RESEARCHARTICLE Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor Networks JatinNarula☯,AbhinavTiwari☯,OlegA.Igoshin* DepartmentofBioengineering,RiceUniversity,Houston,Texas,UnitedStatesofAmerica ☯Theseauthorscontributedequallytothiswork. *[email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Despitethecentralroleofalternativesigmafactorsinbacterialstressresponseandviru- lencetheirregulationremainsincompletelyunderstood.Hereweinvestigateoneofthe best-studiedexamplesofalternativesigmafactors:theσBnetworkthatcontrolsthegeneral stressresponseofBacillussubtilistouncoverwidelyrelevantgeneraldesignprinciplesthat OPENACCESS describethestructure-functionrelationshipofalternativesigmafactorregulatorynetworks. Citation:NarulaJ,TiwariA,IgoshinOA(2016) WeshowthattherelativestoichiometryofthesynthesisratesofσB,itsanti-sigmafactor RoleofAutoregulationandRelativeSynthesisof RsbWandtheanti-anti-sigmafactorRsbVplaysacriticalroleinshapingthenetworkbehav- OperonPartnersinAlternativeSigmaFactor Networks.PLoSComputBiol12(12):e1005267. iorbyforcingtheσBnetworktofunctionasanultrasensitivenegativefeedbackloop.Wefur- doi:10.1371/journal.pcbi.1005267 therdemonstratehowthisnegativefeedbackregulationinsulatesalternativesigmafactor Editor:StefanKlumpp,MaxPlanckInstituteof activityfromcompetitionwiththehousekeepingsigmafactorforRNApolymeraseand ColloidsandInterfaces,GERMANY allowsmultiplestresssigmafactorstofunctionsimultaneouslywithlittlecompetitive Received:August17,2016 interference. Accepted:November23,2016 Published:December15,2016 Copyright:©2016Narulaetal.Thisisanopen AuthorSummary accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which Understandingtheregulationofbacterialstressresponseholdsthekeytotacklingthe permitsunrestricteduse,distribution,and problemsofemergingresistancetoanti-bacteria’sandantibiotics.Tothisend,herewe reproductioninanymedium,providedtheoriginal studyoneofthelongestservingmodelsystemsofbacterialstressresponse:theσBpathway authorandsourcearecredited. ofBacillussubtilis.ThesigmafactorσBcontrolsthegeneralstressresponseofBacillussub- DataAvailabilityStatement:Allrelevantdataare tilistoavarietyofstressconditionsincludingstarvation,antibioticsandharmfulenviron- withinthepaperanditsSupportingInformation mentalperturbations.Recentstudieshavedemonstratedthatanincreaseinstresstriggers files. pulsatileactivationofσB.Usingmathematicalmodelingweidentifythecorestructural Funding:TheresearchwassupportedbyNational designfeatureofthenetworkthatareresponsibleforitspulsatileresponse.Wefurther InstituteofGeneralMedicalSciences(https://www. demonstratehowthesamecoredesignfeaturesarecommontoavarietyofstressresponse nigms.nih.gov,grant#096189)andNational pathways.Asaresultofthesefeatures,cellscanrespondtomultiplesimultaneousstresses ScienceFoundation,DivisionofMolecularand withoutinterferenceorcompetitionbetweenthedifferentpathways. CellularBiosciences(https://www.nsf.gov/div/ index.jsp?div=MCB,grant#MCB-1616755)toOAI. Thefundershadnoroleinstudydesign,data collectionandanalysis,decisiontopublish,or preparationofthemanuscript. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 1/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks CompetingInterests:Theauthorshavedeclared Introduction thatnocompetinginterestsexist. Bacteriasurviveinstressfulenvironmentalconditionsbyinducingdramaticchangesintheir geneexpressionpatterns[1,2].Foravarietyofstresses,theseglobalchangesingeneexpression arebroughtaboutbytheactivationofalternativeσ-factorsthatbindtheRNApolymerasecore enzymeanddirectittowardstheappropriatestressresponseregulons[3].Consequently,to ensurethattheseσ-factorsareonlyactiveunderspecificenvironmentalconditions,bacteria haveevolvedregulatorysystemstocontroltheirproduction,activityandavailability[3,4]. Theseregulatorynetworkscanbehighlycomplexbutfrequentlysharefeaturessuchasanti-σ- factors,partnerswitchingmechanismsandproteolyticactivation[4].Thecomplexityofthese networkshasimpededaclearmechanisticunderstandingoftheresultingdynamicalproper- ties.Inthisstudy,wefocusononeofthebeststudiedexamplesofalternativeσ-factors,the generalstress-responseregulatingσBinBacillussubtilis[5]tounderstandhowthestructureof theσ-factorregulatorynetworksisrelatedtotheirfunctionalresponse. TheσB-mediatedresponseistriggeredbydiverseenergyandenvironmentalstresssignals andactivatesexpressionofabroadarrayofgenesneededforcellsurvivalintheseconditions [5].ActivityofσBistightlyregulatedbyapartner-switchingnetwork(Fig1Aand1B)compris- ingσB,itsantagonistanti-σ-factorRsbW,andanti-anti-σ-factorRsbV.Intheabsenceofstress, RsbWdimer(RsbW )bindstoσBandpreventsitsassociationwithRNApolymerasethereby 2 keepingtheσBregulonOFF.UndertheseconditionsmostofRsbViskeptinthephosphory- latedform(RsbV~P)bythekinaseactivityofRsbW .RsbV~PhasalowaffinityforRsbW 2 2 andcannotinteractwithiteffectively[6].However,inthepresenceofstress,RsbV~Pis dephosphorylatedbyoneorbothofthededicatedphosphatasecomplexes:RsbQPforenergy stressandRsbTUforenvironmentalstress[7–10].DephosphorylatedRsbVattackstheσB- RsbW complextoinduceσBrelease,therebyturningtheσBregulonON[11].Notably,the 2 genesencodingσBanditsregulatorsliewithinaσB-controlledoperon[12],therebyresulting inpositiveandnegativefeedbackloops. Recently,itwasshownthatunderenergystressσBisactivatedinastochasticseriesoftran- sientpulsesandincreasingstressresultedinhigherpulsefrequencies[13].Ithasalsobeen shownthatincreaseinenvironmentalstressorsuchasethanolleadstoasingleσBpulsewith anamplitudethatissensitivetotherateofstressorincrease[14].Whileitisclearthatthepul- satileactivationofσBisrootedinthecomplexarchitectureofitsregulatorynetwork(Fig1A and1B)itsmechanismisnotfullyunderstood.PreviousmathematicalmodelsoftheσBnet- workeitherdidnotproducethepulsatileresponse[15]ormadesimplificationstothenetwork [13]thataresomewhatinconsistentwithexperimentallyobserveddetails.Asaresult,it remainsunclearwhichdesignfeaturesoftheσBnetworkenableitsfunctionalproperties. ToaddresstheseissueswedevelopadetailedmathematicalmodeloftheσBnetworkand examineitsdynamicstounderstandthemechanisticprinciplesunderlyingthepulsatile response.Bydecouplingthepost-translationalandtranscriptionalcomponentsofthenetwork weshowthatanultrasensitivenegativefeedbackbetweenthetwoisthebasisforσBpulsing. MoreoverwefindthattherelativesynthesisratesofσBanditsoperonpartnersRsbWand RsbV,playsacriticalroleindeterminingthenatureoftheσBresponse.Wealsouseour model,togetherwithpreviouslypublishedexperimentaldatafrom[13,14],toexplainhowthe σBnetworkisabletoencodetherateofstressincreaseandthesizeofstochasticburstsofstress phosphataseintotheamplitudesofσBpulses. Wefurtherdevelopthismodeltoinvestigatehowthenetworkfunctionsinthecontextof otherσ-factors.Asinmanyotherbacteria,σBisoneofthemanyσ-factorsthatcomplexwith RNA-polymerasecorethatispresentinlimitedamounts[3,16].Therefore,wheninduced thesealternativeσ-factorscompetewithoneanotherandthehousekeepingσ-factorσAfor PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 2/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks Fig1.