Security Game with Non-additive Utilities and Multiple Attacker Resources Sinong Wang Ness Shroff DepartmentofECE DepartmentsofECEandCSE TheOhioStateUniversity TheOhioStateUniversity Columbus,OH-43210 Columbus,OH-43210 [email protected] [email protected] ABSTRACT theoptimaldefensestrategy. Itallowstheanalysttofactordiffer- 7 entialrisksandvaluesintothemodel,incorporategame-theoretic 1 Therehasbeensignificantinterestinstudyingsecuritygamesfor predictionsofhowtheattackerwouldrespondtothesecuritypol- 0 modelingtheinterplayofattacksanddefensesonvarioussystems icy,andfinallydetermineanequilibriumstrategythatcannotbeex- 2 involving critical infrastructure, financial system security, politi- ploitedbyadversariestoobtainahigherpayoff.Inthepastdecade, calcampaigns,andcivilsafeguarding. However,existingsecurity n therehasbeenanexplosionofresearchattemptingtoaddressthis gamemodelstypicallyeitherassumeadditiveutilityfunctions,or a approach,whichhasledtothedevelopmentofwell-knownmodels thattheattackercanattackonlyonetarget. Suchassumptionslead J ofsecuritygames. to tractable analysis, but miss key inherent dependencies that ex- 0 Theclassicsecuritygameisatwo-playergameplayedbetweena ist among different targets in current complex networks. In this 3 defenderandanattacker.Theattackerchoosesonetargettoattack; paper, we generalize the classical security game models to allow Thedefenderallocates(randomly)limitedresources,subjecttovar- for non-additive utility functions. We also allow attackers to be ] ious domain constraints, to protect a set of targets. The attacker T abletoattackmultipletargets.Weexaminesuchageneralsecurity (defender)willobtainthebenefits(losses)forthosesuccessfullyat- G gamefromatheoreticalperspectiveandprovideaunifiedview. In tackedtargetsandlosses(benefits)forthosedefendedtargets. The particular,weshowthateachsecuritygameisequivalenttoacom- . goalofthedefenderistochoosearandomstrategysoastoplay s binatorialoptimizationproblemoverasetsystemε,whichconsists c of defender’s pure strategy space. The key technique we use is optimallyundersomesolutionconceptssuchasNashequilibrium [ andstrongStackelbergequilibrium.Thissecuritygamemodeland basedonthetransformation,projectionofapolytope,andtheelip- 1 soidmethod. Thisworksettlesseveralopenquestionsinsecurity itsgame-theoreticsolutioniscurrentlybeingusedbymanysecu- rityagenciesincludingUSCoastGuardandFederalAirMarshals v gamedomainandsignificantlyextendsthestate-of-the-artofboth Service(FAMS)[1],TransportationSystemAdministration[2]and 4 thepolynomialsolvableandNP-hardclassofthesecuritygame. eveninthewildlifeprotection[3]; seebookbyTambe[4]foran 4 overview. 6 Keywords 8 1.1 Motivation Securitygames;Computationalgametheory;Complexity 0 Thereexiststwocommonlimitationsoftheclassicsecuritygame . 1 1. INTRODUCTION model:first,itdoesnotconsiderthedependencyamongthediffer- 0 enttargets; second, theattackercanattackatmostonetarget. In Thekeyprobleminmanysecuritydomainsishowtoefficiently 7 particular,thepayofffunctionsforbothplayersareadditive,i.e,the 1 allocatelimitedresourcestoprotecttargetsagainstpotentialthreats. payoffofagroupoftargetsisthesumofthepayoffsofeachtarget : Forexample,thegovernmentmayhavealimitedpoliceforcetoop- v eratecheckpointsandconductrandompatrols.However,theadver- separately. Thisassumptionmeansthatthesecurityagencymea- Xi sarialaspectinsecuritydomainposesauniquechallengeforallo- surestheimportanceofseveraltargetswithoutconsideringthesyn- ergyamongthem. Inpractice,theattackercansimultaneouslyat- catingresources.Anintelligentattackercanobservethedefender’s r tackmultipletargetsandthereexistssomelinkagestructureamong a strategyandgatherinformationtoschedulemoreeffectiveattacks. thosetargetssuchthatattackingonetargetwillinfluencetheother Therefore,thesimplerandomstrategyof“rollingthedice”maybe targets.Forinstance,anattackerattemptstodestroytheconnectiv- exploited by the attacker, which greatly reduces the effectiveness ityofanetworkandthedefenderaimstoprotectit. Thestrategy ofthestrategy. for both players is to choose the nodes of the network. If there With the development of computational game theory, such re- aretwonodesthatconstituteabridgeofthisnetwork,successfully sourceallocationproblemscanbecastingame-theoreticcontexts, attackingbothofthemwillsplitthenetworkintotwopartsandin- whichprovidesamoresoundmathematicalapproachtodetermine curahugedamage,whileattackinganyoneofthemwillhaveno significanteffect. Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalor classroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributed forprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcita- EXAMPLE 1. AsshowninFig.1,wehavea20−nodenetwork. tiononthefirstpage. Copyrightsforcomponentsofthisworkownedbyothersthan Itisclearlythatnodes1,2,3and4arethecriticalbattlefieldsin ACMmustbehonored.Abstractingwithcreditispermitted.Tocopyotherwise,orre- thisnetwork. Supposethattheattacker’sanddefender’sstrategies publish,topostonserversortoredistributetolists,requirespriorspecificpermission and/[email protected]. are{1},{2},{3},{1,2}or{3,4},where{v}denotestheindexof the nodes. We adopt the network value function proposed by [5] as the security measure for different nodes, which calculates the (cid:13)c 2017ACM.ISBN978-1-4503-2138-9. importance of a group of nodes via subtracting the value of the DOI:10.1145/1235 Additive Utility Function 1 Strategy 1 2 3 4 1,2 3,4 Benefit 39 39 75 75 78 150 3 4 2 Non-‐additive Utility Function Strategy 1 2 3 4 1,2 3,4 Benefit 39 39 75 75 238 142 Figure1:Exampleofsecuritygameina20−nodesnetwork. network by removing these nodes from the value of the original framework[8]andshowsthatthecompactlyrepresentedsecurity network1.Forexample,ifweadoptthenetworkvalueasafunction gameispolynomialsolvableinsomecaseswhileNP-hardinother f({n }) = (cid:80) n2, where n is number of nodes in the ith con- cases. [14] shows that the spatial and temporal security game is i i i i nectedcomponent,thevalueoftheoriginalnetworkis202 =400. generallyNP-hard. [15]providesaninterestingresultthat, ifthe Afterremovingnode3,thenetworkwillbedividedintotwocom- attackerhasasingleresource, thestrongStackelbergequilibrium ponents:one18−nodenetworkandoneisolatednode,thenetwork is also a Nash equilibrium, which resolves the leader’s dilemma; valueisreducedto182+12 =325. Thusthebenefitofnode3is iftheattackerhasmultipleresources,thispropertydoesnothold. equaltothedecrement400−325=75. Similarly,wecangetthe [16]provesthatthegeneralsecuritygamewithcostlyresources3is benefitsofothernodesasillustratedinthebottomtableofFig1. NP-hardandproposesanapproximationalgorithm. Intraditionalsecuritygamemodels[6],theyassumethattheben- Theearliermentionedworksstudyingthecomplexityofthese- efit of strategy {1,2} and {3,4} is equal to 39+39 = 78 and curity game focus on the game with a single attacker resource. 