ebook img

Semi-Markov processes : applications in system reliability and maintenance PDF

252 Pages·2015·2.925 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Semi-Markov processes : applications in system reliability and maintenance

Semi-Markov Processes: Applications in System Reliability and Maintenance Semi-Markov Processes: Applications in System Reliability and Maintenance Franciszek Grabski Polish Naval University Gdynia, Poland AMSTERDAM (cid:129) BOSTON (cid:129) HEIDELBERG (cid:129) LONDON (cid:129) NEW YORK (cid:129) OXFORD PARIS (cid:129) SAN DIEGO (cid:129) SAN FRANCISCO (cid:129) SYDNEY (cid:129) TOKYO Elsevier Radarweg29,POBox211,1000AEAmsterdam,Netherlands TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UK 225WymanStreet,Waltham,MA02451,USA Copyright(cid:2)c 2015ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedin anyformorbyanymeanselectronic,mechanical,photocopying,recordingorotherwise withoutthepriorwrittenpermissionofthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRights DepartmentinOxford,UK:phone(+44)(0)1865843830;fax(+44)(0)1865853333; email:permissions@elsevier.com.Alternativelyyoucansubmityourrequestonlineby visitingtheElsevierwebsiteathttp://elsevier.com/locate/permissions,andselectingObtaining permissiontouseElseviermaterial. Notice Noresponsibilityisassumedbythepublisherforanyinjuryand/ordamagetopersonsor propertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseoroperation ofanymethods,products,instructionsorideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-800518-7 ForinformationonallElsevierpublications visitourwebsiteatstore.elsevier.com ThisbookhasbeenmanufacturedusingPrintonDemandtechnology.Eachcopyisproduced toorderandislimitedtoblackink.Theonlineversionofthisbookwillshowcolorfigures whereappropriate. Dedication To my wife Marcelina Preface The semi-Markov processes were introduced independently and almost simultane- ouslybyLevy[70],Smith[92],andTakacs[94]in1954-1955.Theessentialdevelop- mentsofsemi-MarkovprocessestheorywereproposedbyPyke[85,86],Cinlar[15], KorolukandTurbin[60–62],Limnios[72],Takacs[95].Herewepresentonlysemi- Markovprocesseswithadiscretestatespace.Asemi-Markovprocessisconstructed bytheMarkovrenewalprocess,whichisdefinedbytherenewalkernelandtheinitial distributionorbyothercharacteristicsthatareequivalenttotherenewalkernel. Semi-Markov Processes: Applications in System Reliability and Maintenance consistsofapreface,15relativelyshortchapters,asummary,andabibliography. Chapter 1 is devoted to the discrete state space Markov processes, especially continuous-time Markov processes and homogeneous Markov chains. The Markov processes are an important class of the stochastic processes. This chapter covers some basic concepts, properties, and theorems on homogeneousMarkov chains and continuous-timehomogeneousMarkovprocesseswithadiscretesetofstates. Chapter 2 provides the definitions and basic properties related to a discrete state spacesemi-Markovprocess.Thesemi-Markovprocessisconstructedbytheso-called Markov renewal process. The Markov renewal process is defined by the transition probabilities matrix, called the renewal kernel, and by an initial distribution or by othercharacteristicsthatareequivalenttotherenewalkernel.Theconceptspresented are illustrated by some examples. Elements of the semi-Markov process statistical estimationarealsopresentedinthechapter.Here,theestimationoftherenewalkernel elements is considered by observing oneor many sample paths in the time interval, or givennumberof thestate changes.Basicconceptsof thenonhomogeneoussemi- Markovprocessestheoryarealsointroducedinthechapter. Chapter 3 is devoted to some characteristics and parameters of the semi-Markov process.Arenewalkernelandaninitialdistributioncontainfullinformationaboutthe processandtheyallowustofindmanycharacteristicsandparametersoftheprocess, whichwecantranslateonthereliabilitycharacteristicsinthesemi-Markovreliability model.Thecumulativedistributionfunctionsofthefirstpassagetimefromthegiven