Ennio DeGiorgi SelectedPapers Ennio DeGiorgi (Courtesy of Foto Frassi, Pisa) Ennio De Giorgi Selected Papers Published with the support of Unione Matematica Italiana and Scuola Normale Superiore ABC Editors LuigiAmbrosio MarioMiranda SNS,Pisa,Italy UniversityofTrento,Italy GianniDalMaso SergioSpagnolo SISSA,Trieste,Italy UniversityofPisa,Italy MarcoForti UniversityofPisa,Italy LibraryofCongressControlNumber:2005930439 ISBN-10 3-540-26169-9SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-26169-8SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialiscon- cerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, re- productiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965,in itscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsareliablefor prosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com (cid:1)c Springer-VerlagBerlinHeidelberg2006 PrintedinTheNetherlands Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelawsand regulationsandthereforefreeforgeneraluse. Typesetting:bytheeditorsandTechBooksusingaSpringerLATEXmacropackage Coverdesign:ErichKirchner,Heidelberg Printedonacid-freepaper SPIN:11372011 41/TechBooks 543210 Preface The project of publishing some selected papers by Ennio De Giorgi was under- taken by the Scuola Normale Superiore and the Unione Matematica Italiana in 2000. The main motivations for this project have been the desire to make some of his classical papers, originally published in Italian, available to a large public and to display the broad range of his achievements and his entire intel- lectual path, as a problem solver and as a proponent of deep and ambitious mathematical theories. Weselected43papers, outof152, andfor17ofthemwedecidedtokeepthe original Italian version as well, in order to give a feeling of De Giorgi’s original style. In the development of this long project we have been helped by several col- laborators. In particular we wish to thank Diego Pallara and Emanuele Paolini, for their many fundamental contributions, and Sisto Baldo, Giovanni Bellettini, Andrea Braides, Piero D’Ancona, Massimo Gobbino, Giacomo Lenzi, Roberto Monti, Maurizio Paolini, Paolo Tilli and Vincenzo Maria Tortorelli, who helped us in the typing and the translations of the papers. WewarmlythankLuisCaffarelliandLouisNirenbergfortheircontributions to this volume. Pisa, March 2005 Luigi Ambrosio Gianni Dal Maso Marco Forti Mario Miranda Sergio Spagnolo Contents 1 Biography 1 1.1 Prizes and academic awards . . . . . . . . . . . . . . . . . . . . . 1 1.2 Teaching and academic engagements . . . . . . . . . . . . . . . . 2 1.3 The activities out of Pisa . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Civil, political, and religious engagement . . . . . . . . . . . . . . 4 2 The scientific work of Ennio De Giorgi 5 2.1 Complete list of De Giorgi’s scientific publications . . . . . . . . 5 2.2 From the juvenile papers to Plateau’s Problem and the solution of Hilbert’s 19th Problem . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 The first articles . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 The development of the theory of perimeters . . . . . . . 20 2.2.3 The solution of Hilbert’s 19th Problem . . . . . . . . . . . 21 2.2.4 The Plateau Problem and the Bernstein Theorem . . . . 22 2.3 Partial differential equations and the foundations of Γ-convergence 23 2.3.1 The examples of nonuniqueness . . . . . . . . . . . . . . . 23 2.3.2 Gevrey classes and hyperbolic equations . . . . . . . . . . 24 2.3.3 Analytic solutions of equations with constant coefficients 25 2.3.4 The foundations of Γ-convergence . . . . . . . . . . . . . 26 2.4 Asymptotic problems in the Calculus of Variations . . . . . . . . 27 2.4.1 The developments of Γ-convergence . . . . . . . . . . . . 27 2.4.2 Semicontinuity and relaxation problems . . . . . . . . . . 29 2.4.3 Evolution problems for nondifferentiable functionals . . . 30 2.5 The most recent developments in the Calculus of Variations . . . 31 2.5.1 Free discontinuity problems . . . . . . . . . . . . . . . . . 31 2.5.2 Mean curvature evolution . . . . . . . . . . . . . . . . . . 31 2.5.3 Minimizing movements. . . . . . . . . . . . . . . . . . . . 32 2.5.4 Minimal surfaces in metric spaces. . . . . . . . . . . . . . 33 2.6 The work on Foundations of Mathematics . . . . . . . . . . . . . 33 2.6.1 The Seminar on Foundations . . . . . . . . . . . . . . . . 