ebook img

SEGMENTING THE MALE PELVIC ORGANS FROM LIMITED ANGLE IMAGES WITH ... PDF

191 Pages·2013·3.61 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview SEGMENTING THE MALE PELVIC ORGANS FROM LIMITED ANGLE IMAGES WITH ...

SEGMENTING THE MALE PELVIC ORGANS FROM LIMITED ANGLE IMAGES WITH APPLICATION TO ART Charles Brandon Frederick A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Biomedical Engineering. Chapel Hill 2013 Approved by: David Lalush Stephen Pizer Sha Chang Wesley Snyder Paul Segars (cid:13)c 2013 Charles Brandon Frederick ALL RIGHTS RESERVED ii Abstract CHARLES BRANDON FREDERICK: SEGMENTING THE MALE PELVIC ORGANS FROM LIMITED ANGLE IMAGES WITH APPLICATION TO ART. (Under the direction of David Lalush and Stephen Pizer) Prostate cancer is the second leading cause of cancer deaths in men, and external beam radiotherapy is a common method for treating prostate cancer. In a clinically state-of-the-art radiotherapy protocol, CT images are taken at treatment time and are used to properly position the patient with respect to the treatment device. In adap- tive radiotherapy (ART), this image is used to approximate the actual radiation dose delivered to the patient and track the progress of therapy. Doing so, however, requires that the male pelvic organs of interest be segmented and that correspondence be estab- lished between the images (registration), such that cumulative delivered dose can be accumulated in a reference coordinate system. Because a typical prostate radiotherapy treatment is delivered over 30-40 daily fractions, there is a large non-therapeutic radi- ation dose delivered to the patient from daily imaging. In the interest of reducing this dose, gantry mounted limited angle imaging devices have been developed which reduce dose at the expense of image quality. However, in the male pelvis, such limited angle images are not suitable for the ART process using traditional methods. In this work, a patient specific deformation model is developed that is sufficient for use with limited angle images. This model is learned from daily CT images taken during the first several treatment fractions. Limited angle imaging can then be used for the remaining fractions at decreased dose. When the parameters of this model are set, it provides segmentation of the prostate, bladder, and rectum, correspondence between the images, and a CT-like image that can be used for dose accumulation. However, intra-patient deformation in the male pelvis is complex and quality deformation models iii cannot be developed from a reasonable number of training images using traditional methods. This work solves this issue by partitioning the deformation to be explained into independent sub-models that explain deformation due to articulation, deformation near to the skin, deformation of the prostate bladder, and rectum, and any residual deformation. It is demonstrated that a model that segments the prostate with accuracy comparable to inter-expert variation can be developed from 16 daily images. iv TABLE OF CONTENTS LIST OF FIGURES viii LIST OF ABBREVIATIONS x 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Image Guided Radiotherapy . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Limited Angle Imaging . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 Intra-patient Deformation Models . . . . . . . . . . . . . . . . . 6 1.2 Thesis and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Background 13 2.1 Radiation Therapy in the Male Pelvis . . . . . . . . . . . . . . . . . . . 13 2.1.1 Prostate Cancer and Treatment . . . . . . . . . . . . . . . . . . 13 2.1.2 Radiation Therapy Process . . . . . . . . . . . . . . . . . . . . . 15 2.1.3 Devices and Methods for Imaging and Treatment . . . . . . . . 17 2.2 Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Fourier Slice Theorem . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Filtered Backprojection . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.3 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 28 v 2.2.4 Limited Angle Problem . . . . . . . . . . . . . . . . . . . . . . . 35 2.3 Mathematics of Transformations . . . . . . . . . . . . . . . . . . . . . . 39 2.3.1 Introduction to Diffeomorphic Transformations . . . . . . . . . 41 2.3.2 Lie Groups and Manifolds . . . . . . . . . . . . . . . . . . . . . 44 2.4 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.4.1 Non-rigid Registration . . . . . . . . . . . . . . . . . . . . . . . 58 2.4.2 Group-wise Registration . . . . . . . . . . . . . . . . . . . . . . 66 2.4.3 Dimensionality Reduction on Transformations . . . . . . . . . . 68 2.4.4 3D/2D Registration . . . . . . . . . . . . . . . . . . . . . . . . . 70 3 Method Overview 76 3.1 Partitioning of Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2 Poly-rigid Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.3 Mean Centering of Transformations . . . . . . . . . . . . . . . . . . . . 79 3.4 Summary of Transformations . . . . . . . . . . . . . . . . . . . . . . . 83 4 Polyrigid Deformations from Bony Anatomy 88 4.1 Poly-rigid Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2 Determining a Weight Function . . . . . . . . . . . . . . . . . . . . . . 93 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 104 5 Multi-Deformation Models for Tissue Deformation 108 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.2 Deformation Model Learning . . . . . . . . . . . . . . . . . . . . . . . . 109 5.2.1 Group-wise Symmetric Log Demons Registration . . . . . . . . 109 5.2.2 Anatomical Constraints . . . . . . . . . . . . . . . . . . . . . . 112 5.2.3 Registration of Segmentations . . . . . . . . . . . . . . . . . . . 113 vi 5.2.4 Residual Registration and Correction of Gas . . . . . . . . . . . 