ebook img

Signature redacted Thesis Advisor PDF

88 Pages·2017·14.87 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Signature redacted Thesis Advisor

Applying the Engineering Systems Multiple-Domain Matrix Framework to Nanosatellite Space Systems by Kyle B. Hurst Bachelor of Science, Engineering Management United States Military Academy at West Point, 2008 Submitted to the System Design and Management Program in Partial Fulfillment of the Requirements of the Degree of Master of Science in Engineering and Management at the Massachusetts Institute of Technology June 2017 0 2017 Kyle B. Hurst. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. .zignature reaactea Signature of Author 7 Kyle B. Hurst System Design and Management Program May 01, 2017 Signature redacted Certified by Dr. Donna H. Rhodes Principal Research Scientist, Socio-technical Systems Research Center Director, Systems Engineering Advancement Research Initiative Signature redacted Thesis Advisor Accepted by_ Joan S. Rubin System Design and Management Program Executive Director MaA S'Aruv0cE7 tiUITITUTE: OF TECHNOLOGY JUN 272Z017 LIBRARIES ARCHIVES Disclaimer The views expressed in this thesis are those of the author and do not reflect the official policy or position of the U.S. Army, Department of Defense, or the U.S. Government 2 Applying the Engineering Systems Multiple-Domain Matrix Framework to Nanosatellite Space Systems by Kyle B. Hurst Submitted to the System Design and Management Program on May 01, 2017 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management Abstract The nanosatellite industry is expanding rapidly, as academic and private institutions develop new technologies for experimentation on orbit. These "CubeSats" are resource constrained, complex socio-technical systems that have complicated interdependencies across multiple domains. To improve understanding and reduce ambiguity, systems engineers apply a variety of modeling frameworks to model system behavior. Introduced in 2007, the Engineering Systems Multiple- Domain Matrix (ES-MDM) framework addresses the interdependencies of a complex engineering system, such as a CubeSat, across five domains: environmental, social, functional, technical and process. Using the Free-space Lasercom and Radiation Experiment (FLARE) CubeSat constellation as an example engineering system case, the ES-MDM is constructed using the qualitative knowledge construction framework to model and analyze the system drivers, stakeholders, objectives, function, objects and processes of the system. The primary objective of this analysis is to provide a structured systems design approach for nanosatellite development that encompasses the entire system holistically. The second objective is to analyze the interactions and interdependencies within a highly-constrained system and determine key design nodes that are critical to system flexibility. The third objective is to evaluate the ability of the ES-MDM methodology to analyze a highly-constrained system. The fourth objective of thesis is to provide recommendations for future work to improve the ES- MDM framework and the systems engineering field Thesis Supervisor: Dr. Donna H. Rhodes Title: Principal Research Scientist, Socio-technical Systems Research Center 3 Acknowledgements This thesis is dedicated to my wife, Elizabeth. Thank you for your love and support throughout our travels together. "God only know what I'd be without you." - Brian Wilson I would like to thank the U.S. Army and SDM for this amazing opportunity to broaden my educational horizons. Lastly, I would like to thank my thesis advisor Dr. Donna Rhodes. Her invaluable contributions to my research and guidance throughout the thesis process was critical to the success of the thesis. 4 Table of Contents Ab stract ........................................................................................................................................... 3 A cknow ledgem ents......................................................................................................................... 4 List of Figures ................................................................................................................................. 7 List of Tables .................................................................................................................................. 8 A cronym s........................................................................................................................................ 9 Chapter 1: Introduction................................................................................................................. 11 1.1 Background and M otivation............................................................................................ 11 1.2 Research Scope ................................................................................................................... 12 1.3 Research Objectives ............................................................................................................ 13 1.4 Organization of Thesis..................................................................................................... 13 Chapter 2: Literature Review ..................................................................................................... 15 2.1 Introduction to Engineering System s.............................................................................. 15 2.1.1 W hat is System s Engineering?........................................... ..................................... . . 15 2.1.2 W hy do w e need System s Engineering?................................... .............................. . . 16 2.1.3 System value................................................................................................................. 17 2.1.4 Life-cycle properties................................................................................................... 19 2.2 Current M odeling Fram ew ork Overview .......................................................................... 20 2.2.1 D epartm ent of D efense Architecture Fram ew ork ..................................................... 20 2.2.2 U nified M odeling Language (UM L)......................................................................... 22 2.2.3 System M odeling Language (SysM L).......................................................................... 23 2.2.3 Object Process M ethodology (OPM ) ....................................................................... 25 2.2.4 D esign Structure M atrix (D SM )................................................................................ 28 2.2.6 Dom ain M apping M atrix (DM M ).............................................................................. 30 2.2.6 M ultiple-D om ain M atrix (M DM ).............................................................................. 32 2.3 ES-M D M ............................................................................................................................. 33 2.3.1 ES-M D M Background.................................................................................................. 34 2.3.2 System Drivers ............................................................................................................. 35 2.3.3 Stakeholders.................................................................................................................. 