ebook img

simulation of mobile hydroacoustic communications in underwater acoustic sensor networks PDF

105 Pages·2015·5.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview simulation of mobile hydroacoustic communications in underwater acoustic sensor networks

SIMULATION OF MOBILE HYDROACOUSTIC COMMUNICATIONS IN UNDERWATER ACOUSTIC SENSOR NETWORKS by Bita Hasannezhad A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of MASTER OF COMPUTER SCIENCE School of Computer Science at CARLETON UNIVERSITY Ottawa, Ontario September, 2015 (cid:2)c Copyright by Bita Hasannezhad, 2015 Table of Contents List of Figures v List of Acronyms vii Abstract ix Acknowledgements x Chapter 1 Introduction 1 1.1 Underwater Communications . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Underwater Acoustic Sensor Networks . . . . . . . . . . . . . . . . . 3 1.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Overview of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 Background 7 2.1 Underwater Acoustic Waves . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Underwater Communications . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Nyquist’s Formula . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Shanon’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.4 Signal Energy per Bit over Noise Power Spectral Density (E /N ) 13 b 0 2.2.5 Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.6 Signal-To-Noise-Ratio . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 3 Related Work 16 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ii 3.2 Underwater Communications . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Underwater Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Underwater Mobility Models . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Chapter 4 Underwater Mobility Simulation 25 4.1 Simulation Model Architecture . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Simulation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 The Integration Process of OMNeT++ and MATLAB . . . . . . . . 27 Chapter 5 Evaluation 28 5.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Simulation Application . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3 Network Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.4 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.4.1 Collecting Distances . . . . . . . . . . . . . . . . . . . . . . . 30 5.4.2 Bit Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.4.3 Signal Energy per Bit over Noise Power Spectral Density (E /N ) 32 b 0 5.5 Curve Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.6 BER as a Function of Distance . . . . . . . . . . . . . . . . . . . . . 33 5.7 BER as a Function of Signal Energy per Bit over Noise Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Chapter 6 Conclusion 37 6.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Appendix A Simulation Tools and Software Requirements 40 A.1 OMNeT++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 A.1.1 INET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 A.1.2 MiXiM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 A.1.3 MiXiM-INET-Bundle . . . . . . . . . . . . . . . . . . . . . . . 41 iii A.1.4 Existing Mobility Models in INET and MiXiM . . . . . . . . . 41 A.2 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 A.2.1 Using MATLAB Shared Libraries . . . . . . . . . . . . . . . . 43 Appendix B Simulation Implementation 46 B.1 OMNeT++ IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 B.1.1 The Project Files . . . . . . . . . . . . . . . . . . . . . . . . . 50 B.2 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . . 52 B.2.1 Core Components . . . . . . . . . . . . . . . . . . . . . . . . . 52 B.2.2 Defining Messages . . . . . . . . . . . . . . . . . . . . . . . . . 59 B.2.3 Parameters and Configurations . . . . . . . . . . . . . . . . . 63 B.2.4 Mobility Modeling . . . . . . . . . . . . . . . . . . . . . . . . 71 B.2.5 The Integration Process of OMNeT++ and MATLAB . . . . 76 B.3 Collecting Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 B.4 Building and Running the Simulation . . . . . . . . . . . . . . . . . . 87 B.4.1 Building the Project . . . . . . . . . . . . . . . . . . . . . . . 87 B.4.2 Running the Simulation . . . . . . . . . . . . . . . . . . . . . 89 Appendix C Decibel and Linear Form 91 Bibliography 92 iv List of Figures 1.1 Basic hydroacoustic communication model. . . . . . . . . . . . 2 2.1 Longitudinal wave versus transverse (lateral) wave. . . . . . . 8 2.2 Spherical, cylindrical, and planar waves. . . . . . . . . . . . . 9 4.1 Integration of three protocol layers. . . . . . . . . . . . . . . . 25 4.2 Simulation model architecture. . . . . . . . . . . . . . . . . . . 26 5.1 The position of sensors at different time steps: T , T , T , T 1 2 3 4 and T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 5.2 BER as a function of Distance. . . . . . . . . . . . . . . . . . 34 5.3 BER as a function of the E /N ratio. . . . . . . . . . . . . . 36 b 0 A.1 Mobility Models chart in INET. . . . . . . . . . . . . . . . . . 44 A.2 The inheritance diagram of MobilityBase. . . . . . . . . . . . . 45 B.1 OMNeT++ IDE. . . . . . . . . . . . . . . . . . . . . . . . . . 47 B.2 OMNeT++corecomponents: simplemodules,compoundmod- ule, gates, and channels. . . . . . . . . . . . . . . . . . . . . . 48 B.3 The INI file form-based editor. . . . . . . . . . . . . . . . . . . 