75+75 = 150. Themixedstrategyequilibrium2 underthiscase However, none of these works provide a systematic understand- isthatdefenderchoosenodes1,2withprobability0.34andnodes ingofcomplexitypropertiesorprovideanefficientalgorithmfor 3,4 with probability 0.66. Instead, if we adopt the true value of thesecuritygamewhenattackerhasmultipleresourcesandutility nodes{1,2}and{3,4}(asillustratedinredofbottomtable),the functions are non-additive. In [6], the authors extend the classic equilibriaisthatthedefenderchoosesnodes1,2withprobability securitygamemodeltothescenarioofmultipleattackerresources. 0.63andnodes3,4withprobability0.37. Fromthepointviewof Theydesigna6−statestransitionalgorithmtoexactlycomputethe thenetwork,thesecondoneprovidesamorereliablestrategy. Nashequilibriuminpolynomialtime. Suchanalgorithmiscom- plicatedandrestrictedtothecasethatthedefender’sresourceisho- AscanbeseeninExample1,thetraditionalmodelsthatignore mogenous,i.e.,thedefendercanprotectanysubsetoftargetswith the inherent synergy effect between the targets are limiting and a cardinality constraint. In the practical scenario such as FAMS, could lead to catastrophic consequences. A comprehensive anal- thedefender’sresourcesmaybeheterogenousandsolvingsucha ysisregardingtheeffectofdependenttargetscanbefoundin[7]. scenarioisstillanopenquestioninthesecuritygamedomain. Inwork[17],theauthorsproposetoinvestigatethesecuritygame 1.2 RelatedWorks with non-additive utilities. However, they assume that the secu- Thenatureofresourceallocationinsecuritygamesoftenresults rity game is zero-sum, the defender’s resources are homogenous in exponentially many pure strategies for the defender, such that andonlyoneonegroupofutilities(benefitfunction). Therecent thedefender’soptimalmixedstrategyishardtosolve. Inthepast work [18] provides a unified framework of the classical security decades,therehavebeennumerousalgorithmsdevelopedforvari- gamemodelwithasingleattacker’sresource. Heshowsthatsolv- ousextensionsoftheclassicalsecuritygamemodeldiscussedear- ingthesecuritygameisequivalenttosolvingalinearoptimization lier. problemoverasetsystem. Usingtheflexibilityofsuchasetsys- Onelineofresearchfocusesondesigninganefficientalgorithm tem, their framework can encode most previous security games. tosolvesuchagame. [8]proposesacompactrepresentationtech- Forexample,ifthesetsystemisauniformmatroid,itrecoversthe nique,inwhichthesecuritygamecanbeequivalentlyrepresented resultofLAXcheckpointplacementproblem[19]; ifthesetsys- byapolynomial-sizedmixed-integerlinearprogramming(MILP) temrepresentsacoverageproblem,itrecoversmostresultsin[9], problem. The issue in [8] is that they only determine the opti- i.e.,thepolynomialsolvabilityof2−weightedcoverageimpliesthe malsolutionofthecompactgameinsteadoftheoptimaldefender’s polynomialsolvabilityofequilibriumcomputation; ifthesetsys- mixedstrategy.Tosolvethisproblem,[9]introducestheBirkhoff- temrepresentstheproblemofindependentset,itrecoverstheNP- von Neumann theorem and show that the defender’s mixed strat- hardnessresultin[2].However,theyleaveopenthequestion:what egy can be recovered under a specific condition. [10] proposes is the complexity of the security game model when attacker has adouble-oraclealgorithmtoexactlysolvethesecuritygamewith multipleresourcesandutilityfunctionsarenon-additive. exponentiallargerepresentation,whichcanberegardedasagen- 1.3 OurResults eralization of traditional column generation technique in solving thelarge-scalelinearprogrammingproblem. Therearealsoother Inthispaper,westudytheclassicsecuritygamemodelwhenat- workssuchastheBayesiansecuritygame[11],thesecuritygame tackerhasmultipleresourcesandutilityfunctionsarenon-additive. with quantal response [12] and the security game with uncertain Morespecifically,wewonderhowthefollowingquestionsthatare attackerbehavior[13],etc. wellunderstoodinthecaseofsingleattackerresourceandadditive Anotherlineofresearchfocusesonexamingthecomplexityof utilityfunctionscanbeaddressedinthisgeneralcase. thesecuritygame. [9]adoptsthepreviouscompactrepresentation • Howtocompactlyrepresentthesecuritygamewithmultiple 1Compared with traditional measures such as node degree or be- attackerresourcesandnon-additiveutilityfunctions? tweenness centrality, the network value provides a more accurate description of the importance of different nodes. We can use the 3Here “costly resources” means that the defender’s resource are otherkindsofnetworkvaluesinsteadofthequadraticform. obtainedatsomecostsandthedefenderhasabudgettoallocatehis 2Inthisexample,weadoptthezero-sumsecuritygamemodel. resources. Table1:SolutionStatusintheSecurityGame Cases Singleattackerresource Multipleattackerresource Homogenousresource Heterogenousresource Zero-sum SSE,NE[8,15,18,20] SSE,NE[6] SSE,NETheorem6,Lemma11 Additiveutilityfunction Non-zero-sum SSE[20],NE[15,18] NE[6] SSETheorem7,NETheorem8 Zero-sum Sameasabove NE,SSETheorem6,Theorem9 Non-additiveutilityfunction Non-zero-sum Sameasabove SSETheorem7,Theorem9 • Howtoefficientlysolvesuchacompactlyrepresentedgame? utilityfunctions,andthepreliminariesregardingsomeclassicalre- sultsincombinatorialoptimization. InSection3, wepresentour • Whatisthecomplexityofthesecuritygamewhenwecon- frameworkofpolytopetransformationandprojectiontocompactly sidernon-additiveutilityfunctionsandallowtheattackersto representthezero-sumsecuritygame.InSection4,wepresentthe attackmultipleattackerresources? reductionbetweenthezero-sumsecuritygameandthecombinato- To answer these questions, we provide the following contribu- rialoptimizationproblem. InSection5,wefurthergeneralizeour tions:(1)wefirstproposeapolytopetransformationandprojection frameworktothenon-zero-sumsecuritygameandpresentthemain framework to equivalently and compactly represent the zero-sum results.Finally,weprovidesnumerousapplicationsofourtheoret- and non-additive security game with only poly(n) variables; (2) icalframeworkinSection6. WeconcludeourworkinSection7. WeprovethattheproblemofdeterminingtheNashequilibriumof Duetothespacelimitation,allofourtechnicalproofsareprovided zero-sumandnon-additivesecuritygameandtheproblemofopti- intheAppendix. mizingaPseudo-Booleanfunctionoverasetsystemεcanbere- ducedtoeachotherinpolynomialtime.Themaintechniqueweuse 2. MODELANDPRELIMINARY istoexploitthegeometricstructureofthelow-dimensionalpoly- topetoconstructapolynomialtimevertexmappingalgorithm. (3) In the following, we first define the security game with non- Wethenapplyourframeworktothenon-zero-sumandnon-additive additiveutilityfunctionsandmultipleattackerresourcesasatwo- securitygame,andfurtherobtainasimilarresultthatdetermining playernormal-formnon-zero-sumgame. Thenwepresentseveral thestrongStackelbergequilibriumandtheabovecombinatorialop- classicresultsincombinatorialoptimization. timizationproblemisequivalent.