statestoasubsetofstates,andexpectedvaluesandsecondmomentscorrespondingto them,areconsideredinthischapter.Theequationsforthesequantitiesarepresented here. Moreover, the chapter discusses a concept of interval transition probabilities and the Feller equations are also derived. Karolyuk and Turbin theorems of the limiting probabilities are also presented here. Furthermore, the reliability and main- tainabilitycharacteristicsandparametersinsemi-Markovmodelsareconsideredinthe chapter. xii Preface Chapter 4 is concerned with the application of the perturbed semi-Markov pro- cesses in reliability problems. The results coming from the theory of semi-Markov processes perturbations allow us to find the approximate reliability function. The perturbedsemi-Markovprocesses are defined in differentways by differentauthors. Thistheoryhasarichliterature.Inthischapterwepresentonlyafewofthesimplest types of perturbed SM processes. All concepts of the perturbed SM processes are explainedin the same simple example. The last section is devotedto the state space aggregationmethod. InChapter5the randomprocessesdeterminedbythe characteristics ofthe semi- Markovprocessare considered.First is a renewal processgeneratedby returntimes ofagivenstate.Thesystemsofequationsforthedistributionandexpectationofthem havebeenderived.Thelimittheoremfortheprocessisformulatedbytheadoptionof atheoremoftherenewaltheory.Thelimitingpropertiesofthealternatingprocessand integralfunctionalsofthesemi-Markovprocessarealsopresentedinthischapter.The chaptercontainsillustrativeexamples. The semi-Markov reliability model of two different units of a renewable cold standbysystemandtheSMmodelofahospitalelectricalpowersystemarediscussed inChapter6. InChapter7,themodelofmultistageoperationwithoutrepairandthemodelwith repairareconstructed.Applicationofresultsofsemi-Markovprocesstheoryallowed tocalculatethereliabilityparametersandcharacteristicsofthemultistageoperation. Themodelsareappliedformodelingthemultistagetransportoperationprocesses. In Chapter 8, the semi-Markov model of the load rate process is discussed. The speedofacarandtheloadrateofashipengineareexamplesoftherandomloadrate process.Theconstructionofdiscretestatemodeloftherandomloadrateprocesswith continuoustrajectoriesleadstothesemi-Markovrandomwalk.Estimatingthemodel parameters and calculating the semi-Markov process characteristics and parameters giveusthepossibilitytoanalyzethesemi-Markovloadrate. Chapter9containsthesemi-Markovmodelofthemultitaskoperationprocess. Chapter 10 is devoted to the semi-Markov failure rate process. In this chapter, the failure rate is assumed to be a stochastic process with nonnegative and right- continuous trajectories. The reliability function is defined as an expectation of a function of that random process. Particularly, the failure rate can be defined by the discrete state space semi-Markov process. The theorem concerning the renewal equations for the conditional reliability function with a semi-Markov process as a failurerateispresented.Thereliabilityfunctionwitharandomwalkasafailurerate isinvestigated.ForPoissonfailurerateprocessandFurry-Yulefailurerateprocessthe reliabilityfunctionsarepresented. InChapter11,timetoapreventiveserviceoptimizationproblemisformulated.The semi-Markovmodeloftheoperationprocessallowedustoformulatetheoptimization problem. A theorem containing the sufficient conditions of the existing solution is formulatedandproved.Anexampleexplainsandillustratesthepresentedproblem. In Chapter 12, a semi-Markov modelof system componentdamageis discussed. Themodelspresentedheredealwithunrepairablesystems. Themultistate reliability functionsandcorrespondingexpectations,secondmoments,andstandarddeviations Preface xiii areevaluatedforthepresentedcasesofthecomponentdamage.Aspecialcaseofthe model is a multistate model with two kinds of failures. A theorem dealing with the inverseproblemforasimpledamageexponentialmodelisformulatedandproved. In Chapter 13, some results of