σBgeneralstressresponsenetwork.A.NetworkdiagramoftheσBgeneralstressresponse.The networkhastwomodules:atranscriptionalmodulethatinputsthefreeσBlevelandoutputsthetotal concentrationsofoperonproteinsRsbV(RsbV ),RsbW(RsbW )andσB(B );andapost-translational T T T modulethatusesRsbV ,RsbW andB andthestressphosphataselevelsasinputstooutputthelevelof T T T freeσB.Inthepost-translationalmodule,energyandenvironmentalstressesactivatethestress-sensing phosphatasesRsbQP(QP)andRsbTU(TU)whichdephosphorylateRsbVwhichinturnactivatesσBby releasingitfromtheσB-RsbW complex.NoteonlythemonomericformsofRsbWandRsbVhavebeen 2 shownforsimplicity.B.SimplifiedviewoftheσBnetwork.TheσBnetworkworksasafeedbackloopwherein freelevelcontrolsRsbV ,RsbW andB levelsviaoperontranscriptionandthethreeoperoncomponents T T T togetherwiththestressleveldeterminethefreeσBlevel.Thefeedbackloopsigniscanbeeitherpositiveor negativedependingonwhetherincreaseinoperoncomponentlevelsimpactsfreeσBleveleitherpositivelyor negatively.C-E.DynamicsoffreeσBinresponsetoastep-increaseinphosphataseconcentrationfordifferent combinationsoftherelativesynthesisratesofσBoperonpartners(λ =RsbW /B ,λ =RsbV /B ). W T T V T T doi:10.1371/journal.pcbi.1005267.g001 RNApolymerase.Weuseourmodeltoinvestigatehowthedesignofthisnetworkenablesitto functioneveninthepresenceofcompetitionfromσAwhichhasasignificantlyhigheraffinity forRNApolymerase[17].Lastly,weinvestigatehowmultiplealternativeσ-factorscompete whencellsareexposedtomultiplestressessimultaneously.Usingourmodelweidentifydesign featuresthatareubiquitousinstressσ-factorregulationandcriticaltobacterialsurvivalunder diversetypesofstresses. Results BiochemicallyaccuratemodelofσBpulsing Inarecentstudy,Lockeetal.[13]demonstratedthatastep-increaseinenergystressresultsin pulsatileactivationofσB.Thestudyalsoproposedaminimalmathematicalmodelofthenet- workwhichreproducedpulsinginσB.However,thismodelincludedseveralassumptions inconsistentwithexperimentallyobserveddetails:(i)Phosphorylationanddephosphorylation reactionswereassumedtofollowMichaelis-Mentenkineticsdespitethefactthatkinase (RsbW)andphosphataseconcentrationsareknowntobecomparabletosubstrate(RsbV) PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 3/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks concentrations[18]sotheapproximationbreaksdown[19],(ii)σBandRsbVarerepresented asasinglelumpedvariableratherthanseparatespeciesand,(iii)partner-switching,andthe formationanddissociationofvariousRsbW complexeswerenotincludedexplicitly.Though 2 thisminimalmodelproducespulsesresemblingtheirexperimentalobservations,itdoesnot depictabiochemicallyaccuratepictureoftheσBnetwork.Consequentlyitcannotbeusedto uncoverthedesignfeaturesthatenableσBpulsing. TounderstandtheσBnetworkresponsewebuiltonourearlierstudy[15]todevelopa detailedmathematicalmodelthatexplicitlyincludesallknownmolecularinteractionsinthe network.Notethatwemadeonesignificantchangetothemodeldiscussedin[15].Themodel in[15]assumedthatthesynthesisratesforσBanditsoperonpartners(RsbWandRsbV)fol- lowthestoichiometryoftheirbindingratios(i.e.RsbW /B =2andRsbW /RsbV =1;where T T T T B ,RsbW andRsbV representtotalσB,RsbWandRsbVconcentrationsrespectively).How- T T T everexperimentalmeasurementshaveshownthatσB,RsbWandRsbVareproducedinnon- stoichiometricratios[18].Theexactmechanismunderlyingthesenon-stoichiometricratiosis currentlyonlyincompletelyunderstood.However,analysisoftheopen-readingframesinthe operonshowedthatrsbVandrsbWmaybetranslationallycoupledduetooverlappingtermi- nationandinitiationcodons[20]whichmayensurethattheyareexpressedinsimilar