33 2.6.2 The Free Construction Principle . . . . . . . . . . . . . . 35 2.6.3 The Frame Theory and the Ample Theory . . . . . . . . . 36 2.6.4 The basic theories . . . . . . . . . . . . . . . . . . . . . . 36 2.6.5 The theories of 2000 . . . . . . . . . . . . . . . . . . . . . 37 VIII Contents 2.7 Remarks on some of the analytic works of Ennio De Giorgi, by Louis Nirenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.8 De Giorgi’s contribution to the regularity theory of elliptic equations, by Luis Caffarelli . . . . . . . . . . . . . . . . . . . . . 42 3 Selected papers 49 1. Definition and analytic expression of the perimeter of a set . . . . 50 1a. Definizione ed espressione analitica del perimetro di un insieme . . 54 2. Onageneral(r−1)-dimensionalmeasuretheoryinar-dimensional space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2a. Su una teoria generale della misura (r −1)-dimensionale in uno spazio ad r dimensioni . . . . . . . . . . . . . . . . . . . . . . . . 79 3. A uniqueness theorem for the Cauchy problem relative to linear partial differential equations of parabolic type . . . . . . . . . . . 100 4. An example of non-unique solution to the Cauchy problem, for a partial differential equation of parabolic type . . . . . . . . . . . 107 5. New theorems on (r −1)-dimensional measures in r-dimensional space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5a. Nuoviteoremirelativiallemisure(r−1)-dimensionaliinunospazio ad r dimensioni . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6. Some applications of a K-dimensional measure theory to the calculus of variations . . . . . . . . . . . . . . . . . . . . . . . . . 145 6a. Alcune applicazioni al calcolo delle variazioni di una teoria della misura K-dimensionale. . . . . . . . . . . . . . . . . . . . . . . . 147 7. On the differentiability and the analyticity of extremals of regular multiple integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7a. Sulla differenziabilita` e l’analiticita` delle estremali degli integrali multipli regolari. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 8. On the isoperimetric property of the hypersphere in the class of sets whose oriented boundary has finite measure . . . . . . . . . 185 8a. Sulla proprieta` isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita . . . . . . . . . 198 9. Complements to the (n−1)-dimensional measure theory in a n-dimensional space . . . . . . . . . . . . . . . . . . . . . . . . . 212 10. Area-minimizing oriented boundaries. . . . . . . . . . . . . . . . . 231 11. An extension of Bernstein theorem . . . . . . . . . . . . . . . . . . 264 12. Hypersurfaces of minimal measure in pluridimensional Euclidean spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 13. Removable singularities of minimal hypersurfaces . . . . . . . . . . 278 14. An example of discontinuous extremals for a variational problem of elliptic type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 14a. Unesempiodiestremalidiscontinueperunproblemavariazionale di tipo ellittico . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 15. Minimal Cones and the Bernstein Problem . . . . . . . . . . . . . 291 16. An a priori estimate related to nonparametric minimal surfaces . . 316 17. A representation formula for analytic functions in Rn . . . . . . . 331 Contents IX 17a. Una formula di rappresentazione per funzioni analitiche in Rn . . 335 18. A direct proof of the existence of analytic solutions in the real plane of partial differential equations with constant coefficients . 339 18a. Unadimostrazionedirettadell’esistenzadisoluzionianalitichenel piano reale di equazioni a derivate parziali a coefficienti costanti 350 19. Convergence of the energy integrals for second order elliptic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 19a. Sullaconvergenzadegliintegralidell’energiaperoperatoriellittici del secondo ordine . . . . . . . . . . . . . . . . . . . . . . . . . . 380 20. On the convergence of some sequences of area-like integrals . . . . 399 20a. Sulla convergenza di alcune successioni d’integrali del tipo dell’area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 21. Γ-convergence and G-convergence . . . . . . . . . . . . . . . . . . 429 21a. Γ-convergenza e G-convergenza . . . . . . . . . . . . . . . . . . . 