(4)Finally,weexaminetheNash equilibrium in the non-zero-sum but additive security game. We 2.1 ProblemDescription provethatdeterminingtheNashequilibriumcanbereducedtothe The model is similar to the classic security game [8], and the linearoptimizationoverasetsystemε. Thebasictechniqueisto onlydifferenceisthatweconsidermultipleattackerresourcesand add another polytope transformation step in our previous frame- non-additiveutilityfunctions. work,andshowthatdeterminingtheNashequilibriumofnon-zero- Playersandtargets:Thesecuritygamecontainstwoplayers(a sumgamecanbereducedtoapolynomialdimensionalsaddlepoint defenderandanattacker),andntargets.Weuse[n](cid:44){1,2,...,n} problem. ThemainresultsandcomparisonissummarizedinTA- todenotethesetofthesetargets. BLE1.2. Strategiesandindexfunction:Thepurestrategyforeachplayer Theseresultsdemonstratethatthesecuritygamewithnon-additive is the subset of targets and all the pure strategies for each player utilityfunctionandmultipleattackerresourceisessentiallyacom- constitute a collection of subsets of [n]. We assume that the at- binatorialproblem, andprovidea systematic frameworktotrans- tacker can attack at most c targets, where c > 1 is a constant4. formthegame-theoreticalproblemtotheproblemofcombinatorial Theattacker’spurestrategyspaceisauniformmatroidA={A⊆ algorithmdesign. Further, ourresultsnotonlyanswerstheques- [n]||A|≤c}andthenumberofattacker’spurestrategiesisN (cid:44) tionsproposedinthesecuritygamedomain[6,18],butalsoextends a |A|.Similarly,weuseD∈2[n]todenotethedefender’spurestrat- significantlyboththepolynomialsolvableandNP-hardclass: egy space and N (cid:44) |D|. Note that there exists some resource d • The previous result in [18] is dependent on the description allocation constraints in practice and such that D is not always a lengthofthesetsystem. Onespecialcaseofourresultcan uniform matroid. For example, if the defender has a budget and recoverandstrengthenthemainresultsin[18],whichisin- itsresourceareobtainedatsomecosts,inwhichthecostsarehet- dependentofthedescriptionlengthofthesetsystem.Italso erogenous. Inthiscase,thedefender’sfeasiblepurestrategyisall implies that we also recover and strengthen the results in thepossiblecombinationsofthetargetswithtotalcostlessthanthe mostsecuritygamepapers. budget. • Thepolynomialtimesolvabilityin[6]correspondingtothat Suppose that the order of the pure strategy of the attacker is thesetsystemε,isauniformmatroid,whichcanbeeasily givenbyindexfunctionσ(·),whichisaone-onemapping:2[n] → solvedbysummingthefirstk largestelements. Inthesce- {1,2,··· ,2n}.Then,wedefinethefollowingindexfunctionµ(·) nario of the heterogenous resource, we can extend several for the pure strategy of the defender as: µ(U) = σ(Uc) for any polynomialsolvableclasses. U ∈ 2[n]. Forsimplicity,theindexfunctionσ(·)andµ(·)arede- finedoverallsubsetsof[n]. Thereasonbehindthisdefinitionof • Solve the security game occurred in the tree network or a the index function is to simplify the representation of most theo- sparsenetwork.Inthesecases.althoughtheutilityfunctions reticalresults. Forexample,ifn = 2,A = D = 2{1,2},andthe are non-additive, we can show such a problem can be re- orderoftheattacker’spurestrategyisσ({1,2}) = 1,σ({2}) = ducedtoapolynomialsolvableoraclesuchasasub-modular 2,σ({1})=3andσ({∅})=4,thentheorderfordefender’spure minimizationproblem. strategyisµ({∅})=1,µ({1})=2,µ({2})=3andµ({1,2})= ThedetaileddiscussionscanbeseeninSection6.Therestofthe 4. paperisorganizedasfollows. InSection2,weintroducethesecu- ritygamemodelwithmultipleattackerresourcesandnon-additive 4Later,inSection5,wewillrelaxthisconstantassumption. Successfully Insomeapplicationdomain,thedefendercanbuildfortifications attacked. beforetheattackandisthusintheleader’spositionfromthepoint viewofthegame, andabletomovefirst. Inthiscase, thestrong Stackelberg equilibrium (SSE) serves as a more appropriate solu- Successfully tionconcept[21,22],wherethedefendercommitstoamixedstrat- defended. egy;theattackerobservesthisstrategyandcomesupwithitsbest (LimAittetda cBkuedrg et) (resoDurecfee nadlloecr ation responses.Formally,letC(q)=argmaxp∈∆Na Ua(p,q)denote Select multiple constraint) theattacker’sbestresponsetodefender’smixedstrategyq. Apair targets to attack and Select a subset of ofmixedstrategies(p∗,q∗)isaSSE,ifandonlyif, avoid being trapped Interdependent targets to defend. by defender Targets q∗ =arg max U (C(q),q)andp∗ =C(q∗). d (Non-additive payoffs) q∈∆Nd Figure2:Securitygamewithnon-additiveutilityfunctionsand Ourgoalistocomputethedefender’sNashequilibriumstrategies multipleattackerresources. andstrongStackelbergequilibriumstrategiesandwecallitasequi- libriumcomputationproblem. Thefollowingdefinitionsareof- Themixed strategyistheprobabilitydistributionoverthepure tenusedinourtheoreticaldevelopment. strategyspace,whichisemployedwhentheplayerchoosesitsstrat- egybasedonsomerandomexperiment.Specifically,iftheattacker DEFINITION 1. (Commonutility)Thecommonutilityisdefined astheMo¨biustransformation[23,24]ofthebenefitandlossfunc- choosespasitsmixedstrategy,theprobabilitythatthestrategyA tionB (U)andL (U)forallU ∈2[n], ischosenisp . Thesetofallthemixedstrategiesofattacker a a σ(A) awnhderdeefender can be represented as the simplex ∆Na and ∆Nd, Bac(U)= (cid:88)(−1)|U\V|Ba(V), Lca(U)= (cid:88)(−1)|U\V|La(V). V⊆U V⊆U ∆ ={p∈RNa| (cid:88) p =1}. Na + σ(A) Similar definitions hold for defender’s benefit and loss function: A∈A B (·),L (·)andtheircommonutilities:Bc(·),Lc(·). d d d d Similardefinitionholdsfor∆ . Nd Payoff Structure: The benefits and losses are represented by DEFINITION 2. (Support set) The support set of the security utilityfunctionsasfollows. LetsetfunctionB (·) : A → Rand gameisdefinedas a B (·):D →Rbetheattacker’sanddefender’sbenefitfunctions, anddthesetfunctionL (·):A→RandL (·):D→Rbethecor- S ={A∈A|Bac(A)orBdc(A)orLca(A)orLcd(A)(cid:54)=0}. (1) a d respondinglossfunctions.Thestandardassumptionisthattheben- andthesupportindexsetσ(S)={σ(A)|A∈S}. efitisalwayslargerthantheloss: B (A)>L (A)andB (A)> a a d Ld(A)forallA∈A. Iftheattackeranddefenderchoosestrategy DEFINITION 3. (Projection operator) The projection operator A ∈ AandD ∈ D,theattacker’sanddefender’spayoffisgiven π :RN →R|S|is S byB (A\D)+L (A∩D)andB (A∩D)+L (A\D),respec- tivelya5.Asecurityagameiszero-sumdifB (A\D)+d L (A\D)=0 πS((x1,x2,...,xN))=(...,xi,...)i∈σ(S), (2) a d andBd(A∩D)+La(A∩D)=0foranyAandD,whichmeans andprojectionofpolytope:Π (∆ )(cid:44){π (x)|x∈∆ }. S N S N thatoneplayer’sbenefitisindeedthelossoftheotherplayer. Bilinear-form:Basedontheabovepayoffstructure,wecande- Thefollowingdefinitionofthesetsystemεisabinaryrepresenta- finethebenefitmatricesofattackeranddefender: Ba andBd ∈ tionofthedefender’spurestrategyspaceD. RNa×Nd:∀A∈A,D∈D, Baσ(A),µ(D) =Ba(A\D),Bdσ(A),µ(D) =Bd(A∩D), 1{iD∈EFDIN}I,T∀IO1N≤4i.