36 2.3.4 Objectives..................................................................................................................... 36 2.3.5 Functions ...................................................................................................................... 36 2.3.6 Objects.......................................................................................................................... 37 2.3.7 A ctivities....................................................................................................................... 37 2.3.8 Existence A ttributes................................................................................................... 37 5 2.3.9 Interaction A nalysis................................................................................................... 38 Chapter 3: CubeSat Background and Evolution........................................................................ 39 3.1 Introduction to CubeSat Specifications............................................................................ 39 3.2 CubeSat Design................................................................................................................... 40 3.3 CubeSats as an Engineering System ................................................................................ 43 Chapter 4: FLA RE Case Study ................................................................................................... 45 4.1 FLA RE Program Background.......................................................................................... 45 4.2 FLA RE System Engineering Challenges........................................................................ 47 4.3 M otivation for ES-M D M A nalysis ..................................................................................... 51 Chapter 5: Constructing the ES-M D M ..................................................................................... 53 5.1 Inform ation Procurem ent and Abstraction...................................................................... 53 5.2 ES-M D M D evelopm ent and A nalysis ................................................................................ 56 Flexible De sign Opportunities............................................................................................ 67 N etwo rk Analysis .................................................................................................................. 74 5.3 Conclusions from ES-M D M analysis ................................................................................. 78 Chapter 6: Conclusions and Future W ork................................................................................. 81 6.1 ES-M D M CubeSat A pplications......................................................................................... 81 6.2 A ssessm ent of ES-M D M M ethodology .............................................................................. 82 6.3 Future W ork ........................................................................................................................ 84 W orks Cited .................................................................................................................................. 86 6 List of Figures Figure 1 - Systems Engineering Effort vs. Actual/Planned Cost Ratio Figure 2 - DoDAF View Points Figure 3 - UML Diagram Tree Figure 4 - SysML Diagram Tree Figure 5 - Example of an OPD with corresponding OPL using the OPM framework Figure 6 - Example DSM matrix before and after clustering analysis Figure 7 - The DSM-DMM Periodic Table Figure 8 - DMM mapping customer requirements with product specifications Figure 9 - Multiple-Domain Mapping across process, product and organizational matrices Figure 10 - Engineering System Multiple-Domain Matrix Figure 11 - ES-MDM Domain Interactions Summary Figure 12 - Example 3U CubeSat frame courtesy of FLARE PDR Figure 13 - Proposed FLARE Design CAD diagram, courtesy of FLARE Team Figure 14 - FLARE CONOPS, PDR 2017 Figure 15 - FLARE Structural Overview, PDR 2017 Figure 16 - Object Process Diagram for FLARE Satellite Figure 17 - Qualitative Knowledge Construction Example Figure 18 - System Driver Network Diagram Figure 19 - Stakeholder Value Network Diagram Figure 20 - Functional Decomposition Diagram Figure 21 - Formal Decomposition Diagram Figure 22 - Process Architecture Diagram Figure 23 - Example of QKC Coding in FLARE Technical Document Figure 24 - FLARE ES-MDM Figure 25 - FLARE ES-MDM Network Graph Figure 26 - Example Subgraph Figure 27 - Example Network Graph Figure 28 - Example Change Graph Figure 29 - Graph of Objects by Desired Flexibility Score Figure 30 - DoDAF 2.0 viewpoints overlaid in an ES-MDM 7 List of Tables Table 1 - SysML and OPM Comparison Table 2 - CubeSat Standard Dimensions Table 3 - Change Scenario Probability Table 4 - Change Initiator/Relationship Table 5 - Example Component Expected Expense for Change Scenario 1, Lasercom Payload Initiate, Power Relationship Table 6 - Object Betweenness Comparison Table 7 - Object Centrality Comparison Table 8 - External Stakeholder Betweenness and Centrality Comparison Table 9 - Internal Stakeholder Betweenness and Centrality Comparison 8 Acronyms 3U - Three Unit (10 cm x 30 cm) ADCS - Attitude Determination and Control System C&DH - Command and Data Handling C4ISR - Command, Control, Communications and Computers Intelligence Surveillance and Reconnaissance CAM - Cambridge Advanced Modeler CEE - Component Expected Expenses CIRT - Change Initiator Affects Relationship Type CONOPS - Concept of the Operation CS - Component Switch Cost CSD - Corporation Canisterized Satellite Dispenser DFS - Desired Flexibility Score DSM - Design Structure Matrix DMM - Domain Mapping Matrix DoDAF - Department of Defense Architecture Framework EOL - End of Life ES-MDM - Engineering Systems Multiple-Domain Matrix FDO - Flexible Design Opportunity FLARE - Free-space Lasercom and Radiation Experiment FPGA - Field Programmable Gate Array FSO - Free-space Optical INCOSE - International Council on Systems Engineering ISO - International Organization for Standardization ISS - International Space Station IT - Information Technology LEO - Low Earth Orbit MATLAB - Matrix Laboratory MBSE - Model-Based Systems Engineering MDM - Multiple-Domain Matrix MIT - Massachusetts Institute of Technology 9 MLI - Multilayer Insulation OMG - Object Management Group OPCAT - Object Process Case Tool OPD - Object Process Diagram OPL - Object Process Language OPM - Object Process Methodology Pc - Probability of Change Propagation Pcs - Change Scenario Probability PCIRT - Probability Change Initiator Affects Relationship Type P-POD - Poly Picosatellite Orbital Deployer PDR - Preliminary Design Review QFD - Quality Function Deployment QKC - Qualitative Knowledge Construction SE - Systems Engineering STAR - Space Telecommunication, Astronomy, and Radiation SVN - Stakeholder Value Network SysML - Systems Modeling Language UML - Unified Modeling Language UNP - University Nanosat Program 10

Description:
Signature redacted Thesis Advisor. Joan S. Rubin. System Design and Management Program. tiUITITUTE: Executive Director. OF TECHNOLOGY. JUN 272Z017. LIBRARIES technical and process. Using the Free-space Lasercom and Radiation Experiment (FLARE) CubeSat constellation as an.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.