionssuchasthespectraofatypicalMWM(cid:4)(cid:4)(cid:7)(cid:7)(cid:5)withp(cid:13)(cid:3)(cid:7)(cid:2)(cid:2)(cid:12) (cid:2) (cid:6)(cid:7) (cid:0) (cid:0) (cid:0) H (cid:13)(cid:7)(cid:14)(cid:7)(cid:5)(cid:14) Set (cid:9)(cid:13)T (cid:10)q(cid:11)(cid:12) then T (cid:10)(cid:9)(cid:11) is suchthat thetangent at (cid:10)q(cid:4)T(cid:10)q(cid:11)(cid:11) passes through (cid:10)(cid:4)(cid:4) T (cid:10)(cid:9)(cid:11)(cid:11)(cid:14) Inother words(cid:12) T (cid:10)(cid:9)(cid:11)(cid:12)q(cid:9)(cid:13)T(cid:10)q(cid:11)(cid:14) (cid:0) (cid:8) (cid:8) By symmetry(cid:12) the tangent at (cid:10)(cid:9)(cid:4)T (cid:10)(cid:9)(cid:11)(cid:11) has slope q and passes through (cid:10)(cid:4)(cid:4) T(cid:10)q(cid:11)(cid:11)(cid:14) There are two notable special values of q(cid:14) Trivially(cid:12) (cid:0) (cid:8) T(cid:10)(cid:4)(cid:11)(cid:13) (cid:3)(cid:12) whencethe maximumof T is (cid:3)(cid:14) Inaddition(cid:12) every positive incrementprocess has T(cid:10)(cid:3)(cid:11)(cid:13)(cid:4)(cid:12) whence T touchesthe bisector(cid:14) (cid:8) (cid:9) (cid:3)i(cid:4) Themultifractalspectrumf(cid:4)(cid:12)(cid:5)andT(cid:4)q(cid:5)arecloselyrelatedas thatthemomentsoftheM convergetotheonesofthelimiting the following instructive hand(cid:3)waving argument shows(cid:7) Group(cid:3) random variable M for the next equation(cid:2) and end by assuming n ing in the sum Sn(cid:4)q(cid:5) of (cid:4)(cid:16)(cid:26)(cid:5) the terms according to (cid:12)kn (cid:3) (cid:12)(cid:2) that M (cid:21) (cid:4)(cid:0)(cid:22)A(cid:5)(cid:7)(cid:16) with A being (cid:11)(cid:3)distributed as in (cid:4)(cid:0)(cid:27)(cid:5) to and using (cid:4)(cid:16)(cid:25)(cid:5) we get obtain(cid:29) (cid:0)n(cid:5) q nfG(cid:3)(cid:5)(cid:4) (cid:0)nq(cid:5) Sn(cid:4)q(cid:5) (cid:21) (cid:5) (cid:5)n(cid:6)(cid:5)(cid:4)(cid:16) (cid:5) (cid:3) (cid:5)(cid:16) (cid:16) MWM(cid:29) T(cid:4)q(cid:5) (cid:21) (cid:2)(cid:0)(cid:2)log(cid:0)IE(cid:14)Mq(cid:15) (cid:4)(cid:17)(cid:17)(cid:5) P P P (cid:4)(cid:16)(cid:27)(cid:5) (cid:0)ninf(cid:2)(cid:3)q(cid:5)(cid:0)fG(cid:3)(cid:5)(cid:4)(cid:4) %(cid:4)p(cid:22)q(cid:5)%(cid:4)(cid:16)p(cid:5) (cid:3) (cid:16) (cid:5) (cid:21) (cid:2)(cid:0)(cid:2)log(cid:0) if q (cid:2)(cid:2)p(cid:2) %(cid:4)(cid:16)p(cid:22)q(cid:5)%(cid:4)p(cid:5) We conclude that we must (cid:9)expect(cid:10) T(cid:4)q(cid:5) to equal inf(cid:5)(cid:4)q(cid:12) (cid:2) fG(cid:4)(cid:12)(cid:5)(cid:5)(cid:7) For the special case of an MWM process(cid:2) i(cid:7)e(cid:7)(cid:2) Y (cid:21) D(cid:2) and T(cid:4)q(cid:5)(cid:21)(cid:2)(cid:7) if q (cid:10)(cid:2)p(cid:7) it can be shown (cid:4)see (cid:14)(cid:30)(cid:16)(cid:15)(cid:5) that the dual relation holds(cid:7) This ThefunctionT(cid:4)q(cid:5)isasimplestatisticaldescriptionofthepro(cid:3) relation is called the multifractal formalism and reads cess that captures marginal information(cid:2) but which alsogoverns (cid:3) the (cid:9)burstiness(cid:10) through the multifractal formalism(cid:7) It must be f(cid:4)(cid:12)(cid:5)(cid:21)T (cid:4)(cid:12)(cid:5)(cid:29)(cid:21)inqf(cid:4)q(cid:12)(cid:2)T(cid:4)q(cid:5)(cid:5)(cid:5) (cid:4)(cid:17)(cid:20)(cid:5) emphasized here that the multifractal parameters T(cid:4)q(cid:5) of the (cid:3) (cid:4) MWM process do not necessarily imply that the process can(cid:3) Simple ca(cid:4)(cid:4)lculus shows that T (cid:4)(cid:12)(cid:5) (cid:21) q(cid:12)(cid:2)T(cid:4)q(cid:5) at (cid:12) (cid:21) T (cid:4)q(cid:5) not be modeled parsimoniously(cid:7) For example(cid:2) in the case of the pr(cid:3)ovided T (cid:4)q(cid:5) (cid:6) (cid:20)(cid:7) This relation via the Legendre transform MWM(cid:2) the (cid:11)(cid:3)distributions for the multipliers are