437 22. On hyperbolic equations with coefficients depending on time only 445 23. Convergence problems for functionals and operators . . . . . . . . 487 24. On a type of variational convergence . . . . . . . . . . . . . . . . . 517 25. Evolution problems in metric spaces and steepest descent curves . 527 26. Generalized limits in Calculus of Variations . . . . . . . . . . . . . 534 27. A framing theory for the Foundations of Mathematics . . . . . . . 570 28. A self–reference oriented theory for the foundations of mathematics 583 29. Introduction to free-discontinuity problems . . . . . . . . . . . . . 634 30. Existence theorem for a minimum problem with free discontinuity set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654 31. New functionals in Calculus of Variations . . . . . . . . . . . . . . 679 32. Conjectures on limits of some quasilinear parabolic equations and flow by mean curvature . . . . . . . . . . . . . . . . . . . . . . . 690 33. New problems on minimizing movements . . . . . . . . . . . . . . 699 34. Lectio Magistralis: “The sapiential value of Mathematics” . . . . . 714 34a. Lectio Magistralis “Il valore sapienziale della matematica” . . . . 720 35. Fundamental principles of Mathematics . . . . . . . . . . . . . . . 726 36. Technical complements to the lecture of E. De Giorgi . . . . . . . 734 37. Introducing basic theories for the Foundations of Mathematics . . 745 37a. Una proposta di teoria base dei Fondamenti della Matematica . . 758 38. Anintroductionofvariablesintotheframeofthebasictheoriesfor the Foundations of Mathematics . . . . . . . . . . . . . . . . . . 771 38a. Introduzione delle variabili nel quadro delle teorie base dei Fondamenti della Matematica . . . . . . . . . . . . . . . . . . . . 783 39. General Plateau problem and geodesic functionals . . . . . . . . . 795 40. Conjectures about some evolution problems . . . . . . . . . . . . . 801 40a. Congetture riguardanti alcuni problemi di evoluzione . . . . . . . 814 41. Towards the axiomatic systems of the third millennium in Mathematics, Logic, and Computer Science . . . . . . . . . . . 827 42. Truth and judgments within a new axiomatic framework . . . . . 846 X Contents 43. Overcoming set–theoretic reductionism in search of wider and deeper mutual understanding between Mathematicians and scholars of different scientific and human disciplines . . . . . . . 867 43a. Dal superamento del riduzionismo insiemistico alla ricerca di una piu`ampiaeprofondacomprensionetramatematiciealtristudiosi di altre discipline scientifiche ed umanistiche. . . . . . . . . . . . 878 Chapter 1 Biography Ennio De Giorgi was born in Lecce on February 8, 1928. His mother, Stefania Scopinich, came from a family of navigators from Lussino, while his father, Nicola, professor of literature in the teachers’ training school of Lecce, was an esteemed scholar in Arabic Language, History, and Geography. His father died an untimely death in 1930; his mother, to whom Ennio was particularly bound, lived until 1988. In 1946, after his high school studies in Lecce, Ennio moved to Rome, where he started his university studies in Engineering. The following year he switched to Mathematics, and graduated in 1950 under the direction of Mauro Picone. Soon afterwards he obtained a fellowship at the Istituto per le Applicazioni del Calcolo,andin1951hebecameassistanttoPiconeattheMathematicalInstitute “Guido Castelnuovo” of the University of Rome. In1958hewasawardedtheChairofMathematicalAnalysisbytheUniversity of Messina, where he started in this post in December. In the autumn of 1959, following a proposal by Alessandro Faedo, he was hired by the Scuola Normale of Pisa, where he held the Chair of Algebraic and Infinitesimal Mathematical Analysis for almost forty years. In September 1996 he was admitted to the hospital in Pisa. He underwent surgical treatment, and passed away on October 25. 1.1 Prizes and academic awards In 1960 the Italian Mathematical Union awarded him the Caccioppoli Prize, founded in the same year. In 1973 the Accademia dei Lincei awarded him the Prize of the President of the Republic. In 1990 he received the prestigious Wolf Prize in Tel Aviv. In1983,duringasolemnceremonyatSorbonne,hereceivedthedegreehono- ris causa in Mathematics at the University of Paris. In 1992 the University of Lecce awarded him the degree honoris causa in Philosophy, of which he was particularly proud.