amounts.ThesameanalysisalsoshowedthatthersbWandsigBreadingframesoverlapped andthatthisoverlapwasprecededbyaregionofdyadsymmetrywhichmayformastem-loop structure[20].ThesefeaturesmayinterferewithsigBtranslationandleadtolowerexpression ofσBthanitsbindingpartnersRsbVandRsbW.Toaccountforthesefeatures,incontrastto ourearlierstudy,weassumedσB,RsbWandRsbVcanbeproducedinnon-stoichiometric ratiosandstudiedhowchangesinrelativesynthesisratesofσBoperonpartnersaffectthe responseoftheσBnetworktostep-increasesinenergystressphosphataselevels.Wenotethat RsbX,anegativeregulatorofRsbTUphosphatase[21],isnotincludedinourmodel.RsbXwas excludedforsimplicitysinceitisnotessentialforthepulsatileresponseoftheσBnetwork[14]. SimulationsofthisdetailedmodelshowedthatdifferentcombinationsofRsbW:σB(λ ) W andRsbV:σB(λ )relativesynthesisratesleadtoqualitativelydifferentdynamicalresponsesof V theσBnetwork.Foroperonpartnersynthesisratiossimilartothoseestimatedin[18],(i.e. RsbW >2B andRsbW (cid:25)RsbV )ourmodelrespondedtoastep-upincreaseofthephos- T T T T phatasewithapulsatileσBresponse(Fig1C)thatresembledtheexperimentallyobserved behavior[13].Incontrast,whenRsbW:σBandRsbV:σBrelativesynthesisratesfollowthestoi- chiometryoftheirbindingratiospulsingisnotobservedandtheσBactivitymonotonically increasesovertime(Fig1D).PulsingalsodisappearswhenRsbWsynthesisishighenoughto neutralizebothitsbindingpartners(Fig1E). Pulsingoriginatesfromemergentnegativefeedbackinthenetwork Tounderstandwhythepulsatileresponseisonlyobservedforcertainoperonpartnersynthesis rates,weinvestigatedourmathematicalmodelbydecouplingthenetwork’stranscriptional andpost-translationalresponses(asshowninFig1A).ByvaryingtheσBoperontranscription rate,whilekeepingtherelativesynthesisratesofRsbW:σB(λ )andRsbV:σB(λ )fixed,we W V wereabletocalculatethepost-translationalresponse(Fig2A,bluecurve)oftheσBnetwork: [σB]=F ([B ],[P ]).ThisfunctiondescribeshowthefreeσBconcentrationvariesasafunc- p T T tionofB (totalconcentrationofσB)andP (totalphosphataseconcentration).Notethat T T althoughwereferonlytoB forbrevity,RsbW andRsbV arealwaysassumedtoincreasein T T T proportiontotheB forthispost-translationalresponse.Thispost-translationalfunctionis T analogoustoaninvitroassaywhereinvariouscombinationsoftotalσB(BT−andproportional amountsofRsbW andRsbV )andtotalphosphatase(P )aremixedtogetherandthenthe T T T PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 4/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks Fig2.NegativefeedbackdrivesthepulsatileresponseoftheσBnetwork.A.Decoupledpost- translational(bluecurve)andtranscriptional(blackcurve)responsesoftheσBnetworkforλ =RsbW /B = W T T 4,λ =RsbV /B =4.5.σBandB representtheconcentrationsoffreeandtotalσB.Redcirclemarksthe V T T T steadystatesofthefullsystem.NotethatRsbW andRsbV areassumedtoalwaysincreaseinproportionto T T theB forbothpost-translationalandtranscriptionalresponses.B.Sensitivityofthepost-translational T response(LG )tochangesintotalσBconcentration(operonproduction).C.RepresentationoftheσB P pulsatiletrajectoryintheσB-B phaseplane(greencurve).Blueandcyancurvesarethedecoupledpost- T translationalresponsesathighandlowphosphataseconcentrations.Blackcurveisthetranscriptional response.D.