controlled by T is typical of the theory of large deviations (cid:14)(cid:30)(cid:17)(cid:15)(cid:7) The goal the parameters pj (cid:4)(cid:16)(cid:20)(cid:5)(cid:7) If one replaced the right side of (cid:4)(cid:16)(cid:20)(cid:5) by there is to establish relations such as (cid:4)(cid:17)(cid:20)(cid:5) under most general the powerlaw for fGn then all values T(cid:4)q(cid:5) would be determined assumptions(cid:7) To use the correct terminology(cid:2) f is the rate func(cid:2) by H (cid:14)(cid:16)(cid:27)(cid:15)(cid:7) tion of a so(cid:3)called large deviation principle (cid:4)LDP(cid:5)(cid:29) it measures Now let us compute T(cid:4)q(cid:5) for the self(cid:3)similar fBm(cid:7) From (cid:4)(cid:0)(cid:5) n howfrequentlyor how likely the observed(cid:12)kn deviatesfrom the we (cid:11)nd (cid:9)expected value(cid:10) (cid:12)(cid:7) (cid:0)n(cid:0)(cid:5) apIpnrooxridmerattioones(cid:16)t(cid:0)imnTat(cid:3)qe(cid:4)T(cid:3)(cid:4)qS(cid:5)nf(cid:4)rqo(cid:5)m(cid:7) Fdoartath(cid:2)eitMisWcuMstothmisarisyetqouuivsaeltehnet IE jB(cid:4)(cid:4)kn(cid:22)(cid:0)(cid:5)(cid:16)(cid:0)n(cid:5)(cid:2)B(cid:4)kn(cid:16)(cid:0)n(cid:5)jq kXn(cid:6)(cid:7) to (cid:0)j(cid:0)(cid:5) n (cid:0)n q n(cid:0)nqH q (cid:0)jT(cid:3)q(cid:4) (cid:0)j(cid:3)(cid:0) q (cid:21)(cid:16) IE jB(cid:4)(cid:16) (cid:5)j (cid:21)(cid:16) IE(cid:14)jB(cid:4)(cid:0)(cid:5)j (cid:15) (cid:4)(cid:17)(cid:30)(cid:5) (cid:16) (cid:8) j(cid:16) Uj(cid:2)kj (cid:5) (cid:4)(cid:17)(cid:0)(cid:5) (cid:11) (cid:12) kX(cid:6)(cid:7) which yields for fBm Any linear (cid:11)t of logS(cid:3)j(cid:4)(cid:4)q(cid:5) against j will give the slope T(cid:4)q(cid:5)(cid:7) LetuscalculateT(cid:4)q(cid:5)fortheMWMmodel(cid:2) i(cid:7)e(cid:7)(cid:2)Y (cid:21)D(cid:7) Using qH(cid:2)(cid:0) for q (cid:2)(cid:2)(cid:0)(cid:2) i (cid:4) fBm(cid:29) T(cid:4)q(cid:5)(cid:21) (cid:4)(cid:17)(cid:19)(cid:5) independenceofthemultipliersMki anddenotingby thesum (cid:4) (cid:2)(cid:7) for q (cid:10)(cid:2)(cid:0)(cid:7) n overall kn (cid:21)(cid:20)(cid:3)(cid:5)(cid:5)(cid:5)(cid:3)(cid:16) (cid:2)(cid:0) we (cid:11)nd P (cid:4) This is probably the most compact way to express the n q (cid:5) q (cid:7) q monofractal character of fBm(cid:29) taking the Legendre transform IE(cid:14)Sn(cid:4)q(cid:5)(cid:15) (cid:21) IE(cid:4)Mkn(cid:5) (cid:5)(cid:5)(cid:5)IE(cid:4)Mk(cid:2)(cid:5) (cid:5)IE(cid:4)M(cid:7)(cid:5) of T shows that fBm possesses only one degree of (cid:9)burstiness(cid:10) X(cid:4) (cid:4)(cid:12)(cid:4)t(cid:5) (cid:21)H(cid:5) which is omnipresent (cid:4)compare also (cid:4)(cid:17)(cid:5)(cid:5)(cid:7) (cid:3)n(cid:4) q (cid:3)(cid:5)(cid:4) q (cid:7) q (cid:21) IE(cid:4)M (cid:5) (cid:5)(cid:5)(cid:5)IE(cid:4)M (cid:5) (cid:5)IE(cid:4)M(cid:7)(cid:5) X n q (cid:7) q n (cid:3)i(cid:4) (cid:10)(cid:2)(cid:9) Multifractal scaling of moments and LRD (cid:21) IE(cid:4)M(cid:7)(cid:5) (cid:5)(cid:16) (cid:5) IE M (cid:5) (cid:4)(cid:17)(cid:16)(cid:5) iY(cid:6)(cid:5) (cid:9) (cid:10) The multifractal scaling exponent T(cid:4)(cid:16)(cid:5) of a process Y is closely Inthesecondstepwemadeuseofthefactthatthemultipliers relatedtotheLRDparameterH(cid:2)sinceboth measurethepower(cid:3) i (cid:3)i(cid:4) Mki are identically distributed to M (cid:7) To this we add the fact law behavior of some second(cid:3)order statistics(cid:7) More precisely(cid:2)

Description:
The increment process G(k) B(k+1);B(k), called fractional Gaussian noise. (fGn) dent Gaussian (WIG) model generalizes fBm/fGn by allowing a more flexible . subsequently in 26{29]. Amazingly, the length single-server queue with link capacity 800 bytes/unit time. Simple calculus shows that T.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.