≤(Snet,∀SyDste∈mD)T}h.esetsystemε(cid:44){x∈{0,1}n|xi = andthelossmatrices:LaandLd ∈RNa×Nd:∀A∈A,D∈D, 2.2 Preliminaries Laσ(A),µ(D) =La(A∩D),Ldσ(A),µ(D) =Ld(A\D), LetH beanon-emptyconvexpolytopeinRn. Givenavector w∈Rn,onewantstofindasolutiontomax wTx.By“linear LetMa andMd betheattacker’sanddefender’spayoffmatrices. optimizationoverH”,wemeansolvingtheprxo∈bHlemmax wTx ItisclearthatMa = Ba+La andMd = Bd+Ld. Thenthe foranyw ∈Rn. AseparationproblemforH isthat,givxe∈nHavec- expectedpayoffsfortheattackeranddefenderisgivenbyfollowing torx ∈ Rn,decideifx ∈ H,andifnot,findahyperplanewhich bilinear form, when they play the mixed strategy p ∈ ∆ and Na separates x from H. The following results are due to Gro¨tschel, q∈∆ ,by Nd LovaszandSchrijver[25]. U (p,q)=pTMaq and U (p,q)=pTMdq. a d THEOREM 1. (Separation and optimization) Let H ∈ Rn be Solution Concepts: If both players move simultaneously, the aconvexpolytope. Thereisapoly(n)timealgorithmtosolvethe standardsolutionconceptistheNashequilibrium(NE),inwhich linearoptimizationproblemoverHifandonlyofthereisapoly(n) nosingleplayercanobtainahigherpayoffbydeviatingunilaterally timealgorithmtosolvetheseparationproblemforH. fromthisstrategy. Apairofmixedstrategies(p∗,q∗)formsaNE ifandonlyiftheysatisfythefollowing:∀p∈∆ ,q∈∆ , THEOREM 2. (Separationandconvexdecomposition)LetH ∈ Na Nd Rn be a convex polytope. If there is a poly(n) time algorithm Ud(p∗,q∗)≥Ud(p∗,q)andUa(p∗,q∗)≥Ua(p,q∗). to solve the separation problem for H, then there is a poly(n) 5A\D isthestandardsetdifference,definedbyA\D = {x|x ∈ time algorithm that, given any x ∈ H, yields (n+1) vertices A,x∈/ D}andisequaltoA∩Dc,whereDcisthecomplementary v1,...,vn+1 ∈Handconvexcoefficientsλ1,...,λn+1suchthat setofsubsetD. x=(cid:80)n+1λ vi. i=1 i ThefollowingresultisthegeneralizationofthevonNeumann’s Moreover, consideringthefactthatonlythefirstr elementsin minimax theorem, which provides a condition when we can use vectorp¯ andq¯ andfirstselementsinp¯ andq¯ havethenon- 1 1 2 2 theminimaxormaximinformulationtosolveasaddlepointprob- zerocoefficientsintheaboveoptimizationmodel, wecanfurther lem[26]. simplifytheaboveoptimizationproblemas min max p¯TBaq¯ +p¯TLaq¯ , (5) THEOREM 3. (Sion’s minimax theorem) Let X be be a com- (q¯1,q¯2)∈Hd(p¯1,p¯2)∈Ha 1 r 1 2 s 2 pactconvexsubsetofalineartopologicalspaceandY isaconvex wheretheH andH isobtainedbyprojectingthepolytope∆a subsetofalineartopologicalspace. Iff isareal-valuedfunction a d Na onX×Y with and∆dNd tothosecoordinatesbelongingtothenon-zeroblocks. Thebasicobservationintheaboveexampleisthatthenumber 1. f(x,·)islowersemicontinuousandquasi-convexony,∀x∈ of variables in the optimization model (5) is equal to the sum of Xand rankr+sofpayoffmatrices. Basedontherankinequalitythat therankofamatrixislessthanitsdimension,wehavethatr,s≤ 2. f(·,y)isuppersemicontinuousandquasi-concaveonx,∀y∈ min{N ,N }. Since the number of attacker’s pure strategies is Y, N = Oa(ncd) = poly(n). Therefore,thereexistsatmostpoly(n) a thenwehave variablesintheoptimizationmodel(5). 3.2 FormalDescription minmaxf(x,y)=maxminf(x,y). (3) y∈Y x∈X x∈X y∈Y Theaboveillustrativederivationprovidesapossiblepathtocom- 3. THECOMPACTREPRESENTATION pactlyrepresentthegame.However,thereexistsasignificanttech- nicalchallenge: theelementarymatricesF ,F andtheirinverse FORZERO-SUMSECURITYGAME 1 2 matrices may have exponential size due to exponential large de- The Nash equilibrium is equivalent to the strong Stackelberg fender’s pure strategy space. Hence, the key question is whether equilibrium in the zero-sum game. Therefore, we only focus on wecanfindboththeseelementarymatricesefficiently?Totackle the computation of Nash equilibrium. Invoking the result in the thisproblem,wefirstshowthatpayoffmatricesBaandLacanbe vonNeumann’sminimaxtheorem,computingtheNEofzero-sum decomposedastheproductoftheseveralsimplematrices.Thefol- gamecanbeformulatedasthefollowingminimaxproblem, lowingtechnicallemmaiscriticalinourdecomposition. min max U (p,q)=pT (Ba+La)q. (4) LEMMA 1. (Utilityandcommonutility)ForallU ∈ 2[n],the a q∈∆Ndp∈∆Na benefitandlossfunctionssatisfy Althoughitcanbecastintoalinearprogramingproblem,suchan B (U)= (cid:88) Bc(V)andL (U)= (cid:88) Lc(V). optimizationmodelhasΩ(nk)variables,whichisexponentialinn a a a a V⊆U V⊆U intheworstcase,i.e.,thedefendercanprotectanysubsetsoftar- Thelemma1providesapathtorecovertheutilityfunctionsfrom gets.Thegoalofthissectionistodevelopatechniquetocompactly the common utility. Indeed, it is named as the zeta transforma- andequivalentlyrepresentthezero-sumandnon-additivesecurity tion[24],whichistheinversetransformationoftheMo¨biustrans- gamewithonlypoly(n)variables.Toconveyourideamoreeasily, formationgiveninDefinition1.SupposethatBAandLArepresent webeginwithanexample. thebenefitandlossmatrixforattackerwhenA = D = 2[n],and 3.1 MotivatingExample Ba,Lacanberegardedasthesub-matrixofBA,LA.Thefollow- WefirstusegausseliminationonmatricesBa andLa totrans- ingtechnicallemmapresentsthedecomposablepropertyofpayoff matricesBAandLA. formthemintorowcanonicalform,whichistoleftandrightmulti- plysuchmatricesbyelementarymatricesE1,E2 ∈RNa×Na and LEMMA 2. (Decomposition of complete payoff matrix) If the F1,F2 ∈RNd×Nd. attacker’sanddefender’spurestrategyspaceA = D = 2[n],the min max pT (Ba+La)q payoffmatricesBA,LA ∈R2n×2n canbedecomposedas, q∈∆Ndp∈∆Na BA =QDBQT, LA =QDLQTP, (6) = min max pTE1E−11BaF−11F1q+pTE2E−21LaF−21F2q whereDB,DL ∈R2n×2n arethediagonalmatriceswith q∈∆Ndp∈∆Na = min max pTE (cid:20)Bar 0(cid:21)F q+pTE (cid:20)Las 0(cid:21)F q. DBσ(A),σ(A) =Bac(A), DLσ(A),σ(A) =Lca(A),∀A∈2[n]. q∈∆Ndp∈∆Na 1 0 0 1 2 0 0 2 TheQ,P∈R2n×2n arebinarymatrices:∀A,D∈2[n], where r and s are the rank of matrices Ba, La, and Ba, La are r s Q =1{Dc ⊆A}, P =1{A=D}. thecorrespondingnon-zeroblocksoftheirrowcanonicalform. If σ(A),µ(D) σ(A),µ(D) wedefinetheaffinetransformation: f (p)=(cid:0)pTE (cid:1)T,f (p)= Thenotation1{·}istheindictorfunction. 