investigation of the multistate monotone system withcomponentsmodeledbytheindependentsemi-Markovprocessesarepresented. We assume that the states of system components are modeled by the independent semi-Markov processes. Some characteristics of a semi-Markov process are used as reliability characteristicsofthesystem components.Inthechapter,thebinaryrepre- sentationofthemultistatemonotonesystemsisdiscussed.Thepresentedconceptsand modelsareillustratedbysomenumericalexamples. The semi-Markov models of functioning maintenance systems, which are called maintenance nets, are presented in Chapter 14. Elementary maintenance operations form the states of a SM model. Someconcepts and results of Semi-Markovprocess theoryprovidethepossibilityofcomputingimportantcharacteristicsandparameters of the maintenance process. Two semi-Markov models of maintenance nets are discussedinthechapter. In Chapter 15, basic concepts and results of the theory of semi-Markov decision processes are presented. The algorithm of optimizing a SM decision process with a finitenumberofstatechangesisdiscussedhere.Thealgorithmisbasedonadynamic programming method. To clarify it, the SM decision model for the maintenance operation is shown. The optimization problem for the infinite duration SM process and the Howard algorithm, which enables us to find the optimal stationary strategy arealsodiscussedhere.Toexplainthisalgorithm,adecisionproblemforarenewable seriessystemispresented. Thebookisprimarilyintendedforresearchersandscientists dealingwith mathe- maticalreliabilitytheory(mathematicians)andpractitioners(engineers)dealingwith reliabilityanalysis.Thebookisaveryhelpfultoolforscientists, Ph.D.students,and M.Sc.studentsintechnicaluniversitiesandresearchcenters. Acknowledgments I would like to thank Professor Krzysztof Kołowrocki for mobilization to write this book,thecouncilforits effortsto release itandvaluablecommentson itscontent. I am gratefulto DrAgata-Załe¸ska Fornalforherfriendlyfavorininsightfullinguistic revisionofmybookandvaluablecomments.IgratefullyacknowledgeDrErinHill- Parks,Associate AcquisitionsEditor,forkindcooperationandassistance inmeeting therequirementsofElseviertosignapublishingcontract.IamgratefultoCariOwen, EditorialProjectManager,forhercareandkindassistanceindealingwiththeeditors. Finally,IthankmywifeMarcelinaforherhelpincomputerproblemsintheprocess ofwritingabookaswellasherpatienceandgreatsupport. FranciszekGrabski Discrete state space Markov 1 processes Abstract The Markov processes are an important class of the stochastic processes. The Markov property means that evolution of the Markov process in the future depends only on the presentstateanddoesnotdependonpasthistory.TheMarkovprocessdoesnotremember thepastifthepresent stateisgiven.Hence,theMarkovprocessiscalledtheprocesswith memorylessproperty.Thischaptercoverssomebasicconcepts,properties,andtheoremson homogeneous Markovchainsandcontinuous-timehomogeneous Markovprocesseswitha discretesetofstates.Thetheoryofthosekindsofprocessesallowsustocreatemodelsof realrandomprocesses,particularlyinissuesofreliabilityandmaintenance. Keywords: Markov process, Homogeneous Markov chain, Poisson process, Furry-Yule process,Birthanddeathprocess 1.1 Basic definitions and properties Definition1.1.Astochasticprocess{X(t):t∈T}withadiscrete(finiteorcountable) state space S is said to be a Markov process, if for all i,j,i0,i1,...,in−1 ∈S and t0,t1,...,tn,tn+1 ∈R+ suchthat0(cid:2)t0 <t1 <···tn <tn+1, P(X(tn+1)=j|X(tn)=i,X(tn−1)=in−1,...,X(t0)=i0) =P(X(tn+1)=j|X(tn)=i). (1.1) If t0,t1,...,tn−1 are interpreted as the moments from the past, tn as the present instant,andtn+1asthemomentinthefuture,thentheabove-mentionedequationsays that the probability of the future state is independent of the past states, if a present state is given. So, we can say that evolution of the Markov process in the future dependsonlyonthepresentstate.TheMarkovprocessdoesnotrememberthepastif thepresentstateisgiven.Hence,theMarkovprocessiscalledthestochasticprocess withmemorylessproperty. From the definition of the Markov process it follows that any process with independentincrementsistheMarkovprocess. IfT=N ={0,1,2,...