50 B.4 The INI file source editor. . . . . . . . . . . . . . . . . . . . . 51 B.5 The inheritance diagram of cSimpleModule. . . . . . . . . . . . 53 B.6 The inheritance diagram of MobilityBase. . . . . . . . . . . . . 75 B.7 The inheritance diagram of MovingMobilityBase and IineSeg- mentsMobilityBase. . . . . . . . . . . . . . . . . . . . . . . . . 75 B.8 The Edit Configuration Window. . . . . . . . . . . . . . . . . 88 v Dedicated to my beloved spouse, my devoted parents, and my great supervisor List of Acronyms AMOUR Autonomous Modular Optical Underwater Robot AUV Autonomous Underwater Vehicle AWGN Additive White Gaussian Noise BEM Basis Expansion Model CFD Computational Fluid Dynamics DART Deep-ocean Assessment and Reporting of Tsunamis DOP Dilution of Precision DSSS Direct-Sequence Spread Spectrum FPGA Field-Programmable Gate Array FSK Frequency-Shift Keyed GNED Graphical NEtwork Description GPS Global Positioning System GSL GNU Scientific Library IDE Integrated Development Environment MAC Medium Access Control MATLAB MATrix LABoratory MCM Meandering Current Mobility MCR MATLAB Compiler Runtime MoBAN Mobility Model for Body Area Networks NED NEtwork Description NIC Network Interface Controller OFDM Orthogonal Frequency Division Multiplexing OSTBC Orthogonal Space-Time Block Coding PPP Point-to-Point Protocol PSK Phase-Shift Keyed ROV Remotely Operated Vehicle SBR-DLP Sector-based Routing with Destination Location Prediction SLMP Scalable Localization Scheme with Mobility Prediction TCP Transmission Control Protocol TDMA Time Division Multiple Access TWS Tsunami Warning System UDP User Datagram Protocol UPS Underwater Positioning Systems UUV Unmanned Underwater Vehicles UWASN UnderWater Acoustic Sensor Network UWSN UnderWater Sensor Network viii Abstract Underwater networks are gaining more attention not only because more than 71% of the Earth’s surface is covered with water, but also due to the growing needs of under- water communications. Research on underwater communication techniques plays a mostimportantroleforexploringoceansandotheraquaticenvironments. Underwater acoustic sensor network is an area of such research. An UnderWater Acoustic Sensor Network (UWASN) consists of a variable number of self-organized sensors and au- tonomous vehicles, deployed to monitor and explore the aquatic environment. These autonomous sensors communicate acoustically. We study the software simulation of underwater acoustic communications with mobility in UWASNs. Sensors in the stud- ied networks are mobile due to the marine environments, such as ocean currents. As a consequence, displacements of sensors affect the UWASNs from different aspects, such as data transmission and network lifetime. We study and simulate the mobility of sensors and their communications, moving according to the Meandering Current Mobility (MCM) model. OMNeT++ and MATLAB are used to model and integrate three protocol layers of UWASNs: network, link, and physical. The network layer, simulated using OMNeT++, comprises transmission and reception of packets. The link layer, also simulated using OMNeT++, includes coding and decoding of frames. The physical layer is simulated using MATLAB. It contains models of a modulator, a channel, and a demodulator of underwater acoustic digital data signals. Moreover, the effects of noise and attenuation on the underwater communications are considered in the physical layer model. Two major metrics are calculated in this work: Bit Error Rate (BER) as a function of distance and BER as a function of signal energy per bit over noise power spectral density (E /N ). Finally, the performance of commu- b 0 nicating sensors moving according to the MCM model is evaluated. The simulation results illustrate that the BER for digital data signals is an increasing function of the distance. An increase in a transmitter-receiver separation distance, affects the data transmission by increasing the BER. In addition, the BER for digital data signals is a decreasing function of the E /N ratio. Also, the simulated BERs are higher than b 0 the theoretical BERs, that only take into account white noise. ix Acknowledgements I would like to express my sincere gratitude to my supervisor Dr. Michel Barbeau for his guidance and endless support during the completion of this work. I am very grate- ful for his patience, motivation, and immense knowledge. He is the best professor and teacher who truly made a difference in my life. However, words are not enough to ex- pressmygratitudeto him. Besides mysupervisor, I would like tothanktherest ofmy thesis committee: Professor Evangelos Kranakis, Professor St´ephane Som´e, Professor Jean-PierreCorriveau,fortheirinsightfulcomments. IexpressmythankstoSt´ephane Blouin, Joaquin Garcia-Alfaro, and Gimer Cervera. Special thanks to Public Works and Government Services Canada (PWGSC contract #W7707−145688/001/HAL), Natural Sciences and Engineering Research Council of Canada (NSERC) for finan- cial support. Last not least, to my spouce, parents, siblings and friends for all their patience and support. x

Description:
COMMUNICATIONS IN UNDERWATER ACOUSTIC SENSOR . OFDM. Orthogonal Frequency Division Multiplexing. OSTBC Orthogonal Space-Time Block Coding .. waves, rainfall, thermal agitation, turbulence, and shipping.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.