1 1 2 (cid:0)pTE2(cid:1)T,g1(q)=F1qandg2(q)=F2q.Let6 Thefollowinglemmaconstructstherelationbetweenthematri- cesBA,LAandthecorrespondingsub-matrices:Ba,La. ∆a ={(f (p),f (p))|p∈∆ }, Na 1 2 Na LEMMA 3. (Completematrixandsub-matrix)Thepayoffma- ∆dNd ={(g1(q),g2(q))|q∈∆Nd}. tricesBa,La ∈RNa×Nd canbeexpressedas wecanobtainthefollowingequivalentoptimizationproblem, Ba =SBAR, ,La =SLAR, (7) min max p¯T (cid:20)Bar 0(cid:21)q¯ +p¯T (cid:20)Las 0(cid:21)q¯ . wherematrixS∈RNa×2n andR∈R2n×Nd aretheblockmatri- (q¯1,q¯2)∈∆dNd(p¯1,p¯2)∈∆aNa 1 0 0 1 2 0 0 2 ces,definedas, 6Thenotation(·,·)denotestheconcatenationoperatorofvector. S =1{A=Uc},∀A∈A,U ∈2[n], σ(A),µ(U) R =1{D=Uc},∀D∈D,U ∈2[n]. Sincethesizeofthesupportset|S| ≤ N andN = poly(n), σ(U),µ(D) a a we arrive at a compact representation of zero-sum security game Intuitively, the matrices S and R in Lemma 3 plays the role withonlypoly(n)variables. Notethatintheabovecompactrep- of extracting the rows and columns of the matrices BA and LA, resentation framework, the affine transformation f and f is the 1 2 whoseindicesbelongtothefeasiblepurestrategiesofattackerand same as in our compact representation. The following theorem defender. For example, suppose that the defender’s pure strategy guaranteesthecorrectnessofourcompactrepresentation. space is a uniform matroid, i.e., D = {D ⊆ [n]||D| ≤ k}, if theindexfunctionsatisfiesσ(U1) ≤ σ(U2),|U1| ≥ |U2|, which THEOREM 5. (Correctnessofcompactrepresentation)(p∗,q∗) meansthattheindexofattacker’s(defender’s)purestrategyisin- is a Nash equilibrium of zero-sum security game if and only if creasing(decreasing)withthedecreasingofthecardinalityofeach (πS(f(p∗)),(πS(g1(q∗)),πS(g2(q∗)))istheoptimalsolutionof strategy,thenthepayoffmatricesBaandLacomesfromthebot- compactminimaxproblem(10). tomleftofthematricesBAandLA. TheblockmatricesSandR canberepresentedas REMARK 1. Basedthespecificformof(10),thecomplexityof obtainingtheabovecompactrepresentation(10)isdependenton (cid:20) (cid:21) S=(cid:2)0Na×(2n−Na) INa×Na(cid:3),R= 0(2InN−dN×dN)×dNd , tphoelyctoopmepsleHxiat,yHodf.oTbhtaeinnionng-zmeraotreilceemseDn(cid:101)tbs,oDf(cid:101)mlaatrnidcetshDe(cid:101)pbraonjedcDt(cid:101)edl whereIistheidentitymatrix. arethecommonutilities,whichcanbecalculatedintimeO(nc)by CombiningtheresultsofLemma2andLemma3,wehavethe Definition1. ThecomplexityofrepresentingHaandHdisdepen- followingdecompositionofthepayoffmatrixMa. dentontheircorrespondingdescriptionlength. 3.3 LinearProgrammingApproach THEOREM 4. (Decompositionofthepayoffmatrix)Thepayoff matrixMa =Ba+Lacanbedecomposedas Thecompactminimaxproblemhasalinearobjectivefunction.If thepolytopeH andH isconvex,suchaproblemcanbecastinto Ma =E(DbJ+DlK), (8) a d a linear programming approach. The following technical lemma whereDb,Dl ∈RNa×Na arethediagonalmatriceswith showsthattheabovetransformedandprojectedpolytopeisconvex. Db =Bc(A), Dl =Lc(A),∀A∈A. σ(A),σ(A) a σ(A),σ(A) a TheE∈RNa×Na andJ,K∈RNa×Ndarebinarymatrices: LEMMA 4. ThepolytopesHaandHdisconvex. Based on Lemma 4, we can formulate the minimax problem by E =1{U ⊆A},∀A,U ∈A;J =1{A⊆Dc}, σ(A),σ(U) σ(A),µ(D) followingequivalentlinearprogrammingmodel, K =1{A⊆D},∀A∈A,D∈D. σ(A),µ(D) CompactLinearProgramming AscanbeseeninTheorem4,wedecomposetheoriginalexpo- min u (11) nentiallargepayoffmatrixMa intothesummationandtheprod- uct of several simple matrices including binary matrices E,J,K s.t. vT(D(cid:101)bq¯1+D(cid:101)lq¯2)≤u,∀v∈Ia, and two polynomial-sized diagonal matrices Db and Dl. More- (q¯1,q¯2)∈Hd, over, suchadecompositionhasaclosed-formexpressionandthe whereI denotesthesetofverticesoftheconvexpolytopeH . a a elementsinthosesimplematricescanbeimplicitlyrepresented. Inthesequel,werefertothecompactproblemastheabovelin- Based on the above decomposition results, we can let elemen- earprogrammingproblem.Basedonourcompactrepresentation,a tarymatricesE1 = E2 = E,F1 = JandF2 = K,andthecor- naturalquestionthatarisesiswhethercanweefficientlysolvesuch respondingaffinetransformationf(p) = ETpandg1(q) = Jq, alinearprogrammingproblemandimplementtheoptimalsolution g2(q) = Kqtoyieldtwopolytopes: ∆aNa = {f(p)|p ∈ ∆Na} bythedefender’smixedstrategy? Wewillanswerthisquestionin and∆dNd = {(g1(q),g2(q))|q ∈ ∆Nd}. Thenwecanrepresent thenextsection. theminimaxproblem(4)as min max p¯T(Dbq¯ +Dlq¯ ), (9) 4. SOLVING THE ZERO-SUM SECURITY 1 2 (q¯1,q¯2)∈∆dNdp¯∈∆aNa GAME IS A COMBINATORIAL PROB- Based on the definition of our support set S and matrices Db, LEM Dl,onlythevariableswithindicesbelongingtoσ(S)hasnon-zero Inthissection, wewillbuildtheconnectionbetweentheequi- coefficients. Therefore,wecaneliminatethosevariableswithzero libriumcomputationinthezero-sumsecuritygameandthefollow- coefficientsin(9)andprojectthepolytopes∆a and∆d intothe ingdefenderoracleproblem(DOP)viaourcompactrepresentation Na Nd coordinateswithindicesbelongingtoσ(S).Thefurthersimplified framework. Forsimplicity, weuseI todenotesetofverticesof d modelcanbeexpressedas theconvexpolytopeH . d CompactMinimaxProblem DEFINITION 5. (Defenderoracleproblem)Foranygivenvec- min maxp¯T(D(cid:101)bq¯1+D(cid:101)lq¯2), (10) torw∈R2|S|,determine, (q¯1,q¯2)∈Hdp¯∈Ha x∗ =argminwTx. (12) iwshoebrtea7inHedab=yeΠxtSra(c∆tinaNga)th,eHndon=-zeΠroSc(o∆ludNmdn),smanadtrrioxwD(cid:101)sbofamndatDr(cid:101)ixl Themainresultofthissectionxi∈sItdhefollowingtheorem. DbandDl. THEOREM 6. (NEcomputationanddenfenderoracleproblem) 7Notethateachvectorin∆d isconsistsoftwopartsg (q)and Thereisapoly(n)timealgorithmtocomputethedefender’sNash Nd 1 g (q).Herethecorrepondinglow-dimensionalpointis(π (g (q), equilibrium(strongStackelbergequilibrium),ifandonlyifthereis 2 S 1 π (g (q)). apoly(n)timealgorithmtocomputethedefenderoracleproblem. S 2 To obtain above reduction, we adopt the following path: we where(cid:107)·(cid:107)isthematrix’sspectrumnorm. Thenwetake(q¯ ,q¯ ) 1 2 firstshowhowthecompactproblemandthedefenderoracleprob- andu astheinputoftheseparationoracleforthecompactprob- 0 lemcanbereducedtoeachotherinpoly(n)time;thenweexploit lem. Iftheoutputisyes,wealsogetacertificatethat(q¯ ,q¯ ) ∈ 1 2 the geometric structure of polytope H and H to construct two H ;ifnot,outputa(2|S|+1)−dimensionalseparatinghyperplane: a d d poly(n)timevertexmappingalgorithmstoobtainthereductionbe- tweentheequilibriumcomputationandthecompactproblem. aT1q¯1+aT2q¯2+bu0 >aT1q1+aT2q2+bu, 4.1 ReductionbetweenCompactProblemand ∀(q1,q2),usatisfyconstraintsof(11). Duetothespecificchoice DOP ofu0,wecanshowthatsuchaT1q¯1+aT2q¯2alsoformsaseparating hyperplaneforall(q ,q )∈H .Theintuitionbehindthisstepis 1 2 d Thelinearprogramingproblem(11)haspoly(n)numberofvari- thatwhenwechoosealargeenoughu ,thefeasibleregiondefined 0 ablesandpossiblyexponentiallymanyconstraintsduetotheirreg- bytheconstraintsinLP(11)willdegeneratetothepolytopeH . d ularityofthepolytopeH . Therefore,wecanapplytheellipsoid d Based on Lemma 5 and Lemma 6, we arrive at the reduction method to solve such an LP, given a poly(n) time separation or- betweenthecompactproblemandthedefenderoracleproblem. acle. Specifically, the separation oracle of such LP is defined as following. 