117 5.2.5 Effects of Image Truncation During Model Learning . . . . . . . 121 5.2.6 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . 123 5.2.7 Geodesics of Transformations . . . . . . . . . . . . . . . . . . . 126 5.3 Treatment-time Application . . . . . . . . . . . . . . . . . . . . . . . . 131 5.3.1 Inability to Calculate the Derivative . . . . . . . . . . . . . . . 131 5.3.2 Model Length Concerns During Application . . . . . . . . . . . 132 5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.4.1 Method Variants . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.4.2 Context of Results . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.4.3 Multi-deformation Model . . . . . . . . . . . . . . . . . . . . . . 140 5.4.4 Single Deformation Model . . . . . . . . . . . . . . . . . . . . . 145 5.4.5 Poly-rigid and Deformation Model . . . . . . . . . . . . . . . . 147 5.4.6 Number of Training Days . . . . . . . . . . . . . . . . . . . . . 149 5.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 151 6 Discussion 153 6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.2.1 Method Improvements . . . . . . . . . . . . . . . . . . . . . . . 159 6.2.2 Clinical Translation . . . . . . . . . . . . . . . . . . . . . . . . . 162 APPENDIX A GPU Acceleration in Medical Imaging 164 A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 A.2 Parallel GPUs in Medical Image Computing . . . . . . . . . . . . . . . 164 A.3 CUDA Hardware Abstraction . . . . . . . . . . . . . . . . . . . . . . . 167 BIBLIOGRAPHY 173 vii LIST OF FIGURES 2.1 Gantry Mounted Limited Angle Imaging Devices . . . . . . . . . . . . . 20 2.2 X-Ray Imaging Geometries . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Fourier Slice Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Backprojection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Spatial Sampling of Parallel Projections . . . . . . . . . . . . . . . . . 26 2.6 Simple Backprojection and Filtered Backprojection . . . . . . . . . . . 27 2.7 Filtered Backprojection Scaling . . . . . . . . . . . . . . . . . . . . . . 28 2.8 Matrix Form for Projection . . . . . . . . . . . . . . . . . . . . . . . . 29 2.9 Iterative Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.10 Limited Angle Reconstruction Examples . . . . . . . . . . . . . . . . . 37 2.11 Simulated Nanotube Stationary Tomosynthesis Images . . . . . . . . . 38 2.12 Sphere Response of a Limited Angle Geometry . . . . . . . . . . . . . . 40 2.13 Log Mapping of the Earth . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.14 Principle Component Analysis . . . . . . . . . . . . . . . . . . . . . . . 69 3.1 Order of Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.1 Linear versus Log Domain Combination of Rotations . . . . . . . . . . 90 4.2 Interpretation of Linear versus Log Domain Combination of Rotations . 90 4.3 Poly-rigid versus Direct Fusion of Rotations . . . . . . . . . . . . . . . 92 4.4 Poly-rigid versus Direct Fusion of Rigid Transformations . . . . . . . . 93 4.5 Weight Function for Simulated Patient . . . . . . . . . . . . . . . . . . 99 4.6 Poly-rigid Transformation Space of Simulated Patient . . . . . . . . . . 100 4.7 Poly-rigid Weights and Registered Example versus Rigid Registration . 102 viii 4.8 Image Distance for Poly-rigid versus Rigid Transformation . . . . . . . 103 4.9 Poly-rigid Initialization Decreases Image Distance of Rigid Initialization 105 4.10 Images Supporting 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.1 Isosurface Rendering of a Skin Atlas . . . . . . . . . . . . . . . . . . . 116 5.2 Organ Stage Image Data . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.3 Isosurface Rendering of Organ Atlas . . . . . . . . . . . . . . . . . . . . 118 5.4 Gas Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.5 Final Patient Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.6 Possible Intermediates Along Geodesics Between Two Ellipses . . . . . 128 5.7 Organ Modes of Deformation, Log Domain . . . . . . . . . . . . . . . . 129 5.8 Organ Modes of Deformation, Linear Domain . . . . . . . . . . . . . . 130 5.9 Annotated Reprojection Image . . . . . . . . . . . . . . . . . . . . . . . 134 5.10 Rigid Segmentation Performance . . . . . . . . . . . . . . . . . . . . . 138 5.11 Experimental Patient Orientations . . . . . . . . . . . . . . . . . . . . 139 5.12 Full Method Segmentation Performance, PGA . . . . . . . . . . . . . . 142 5.13 Full Method Segmentation Performance, PCA . . . . . . . . . . . . . . 143 5.14 Method Variant Performance Summary . . . . . . . . . . . . . . . . . . 144 5.15 Sample Reconstructed Image . . . . . . . . . . . . . . . . . . . . . . . . 144 5.16 Deformed Image as an Approximation to Planning CT . . . . . . . . . 146 5.17 Simple Method Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.18 Single Deformation Model with Poly-rigid Results . . . . . . . . . . . . 150 5.19 Performance versus Number of Training Images . . . . . . . . . . . . . 151 ix LIST OF ABBREVIATIONS ART adaptive radiotherapy AP anterior-posterior BCH Baker-Campbell-Hausdorff formula BFGS Broyden-Fletcher-Goldfarb-Shanno CBCT cone beam CT CPU central processing unit CT X-ray computed tomography CUDA Compute Unified Device Architecture DSC Dice’s similarity coefficient DVF displacement vector field EBRT external beam radiotherapy EM expectation-maximization FBCT fan beam CT FBP filtered backprojection FIR finite impulse response FOV field of view x

Description:
for dose accumulation. However, intra-patient deformation in the male pelvis is complex and quality deformation models . 5.5 Final Patient Atlas . HIFU high intensity focused ultrasound LA-CBCT limited angle cone beam CT.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.