ebook img

Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations PDF

503 Pages·2020·6.329 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations

Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations Monographs and Research Notes in Mathematics Series Editors: John A. Burns, Thomas J. Tucker, Miklos Bona, Michael Ruzhansky About the Series This series is designed to capture new developments and summarize what is known over the entire field of mathematics, both pure and applied. It will include a broad range of monographs and research notes on current and developing topics that will appeal to academics, graduate students, and practitioners. Interdisciplinary books appealing not only to the mathematical community, but also to engineers, physicists, and computer scientists are encouraged. This series will maintain the highest editorial standards, publishing well-developed monographs as well as research notes on new topics that are final, but not yet refined into a formal monograph. The notes are meant to be a rapid means of publication for current material where the style of exposition reflects a developing topic. Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties Feyzi Basar, Hemen Dutta Spectral Geometry of Partial Differential Operators (Open Access) Michael Ruzhansky, Makhmud Sadybekov, Durvudkhan Suragan Linear Groups: The Accent on Infinite Dimensionality Martyn Russel Dixon, Leonard A. Kurdachenko, Igor Yakov Subbotin Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s, Volume I Yoshihiro Sawano, Giuseppe Di Fazio, Denny Ivanal Hakim Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s, Volume II Yoshihiro Sawano, Giuseppe Di Fazio, Denny Ivanal Hakim Tools for Infinite Dimensional Analysis Jeremy J. Becnel Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations Luca Lorenzi, Abdelaziz Rhandi For more information about this series please visit: https://www.crcpress.com/Chapman--HallCRC- Monographs-and-Research-Notes-in-Mathematics/book-series/CRCMONRESNOT Semigroups of Bounded Operators and Second-Order Elliptic and Parabolic Partial Differential Equations Luca Lorenzi University of Parma, Italy Abdelaziz Rhandi University of Salerno, Italy First edition published 2021 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2021 Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all mate- rial reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, repro- duced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www. copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data ISBN: 9780367206291(hbk) ISBN: 9780429262593 (ebk) v To Adriana, Alfredo, Asma, Ursula and Rainer. Contents Symbol Description xi Preface xiii Introduction xv 1 Function Spaces 1 1.1 Spaces of (H¨older) Continuous Functions . . . . . . . . . . . . . . . . . . . 1 1.1.1 Functions defined on the boundary of a smooth open set . . . . . . . 7 1.2 Anisotropic and Parabolic Spaces of H¨older Continuous Functions . . . . . 8 1.2.1 Anisotropic spaces of functions defined on the boundary of a set . . 14 1.3 Lp- and Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Besov Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 I Semigroups of Bounded Operators 35 2 Strongly Continuous Semigroups 37 2.1 Definitions and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2 The Infinitesimal Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3 The Hille-Yosida, Lumer-Phillips and Trotter-Kato Theorems . . . . . . . . 44 2.4 Nonhomogeneous Cauchy Problems . . . . . . . . . . . . . . . . . . . . . . 50 2.5 Notes and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3 Analytic Semigroups 55 3.1 Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2 Sectorial Operators and Analytic Semigroups . . . . . . . . . . . . . . . . . 57 3.3 Interpolation Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.4 Nonhomogeneous Cauchy Problems . . . . . . . . . . . . . . . . . . . . . . 70 3.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 II Parabolic Equations 83 4 Elliptic and Parabolic Maximum Principles 85 4.1 The Parabolic Maximum Principles . . . . . . . . . . . . . . . . . . . . . . 85 4.1.1 Parabolic weak maximum principle . . . . . . . . . . . . . . . . . . . 85 4.1.2 The strong maximum principle . . . . . . . . . . . . . . . . . . . . . 92 4.2 Elliptic Maximum Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 vii viii Contents 5 Prelude to Parabolic Equations: The Heat Equation and the Gauss- Weierstrass Semigroup in C (Rd) 107 b 5.1 The Homogeneous Heat Equation in Rd. Classical Solutions: Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.2 The Gauss-Weierstrass Semigroup . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.1 Estimates of the spatial derivatives of T(t)f . . . . . . . . . . . . . . 114 5.3 Two Equivalent Characterizations of H¨older Spaces . . . . . . . . . . . . . 120 5.4 Optimal Schauder Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6 Parabolic Equations in Rd 137 6.1 The Continuity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.2 A priori Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.2.1 Solving problem (6.0.1) . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.2.2 Interior Schauder estimates for solutions to parabolic equations in domains: Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.3 More on the Cauchy Problem (6.0.1) . . . . . . . . . . . . . . . . . . . . . 157 6.4 The Semigroup Associated with the Operator A . . . . . . . . . . . . . . . 163 6.4.1 Interior Schauder estimates for solutions to parabolic equations in domains: Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6.5 Higher-Order Regularity Results . . . . . . . . . . . . . . . . . . . . . . . . 171 6.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7 Parabolic Equations in Rd with Dirichlet Boundary Conditions 175 + 7.1 Technical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.2 An Auxiliary Boundary Value Problem . . . . . . . . . . . . . . . . . . . . 184 7.3 Proof of Theorem 7.0.2 and a Corollary . . . . . . . . . . . . . . . . . . . . 190 7.4 More on the Cauchy Problem (7.0.1) . . . . . . . . . . . . . . . . . . . . . 192 7.5 The Associated Semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 8 Parabolic Equations in Rd with More General Boundary Conditions 199 + 8.1 A Priori Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 8.2 Proof of Theorem 8.0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 8.3 InteriorSchauderEstimatesforSolutionstoParabolicEquationsinDomains: Part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 8.4 More on the Cauchy Problem (8.0.1) . . . . . . . . . . . . . . . . . . . . . 224 8.5 The Associated Semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 9 Parabolic Equations in Bounded Smooth Domains Ω 229 9.1 Optimal Schauder Estimates for Solutions to Problems (9.0.1) and (9.0.2) . 230 9.2 InteriorSchauderEstimatesforSolutionstoParabolicequationsinDomains: Part IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 9.3 More on the Cauchy Problems (9.0.1) and (9.0.2) . . . . . . . . . . . . . . 243 9.4 The Associated Semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 9.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 Contents ix III Elliptic Equations 247 10 Elliptic Equations in Rd 249 10.1 Solutions in H¨older Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 10.1.1 The Laplace equation . . . . . . . . . . . . . . . . . . . . . . . . . . 251 10.1.2 More general elliptic operators . . . . . . . . . . . . . . . . . . . . . 252 10.1.3 Further regularity results and interior estimates . . . . . . . . . . . . 254 10.2 Solutions in Lp(Rd;C) (p∈(1,∞)) . . . . . . . . . . . . . . . . . . . . . . 256 10.2.1 The Calder´on-Zygmund inequality . . . . . . . . . . . . . . . . . . . 256 10.2.2 The Laplace equation . . . . . . . . . . . . . . . . . . . . . . . . . . 266 10.2.3 More general elliptic operators . . . . . . . . . . . . . . . . . . . . . 269 10.2.4 Further regularity results and interior Lp-estimates . . . . . . . . . . 279 10.3 Solutions in L∞(Rd;C) and in C (Rd;C) . . . . . . . . . . . . . . . . . . . 286 b 10.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 11 Elliptic Equations in Rd with Homogeneous Dirichlet Boundary Condi- + tions 291 11.1 Solutions in H¨older Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 11.1.1 Further regularity results . . . . . . . . . . . . . . . . . . . . . . . . 294 11.2 Solutions in Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 11.2.1 Further regularity results . . . . . . . . . . . . . . . . . . . . . . . . 304 11.3 Solutions in L∞(Rd;C) and in C (Rd;C) . . . . . . . . . . . . . . . . . . . 309 + b + 11.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 12 Elliptic Equations in Rd with General Boundary Conditions 315 + 12.1 The Cα-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 12.1.1 Further regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 12.2 Elliptic Equations in Lp(Rd;C) . . . . . . . . . . . . . . . . . . . . . . . . 321 + 12.2.1 Further regularity results . . . . . . . . . . . . . . . . . . . . . . . . 332 12.3 Solutions in L∞(Rd;C) and in C (Rd;C) . . . . . . . . . . . . . . . . . . . 334 + b + 12.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 13 Elliptic Equations on Smooth Domains Ω 339 13.1 Elliptic Equations in Cα(Ω;C) . . . . . . . . . . . . . . . . . . . . . . . . . 339 13.1.1 Further regularity results . . . . . . . . . . . . . . . . . . . . . . . . 348 13.2 Elliptic Equations in Lp(Ω;C) . . . . . . . . . . . . . . . . . . . . . . . . . 351 13.2.1 Further regularity results . . . . . . . . . . . . . . . . . . . . . . . . 360 13.3 Solutions in L∞(Ω;C), in C(Ω;C) and in C (Ω;C) . . . . . . . . . . . . . . 364 b 13.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 14 Elliptic Operators and Analytic Semigroups 369 14.1 The Semigroup in C (Rd;C) . . . . . . . . . . . . . . . . . . . . . . . . . . 369 b 14.2 The Semigroups in C (Rd;C) . . . . . . . . . . . . . . . . . . . . . . . . . 374 b + 14.2.1 Proof of Theorems 7.4.1 and 7.4.3 . . . . . . . . . . . . . . . . . . . 384 14.3 The Semigroups in C (Ω;C) . . . . . . . . . . . . . . . . . . . . . . . . . . 389 b 14.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.