4.2 Reduction between Equilibrium Compu- tationandCompactProblem DEFINITION 6. (SeparationoracleforLP(11))Foranygiven (q¯ ,q¯ )andu¯,either(q¯ ,q¯ )andu¯satisfyalltheconstraintsof To obtain the reduction between the equilibrium computation 1 2 1 2 (11)orfindsahyperplane: andthecompactproblem,thereexisttwoissues:first,howtotrans- formtheinputinstanceofeachproblemtotheotheroneinpoly(n) aTq¯ +aTq¯ +bu¯>aTq +aTq +bu, 1 1 2 2 1 1 2 2 time;second,howtomaptheoptimalsolutionofeachproblemto ∀(q ,q ),usatisfyconstraintsof(11) theotherinpoly(n)time.Sincetheinputoftheequilibriumcompu- 1 2 tationproblemaretheuitlityfunctions{B (U)}and{L (U)}and a a Similarly,theseparationoracleofthedefenderoracleproblemis theinputofcompactproblemarethecommonutilities{Bc(U)} a definedasfollowing. and{Lc(U)}(alltheelementsofmatricesDbandDlarethecom- a monutilities),suchtransformationcanbecompletedinO(2cnc)= DEFINITION 7. (SeparationoracleforDOP(12))Foranygiven poly(n)timebasedonDefinition1andLemma1. (q¯ ,q¯ ), either (q¯ ,q¯ ) belongs to H , or finds a hyperplane: 1 2 1 2 d Toresolvethesecondissue,wefirstconsiderhowtomaptheop- ∀(q ,q )∈H suchthat 1 2 d timalsolutionofcompactproblemtothedefender’soptimalmixed aTq¯ +aTq¯ >aTq +aTq . strategies. Based on Theorem 2, we obtain that if the separation 1 1 2 2 1 1 2 2 problemofLP(11)canbesolvedinpoly(n)time,wecandecom- Based on Theorem 1, both our compact problem (11) and de- pose any feasible point x into a convex combination of at most fenderoracleproblemisequivalenttotheircorrespondingsepara- (2|S|+1) vertices of the polytope defined by those constraints. tionoracleproblem. Toobtaintheequivalencebetweenthecom- Note that this is precisely the DOP required for above reduction. pactproblemandthedefenderoracleproblem,itremainstoshow Applyingthisresulttotheoptimalsolution(q∗,q∗)oftheLP(11), 1 2 theequivalencebetweentheabovetwoseparationoracles. wecangetaconvexdecompositionthat Wefirstexamineonedirection: theseparationoracleofsuchan 2|S|+1 LPcanbereducedtotheseparationoracleofDOP.Specifically,the (q∗,q∗)= (cid:88) λ (vi,vi), (13) separationoracleofsuchanLPcanbereducedtothefollowingtwo 1 2 i 1 2 parts: givenany(q¯ ,q¯ )andu¯,(1)membershipproblem: decide i=1 1 2 iwnhge(tqh¯e1r,q(¯q¯21),,qu¯¯2f)ro∈mHHdd.;I(f2n)oint,egqeunaelriatytecoanhsytrpaeirnptlapnroebthleamt:sedpeacriadte- wstrhaetreegy(vc1ia,nvb2ie)re∈gaIrdd.edTahseabcaosincvefaxcctoimstbhiantattihoendoeffietnsdpeurr’sesmtriaxteed- whetheralltheinequalityconstraintshold.Ifnot,findoneviolating gies,eachofwhichcorrespondstoavertexofsimplex∆ .Ifwe constraint.Wehavethefollowingresultfortheseproblems. canmapthevertices(vi,vi)backtothevertices(pureNsdtrategy) 1 2 oftheoriginalgame,denotedbyh((vi,vi)),themixedstrategies LEMMA 5. The membership problem and the inequality con- 1 2 ofthedefendercanbeexpressedas straintproblemofLP(11)canbereducedtotheseparationoracle ofthedefenderoracleprobleminpoly(n)time. 2|S|+1 q∗ = (cid:88) λ h((vi,vi)). (14) ThebasicideaintheproofofLemma5istoshowthatthenum- i 1 2 berofverticesofH ispoly(n)andeachvertexhasaclose-form i=1 a expression.Thenwecanimplicitlychecktheinequalityconstraint Thus,thekeyliesinhowtocomputeh((vi,vi))inpoly(n)time. 1 2 problem in poly(n) time, and the membership problem is indeed To tackle this problem, we need to investigate the geometric theseparationproblemfortheDOP.Thereversedirectionisguar- structureofpolytopeH .First,consideringanarbitrarydefender’s d anteedbythefollowinglemma. purestrategyD ∈ D, thecorrespondingvertexin∆ isaunit Nd vector eD ∈ RNd with only one non-zero element eD = 1. µ(D) LEMMA 6. Theseparationoracleofthedefenderoracleprob- Basedonthedefinitionofthetransformationg (q)andg (q),the 1 2 lemcanbereducedtotheseparationoracleofLP(11)inpoly(n) correspondingpointofpolytopeH is d time. (g (eD),g (eD))=(JeD,KeD)=(J ,K ), (15) 1 2 µ(D) µ(D) TheideaoftheproofofLemma6isthat,foranyinput(q¯ ,q¯ )of 1 2 separationoracleforDOP,wecanchooseaspecificu0 ∈ Rsuch whereJµ(D)andKµ(D)istheµ(D)thcolumnofmatrixJandK. that ThenthecorrespondingpointvDoftheprojectedpolytopeHdis u0 =|S|((cid:107)D(cid:101)b(cid:107)+(cid:107)D(cid:101)l(cid:107)) vD =(cid:0)πS(Jµ(D)),πS(Kµ(D))(cid:1), (16) Algorithm1VertexMappingfromVertextoPureStrategy Algorithm2VertexMappingfromPureStrategytoVertex Input: Vertex(v ,v )∈Id Input: Defender’sPureStrategyD 1 2 Output: Defender’spurestrategyD. Output: VertexvD ∈Id T =∅; foreachV ∈Ado foreachi∈[n]do ifV ⊆Dc thenv1D,σ(V) =1;else v1D,σ(V) =0. Examineeachcoordinateofvertex: ifV ⊆D thenvD =1;else vD =0. 2,σ(V) 2,σ(V) ifv (cid:54)=0 thenT =T ∪{i}; endfor 1,σ({i}) endfor OutputvertexvD =(vD,vD). 1 2 D=Tc; 5. NON-ZERO-SUMSECURITYGAME which is the sub-vector of J and K . The problem is µ(D) µ(D) In this section, we assume that the security game is non-zero- that the vertex in the high-dimensional polytope may not project sum, inwhichthebenefitB (U)(B (U))ofattacker(defender) a d toavertexofitslow-dimensionalimage. However,thefollowing maynotequaltothethelossL (U)(L (U))ofthedefender(at- d a lemmawillprovideapositiveresult. tacker). Weconsiderthecomputationoftwomostlyadoptedcon- LEMMA 7. (Geometric structure of Hd) For any support set cepts including the strong Stackelberg equilibrium (SSE) and the [n] ∈ S ∈ A, the vertices of the polytope H are the columns Nash equilibrium (NE). For the SSE, we prove analogous equiv- d (cid:20)J(cid:21) alence theorem as the zero-sum case. For the NE, we relax the of the sub-matrix of K , which is formed by extracting the row assumptionthattheattacker’sresourcelimitcisconstanttoanar- bitrary number, but assuming the additive utility function. Then whoseindexbelongstoσ(S). weproveourequivalencetheoremfortheproblemofequilibrium Sincewehaveaclosed-formexpressionofthematrixJandK, computation. wecanconstructavertexmappingalgorithmfromlow-dimensional 5.1 StrongStackelbergEquilibrium vertextothedefender’spurestrategy. Theefficiencyandthecor- rectnessofAlgorithm1isjustifiedbyfollowinglemma. Themainresultofthissubsectionisgivenbythefollowingthe- orem. LEMMA 8. (Correctnessofvertexmappingalgorithm)Thever- texmappingalgorithm1runsinO(n)timeandmapseachvertex THEOREM 7. (SSE and DOP) There is a poly(n) time algo- ofH toauniquepurestrategy. rithmtocomputethedefender’sstrongStackelbergequilibrium,if d andonlyifthereisapoly(n)timealgorithmtocomputethede- Note that our vertex mapping algorithm only examines n instead fenderoracleproblem(12). ofallthecoordinatesofeachvertexofH torecoveradefender’s d