},theMarkovprocessissaidtobeaMarkovchain,ifT= 0 R+ =[0,∞),itiscalledthecontinuous-timeMarkovprocess.Lettn =u, tn+1 =τ. Theconditionalprobabilities p (u,s)=P(X(τ)=j|X(u)=i), i,j∈S (1.2) ij aresaidtobethetransitionprobabilitiesfromthestateiatthemomentu,tothestate jatthemoments. Semi-MarkovProcesses:ApplicationsinSystemReliabilityandMaintenance.http://dx.doi.org/10.1016/B978-0-12-800518-7.00001-6 Copyright(cid:4)c2015ElsevierInc.Allrightsreserved. 2 Semi-MarkovProcesses:ApplicationsinSystemReliabilityandMaintenance Definition1.2.TheMarkovprocess{X(t):t∈T}iscalledhomogeneous,ifforall i,j∈Sandu, s∈T,suchthat0(cid:2)u<s, p (u,s)=p (s−u). (1.3) ij ij It means that the transition probabilities are the functions of a difference of the momentssandu.Substitutingt=s−uweget p (t)=P(X(s−u)=j|X(u−u)=i)=P(X(t)=j|X(0)=i), i,j∈S, t(cid:3)0. ij The number p (t) is called a transition probability from the state i to the state j ij duringthetimet. If {X(t):t∈R+} is a process with the stationary independentincrements, taking valuesonadiscretestatespaceS,then P(X(t+h)=j, X(h)=i) p (t)=P(X(t+h)=j|X(h)=i)= ij P(X(h)=i) P(X(t+h)−X(h)=j−i, X(h)=i) = P(X(h)=i) P(X(t+h)−X(h)=j−i)P(X(h)=i) = P(X(h)=i) =P(X(t+h)−X(h)=j−i). Therefore, any process with the stationary independent increments is a homoge- neousMarkovprocesswithtransitionprobabilities p (t)=P(X(t+h)−X(h)=j−i). (1.4) ij For the homogeneous Markov process with a discrete state space, the transition probabilitiessatisfythefollowingconditions: (a) p(cid:2)ij(t)(cid:3)0, t∈T, (b) p (t)=1, ij i∈S (cid:2) (1.5) (c) p (t+s)= p (t)p (s), t∈T, s(cid:3)0. ij ik kj k∈S ThelastformulaisknownastheChapman-Kolmogorovequation. 1.2 Homogeneous Markov chains As we have mentioned, a Markov chain is a special case of a Markov process. We willintroducethebasicpropertiesoftheMarkovchainswiththediscretestatespace. ProofsofpresentedtheoremsomittedheremaybefoundinRefs.[3,9,22,47,88,90]. 1.2.1 Basic definitions and properties Now let us consider a discrete time homogeneous Markov process {X :n∈N }, n 0 havingafiniteorcountablestatespaceSthatiscalledahomogeneousMarkovchain (HMC).Recallthatforeachmomentn∈Nandallstatesi,j,i0,...,in−1 ∈Sthereis DiscretestatespaceMarkovprocesses 3 P(Xn+1 =j|Xn =i,Xn−1 =in−1,...,X1 =i1,X0 =i0) =P(Xn+1 =j|Xn =i) (1.6) whenever P(Xn =i,Xn−1 =in−1,..., X1 =i1,X0 =i0)>0. TransitionprobabilitiesoftheHMC p (n,n+1)=P(X(n+1)=j|X(n)=i), i,j∈S, n∈N (1.7) ij 0 areindependentofn∈N : 0 p (n,n+1)=p , i,j∈S, n∈N . (1.8) ij ij 0 Thesquarenumbermatrix (cid:3) (cid:4) P= p : i,j∈S (1.9) ij is said to be a matrix of transition probabilities or transition matrix of the HMC {X(n):n∈N }.Itiseasytonoticethat 0 (cid:5) ∀i,j∈S pij (cid:3)0 and∀ j∈S pij =1. (1.10) j∈S (cid:3) (cid:4) The matrix P= p :i,j∈S having the above-mentioned properties is called a ij stochastic matrix. There exists the natural question: Do the stochastic matrix P and discrete probability distribution p(0)=[p =i:i∈S] define completely the HMC? i Thefollowingtheorema(cid:3)nswersthisq(cid:4)uestion. Theorem 1.1. Let P= pij :i,j∈S be a stochastic matri(cid:2)x and p=[pi :i∈S] be the one-row matrix with nonnegative elements, such that p =1. There exists a i i∈S probabilityspace((cid:3),F,P)anddefinedonthisspaceHMC{X(n(cid:3)):n∈N0}(cid:4)withthe initialdistributionp=[p :i∈S]andthetransitionmatrixP= p :i,j∈S . i ij Proof:[9,47]. From(1.6)weobtain P(X =i ,X =i ,...,X =i )=p p p ...p . (1.11) 0 0 1 1 n n i0 i0i1 i1i2 in−1in Anumber p (n)=P(X(n)=j|X(0)=i)=P(X(n+w)=j|X(w)=i) (1.12) ij denotesatransitionprobabilityfromstateitostatejthroughouttheperiod[0, n],(in nsteps).Now,theChapman-Kolmogorovequationisgivenbyaformula (cid:5) p (m+r)= p (m)p (r), i,j∈S (1.13) ij ik kj k∈S orinmatrixform P(m+r)=P(m)P(r), (cid:3) (cid:4) whereP(n)= p (n):i,j∈S . ij

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.