The “only if” direction follows straightforwardly from Theo- pure strategy. The reason behind this result is that there exists a rem 6. Considering the fact that the set of Nash equilibrium is one-one correspondence between each pure strategy and those n equivalenttothesetofstrongStackelbergequilibriuminthezero- coordinatesofeachvertexofpolytopeH . Intuitively,thosenco- d sum game, and the zero-sum game is a special case of the non- ordinatesofeachvertexofH isbinaryandthereforethereexists d possibly2npossibilities,eachofwhichcorrespondstoapurestrat- zero-sumgame,suchadirectioncanbeobtainedbyconverse. For the“if”direction,weneedthefollowingexistingtechnicallemma, egy. whichshowsthattheSSEofthegamecanbecomputedbymultiple Theotherdirectionfollowsfromthefollowingargument. Sup- linearprogrammingapproach. posethattheproblemofequilibriumcomputationissolvedinpoly (n)timeandtheoptimaldefender’smixedstrategyisdenotedby LEMMA 10. (MultiplelinearprogrammingofSSE[28])Solv- q∗. Invokingaknownresultingametheory(Theorem4in[27]), ingthestrongStackelbergequilibriumcanbeformulatedasamul- thenumberofnon-zeroprobabilityoftheNashequilibriumisless tiplelinearprogrammingproblem. thantherankofthepayoffmatrix. Sincetherankofpayoffmatrix MaisO(nc),thenumberofnon-zerocoordinatesinq∗isatmost MultipleLP O(nc)=poly(n)andq∗canbeexpressedas max (eA)TMdq (18) q∗ =po(cid:88)ly(n)λ ei. (17) s.t. (eA)TMaq≥(eA(cid:48))TMaq,∀A(cid:48) ∈A, i q∈∆ , Nd i=1 Solving above linear programming for all A ∈ A, then picking Therefore,wecandeterminetheoptimalsolutionofthecompact the optimal defender’s mixed strategy of the LP with the largest problem in poly(n) time by constructing the following poly(n) timevertexmappingalgorithmfromapurestrategyei toavertex objectivevalue. ofHd. The intuition behind this result is that, in linear programming Theintuitionbehindthisresultissimilartothepreviousvertex problem(foreachA∈A),thedefenderoptimizeshismixedstrat- mappingalgorithmandthecorrectnessofAlgorithm2isguaran- egyundertheconstraintthattheattacker’sbestresponseisA.Once teedbythefollowinglemma. we have solved theseLPs for all the attacker’s best response, we comparealltheoptimalmixedstrategiesandchoosethebestone, LEMMA 9. (Correctness of vertex mapping algorithm) Vertex mappingalgorithm2runsinO(nc)timeandmapseachdefender’s whichisalsotheoptimalsolutionoverall(withoutconstraintson whichisthebestresponse). purestrategyDtoauniquevertexofH . d Sincetheattacker’sresourcelimitcisconstant,thereexistspoly BasedonLemma5,Lemma6,Lemma8andLemma9,wear- (n)numberofLPsintheaboveapproach,buttherestillexistsex- rivedthedesiredresultinTheorem6. ponentialnumberofvariablesineachLP.Fortunately,wecanstill followourtransformationandprojectionapproachintheprevious Asimilarresultholdsfordefender’sutilityfunctionsB (·),L (·) d d zero-sum scenario. Specifically, based on the same argument of and their common utilities Bc(·), Lc(·). Note that the common d d Theorem4,wecandecomposebothattacker’sanddefender’spay- utilityfunctionisindeedtheoriginalutilityfunctionwhenU isa offmatricesas singletonset. Then,accordingtothedefinitionofmatrixDb and a Dl, wecanobservethatalthoughtheyareexponentiallargema- Ma =E(DbJ+DlK) and Md =E(DbJ+DlK), (19) a a a d d trices,thereexistsonlynnon-zeroelementsinthemaindiagonal. andchoosethesametransformationsuchthatf(p) = ETpand Therefore,thesupportsetS =[n]basedonthedefinition,andwe g (q) = Jq,g (q) = Kq. Thenweeliminatethevariableswith candefinethefollowingn−dimensionalpolytope. 1 2 zero-coefficientsandprojectthepolytopeintocorrespondinglow- H(cid:48) =Π (∆a ), H(cid:48) ={π (Jq),∀q∈∆ }. (23) dimensional image. Therefore, we can formulate above multiple a [n] Na d [n] Nd linear programming problem as following compact problem with whichprojectsourtransformedpolytopestothecoordinateswhose onlypoly(n)variables. indicesbelongtothesingletonset. Notethat,inthiscase,weonly CompactMultipleLP use the vector Jq instead both of Jq and Kq to form the trans- formed and projected polytope. The reason is that there exists a max vT(D(cid:101)bdq¯1+D(cid:101)ldq¯2) (20) linearcouplingbetweenπ[n](Jq)andπ[n](Kq). Theformalde- s.t. vT(D(cid:101)baq¯1+D(cid:101)ldq¯2)≥v¯T(D(cid:101)baq¯1+D(cid:101)ldq¯2),∀v¯ ∈Ia, scriptioncanbeseeninLemma15. Thefollowingresultprovides (q¯ ,q¯ )∈H , acompactrepresentationofthenon-zero-sumsecuritygame. 1 2 d wbyheerxetrtahcetimngatrthixeD(cid:101)nobdna-znedrothecooltuhmernsdiaangdontahlemraotwrisceosfamreaotrbixtaiDnebd. gamLeE)MTMhAe s1tr2a.te(gCyomprpoaficletr(eppr∗e,sqe∗n)taitsioanoNfansohne-zqeurioli-bsruimumseocufrtihtye d Clearly, such a compact problem can be reduced to the defender non-zero-sumsecuritygameifandonlyif oracleproblem(12)andtheoptimalsolutionofcompactproblem U(cid:48)(a∗,t∗)≥U(cid:48)(a,t∗),∀a∈H(cid:48), canbemappedtoadefender’soptimalmixedstrategybasedona a a a (24) similarargumentwithLemma7andLemma8.Thus,wearriveour Ud(cid:48)(a∗,t∗)≥Ud(cid:48)(a∗,t),∀t∈Hd(cid:48). desiredresultsinTheorem7. where8 5.2 NashEquilibrium n ItiswellknownthatcomputingtheNashequilibriumofatwo- Ua(cid:48)(a,t)=(cid:88)ai[tiLa(i)+(1−ti)Ba(i)], player normal form game is PPAD-hard [29, 30]. In the security i=1 gtiammeei,nwtehecacnapseotoenfttihaellysicnogmlepauttteacthkeerNraesshouerqcueili[b1r8i]u,mbeincapuosley(wne) Ud(cid:48)(a,t)=(cid:88)n ai[tiBd(i)+(1−ti)Ld(i)]. cantransformthenon-zero-sumgameintoanequivalentzero-sum i=1 game[15].However,whentheattackerhasmultipleresources,the AscanbeseeninLemma12,thestrategyprofile(p∗,q∗)isa solvabilityisstillanopenproblem. Inthissubsection,weassume Nashequilibriuminnon-zero-sumsecuritygameifandonlyifits thattheattacker’sresourcelimitcisanarbitrarynumberinsteadof lowdimensionalimage(a∗,t∗)isalsoanequilibriumpoint.Based aconstant,andalltheutilityfunctionsareadditive.Themainresult onthedefinitionofmatrixEandJ,wehave ofthissubsectionisgivenbythefollowingtheorem. (cid:88) (cid:88) a = p , t = q , THEOREM 8. (Non-zero-sumNEcomputationandDOP)There i σ(A) i µ(D) isapoly(n)timealgorithmtocomputethedefender’sNashequi- A∈A:i∈A D∈D:i∈D librium,ifandonlyifthereisapoly(n)timealgorithmtocompute whichcanberegardedasthemarginalprobabilitythattargetiis thedefenderoracleproblem:foranygivenw∈Rn attackedanddefendedamongthestrategyprofile(p,q). argminwTx. (21) x∈Id REMARK 2. Lemma 12 provides a compact representation of thenon-zero-sumsecuritygame,andtheobjectivefunctionU(cid:48) and The“onlyif”directioncanbeobtainedbytheconverseandThe- a U(cid:48) arequitesimilartothetheoneusedin[8]. However,thepre- orem6,thusweonlyfocusonthehowtocomputethedefender’s d vious result is limited to the assumption that the defender’s pure Nash equilibrium in poly(n) time given a poly(n) time defender strategyspaceisauniformmatroid. However, ourresultismore oracle. Inthiscase,thereexiststwokeychallenges: first,notonly generalanddoesnotdependentonthestructureofD. isthedefender’spurestrategyspaceexponentiallarge,butalsothe attacker’spurestrategyspace;second,theNashequilibriuminnon- Although we have a polynomial-sized representation, it is still zero-sumgamemaynotbethecorrespondingminimaxequilibrium a non-zero-sum “game” and its optimal solution may not corre- whentheattackerhasmultipleresources[15],thuswecannotapply spondtoitsminimaxsolution. Fortunately,inspiredbythetrans- thelinearprogrammingapproachtostraightforwardlysolvesucha formationintroducedin[15],wecanexploitthespecificstructure problem. oftheaboveproblemtotransformthecompactlyrepresentedprob- Thefollowinglemmaexhibitsacrucialpropertyofcommonutil- lemintoan−dimensionalsaddlepointproblem. itywhenalltheutilityfunctionisadditivesuchthatallthecommon utilityisequaltozeroexceptthosedefinedonthesingletonset. LEMMA 13. (Saddlepointproblem)The(a∗,t∗)satisfycondi- LEMMA 11. (Additiveutilityfunction)Iftheattacker’sutility tion(24)ifthe(h(a∗),t∗)isasaddlepointoffollowingproblem, (cid:80) functions are additive such that B (U) = B ({i}) and La(U)=(cid:80)i∈ULa({i})forallU a∈2[n],thentih∈eUcoraresponding Ua(cid:48)(h(a∗),t∗)≥Ua(cid:48)(h(a),t∗),∀a∈Ha(cid:48) (25) commonutilitiessatisfy U(cid:48)(h(a∗),t∗)≤U(cid:48)(h(a∗),t),∀t∈H(cid:48), a a d Bac(U)=Lca(U)=0, if|U|>1. (22) 8Forsimplicity,wewriteaσ({i})andtµ({i})asaiandti. wheretheone-to-onetransformfunctionh : Rn → Rnisdefined REMARK 3. The reduction from the equilibrium computation asfollows: tothedefenderoracleproblemdoesnotrequiretheassumptionthat theattacker’spurestrategyspaceAisauniformmatroid.Indeed,if B ({i})−L ({i}) h (a)= d d a , (26) Aencodesapolynomialsolvableproblemsuchasuniformmatroid, i B ({i})−L ({i}) i a a bipartite matching and 2−weighted cover, we can obtain a same result in Theorem 8; otherwise, the polynomial solvability of the Based on Lemma 13, we can first determine a saddle point of equilibriumcomputationwilldependsonbothAandD. functionU(cid:48)(a,t).DuetothefactthatfunctionU(cid:48)(h(a),t)islin- a a earinaandtandthepolytopeH(cid:48) andH(cid:48) isconvex(Lemma4), a d 6. CONSEQUENCESANDAPPLICATIONS wecanapplytheSion’sminimaxtheoremandsolvesuchproblem bytheminimaxproblem, Inthissection,wefurtherinvestigatethedefenderoracleprob- lemandprovidesvariousinterestingapplicationsofourtheoretical min maxUa(cid:48)(h(a),t), (27) framework. t∈Hd(cid:48) a∈Ha(cid:48) 6.1 WhatistheDefenderOracleProblem whichcanbefurthertackledbythefollowinglinearprogramming approach. Through a series of reductions, we determine that the security gamewithnon-additiveutilityfunctionsandmultipleattackerre- min u (28) sourcesisessentiallyadefenderoracleproblemdefinedonalow- s.t. (cid:80)n h (v)[t L (i)+(1−t )B (i)]≤u,∀v∈I(cid:48), dimensionalpolytopeHd.However,thecomplicatedformofpoly- i i a i a a topeH stillpreventsusfromuncoveringtheeffectofourassump- i=1 d t∈H(cid:48). tions. Thepromisingobservationthoughisthatsinceoracleprob- d lemattainsitsmaximuminsomeverticesofH ,weonlyneedto d Similarly,suchanLPcanbereducedtothemembershipproblem examinethegeometricstructureofitsvertices. andinequalityconstraintproblem. Themembershipproblemcan First,consideringthefactthateachvertexvofpolytopeH con- d bereducedtothedefenderoracleproblem(12),andtheonlydiffer- sistsoftwopartssuchthatv = (v ,v ),andv ,v comesfrom 1 2 1 2 enceisthatHd(cid:48) isan−dimensionalpolytopeinthiscase.Tosolve twodifferenttransformationsandsameprojectionoftheonevertex theinequalityconstraintproblem, wefirstexaminethegeometric ofpolytope∆ .Therefore,thereexistsalinearcouplingbetween structureofpolytopeHa(cid:48). thesetwopartNsdv1 andv2. Thefollowinglemmajustifiesthisin- tuitionandshowthatthecoordinatesofv andv whoseindices LEMMA 14. (Geometric structure of Ha(cid:48)) The polytope Ha(cid:48) is belongtothosesingletonsetsexhibitsaco1mpleme2ntaryrelation. theintersectionofan−dimensionalcubeandn−dimensionalhy- perplane, LEMMA 15. (GeometricstructureofHd)Foranyvertex(v1,v2) inthepolytopeH ,itscoordinatessatisfy n d Ha(cid:48) ={x∈Rn|(cid:88)xi ≤c,xi ≥0,∀1≤i≤n}. (29) v1,σ({i})+v2,σ({i}) =1,∀i∈[n]. (32) i=1 Basedonthisresult,Theorem4andLemma7,wecanshowthat Sinceanylinearprogramachievesoptimalityatsomevertexofits theDOPisindeedacombinatorialoptimizationproblemoveraset feasibleregion,basedonLemma14,theinequalityconstraintprob- system. lemcanbefurtherreducedtothefollowingpolynomial-sizedlinear programmingproblem. THEOREM 9. (DOPiscombinatorialoptimization)Thedefender oracleproblemis, foranyvectorw ∈ R|S|, maximizeapseudo- n (cid:88) booleanfunctionoverasetsystemε. max h (v)[t L (i)+(1−t )B (i)] (30) i i a i a i=1 (cid:88) (cid:89) s.t. (cid:80)n vi ≤c,vi ≥0,∀1≤i≤n. mx∈aεx wσ(V) xi, (33) i=1 V∈S {i}∈V whichcanbesolvedinthepoly(n)timebytheinteriorpointmethod. Clearly,thecomplexityoftheDOPisnotonlydependentonthe Iftheoptimalvalueoftheabovelinearprogrammingislessthanu, setsystem,butalsodependentonthesupportsetS,whichdescribes thenalltheinequalityconstraintsaresatisfied;iftheoptimalvalue thedegreeoftheabovepseudo-booleanfunction. Forexample,If islargerthanu, weoutputthepointv attainsthisoptimalvalue, theattackercanattackatmosttwotargetsandtheutilityfunctions whichcorrespondstoaviolatingconstraint. arenon-additive,thesupportsetS ={A∈2[n]||A|≤2}. Inthis Now the remaining is to determine how to map such a saddle case,theDOPisageneralconstrainedbinaryquadraticprogram- point back to the optimal defender’s mixed strategy. Since our mingproblem,whichisNP-hard. InSection5,weassumethatall transformationislinearandtheinversefunctionisgivenby the utility functions are additive. In this case, Lemma 11 shows thatthesupportsetS = [n]andthedefenderoracleproblemwill h−1(a)= Ba({i})−La({i})a , (31) degeneratetothefollowinglinearoptimizationproblem: i B ({i})−L ({i}) i d d maxwTx. (34) wecanfirstdecomposesuchsaddlepointintotheconvexcombi- x∈ε nationoftheverticesgivenapoly(n)timeseparationoracle;then Inthiscase,thecomplexityofsuchanoracleproblemisonlyde- usetheinversefunctiontomapeachvertexbacktothevertexof pendent on the complexity of set system ε. For example, if the polytopeH(cid:48). ThemappingfromthethevertexofpolytopeH(cid:48) to defender can attack at most k targets, the set system ε is a uni- d d adefender’spurestrategyfollowstheAlgorithm1. formmatroidandsolvingtheDOPonlyrequiressummingfirstk CombiningtheresultofLemma12andLemma13,wearrived largestelementsofw. Ifthedefender’sresourcesareobtainedat thedesiredresultinTheorem8. some costs and there exists a resource budget, the set system in