(λ ,λ )relativesynthesisparameterspaceisdividedintoregionswithpositive(RegionI), W V negative(RegionII)andzero(RegionIII)post-translationalsensitivitythatrespectivelycorrespondtoan effectivepositive,negativeandnofeedbackintheσBnetwork.Redandblacklinesrepresenttheanalytically calculatedregionboundariesλ =2+λ andλ =2(1+λ k /k). W V W V deg k doi:10.1371/journal.pcbi.1005267.g002 resultingfreeσBconcentrationismeasured.Inparallel,wecalculatedthetranscriptional response(Fig2A,blackcurve)[B ]=F ([σB])whichanalogoustoatranscriptionalreporter T T constructinvivo,describeshowchangesinthefreeσBconcentrationaffecttotalσBconcentra- tions(andRsbW andRsbV concentrationswhicharealwaysproportionaltoB ).Inthis T T T analysisframework,thesteadystateofthecompleteclosedloopnetworkcanbedetermined bysimultaneouslysolvingthepost-translationalandtranscriptionalequations,[σB]=F ([B ], P T [P ])and[B ]=F ([σB])ateachphosphataseconcentrationP .Graphingbothfunctionspro- T T T T videdthesteady-statesolutionastheirintersectionpoint(Fig2A,redcircle). Thisdecouplingapproximationallowsustoquantifythesignandstrengthoffeedbackin thefullmodel.TheeffectivesignofthefeedbackintheσBnetworkisgivenbythesignofthe productofthesensitivitiesoftworesponsefunctions,i.e.sign((@F /@[σB])(cid:1)(@F /@[B ])). T P T Sinceσ-factorsfunctionasactivatorsoftranscription,F ([σB])isamonotonicallyincreasing T functionofσB(i.e.@F /@[σB]>0).Consequently,thesignofthefeedbackintheσBnetworkis T PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 5/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks givenbythesignofthesensitivityofthepost-translationalresponsetoRsbB (i.e.@F /@[B ]). T P T Inotherwords,ifincreaseintheoperonproductionleadstoanincreaseinfreeσBthenthe feedbackispositive,whereasifincreaseintheoperonproductionleadstoadecreaseinfreeσB thenthefeedbackisnegative.OurresultsshowthatfortheparameterschoseninFig1CF isa P non-monotonicfunctionofB (Fig2A,bluecurve).AtlowRsbB ,freeσBincreasesasafunc- T T tionofB becauseRsbWissequesteredintheW V complex.HoweverathigherB ,thekinase T 2 2 T fluxdominatesthephosphatasefluxresultinginanincreasedRsbV~Pandthefreeingof RsbW fromRsbV.FreedRsbW sequestersσBintheW σBcomplex.Furthermore,inthetotal 2 2 2 σBconcentrationrangewhere@F /@[B ]<0inFig2B,thepost-translationalresponseisquite P T steep(Fig2A),i.e.smallchangesinB leadtosignificantdecreasesinfreeσB.Thisultrasensitiv- T itycanbequantifiedbycalculatingtheslopeinlogarithmicspace,i.e. d½sB(cid:138)=½sB(cid:138) dlog½sB(cid:138) LG ¼ ¼ P d½B (cid:138)=½B (cid:138) dlog½B (cid:138) T T T ThisdimensionlessquantitycharacterizestheratioofrelativechangesinσBandB atsteady T state(Fig2B).ThesignofLG definestheeffectivesignofthefeedbackloopandifthemagni- P tudeof|LG |>1definesanultrasensitiveresponse.FortheσBnetwork,intheregionaround P thesteadystateLG <−1indicatingthattheσBnetworkoperatesinanultrasensitivenegative P feedbackregime.Twotypesofpost-translationalreactionsthatareknowntoproduceultrasen- sitivityplayarolehere(S1AandS1BFig):(1)Zero-orderultrasensitivityduetocompetition betweenRsbWkinaseandRsbQP/RsbTUphosphatasesforRsbVand(2)moleculartitration duetosequestrationofσBbyRsbW.Notablyaroundthesteadystate,whereasboththefraction ofunphosphorylatedRsbVandthefractionoffreeσBdecreaseultrasensitivelyasafunctionof increaseinoperonexpression(proportionaltoB )thelatterisfarmoresensitive(S1CFig). T ThisindicatesthatmoleculartitrationbetweenσBanditsbindingpartnersmaycontribute moretotheultrasensitivityofthepost-translationalresponsethanthezero-ordercompetition betweenRsbWandstressphosphatases.Irrespectiveoftheirrelativecontributionshowever, ourresultsshowthatbothmechanismscombinetoensurethatnearthesteadystatetheσBnet- workoperatesinanultrasensitivenegativefeedbackregime. Notably,negativefeedbackisoneofthefewnetworkmotifscapableofproducingadaption- likepulsatileresponses[22].Moreover,ultrasensitivityofthefeedbackensureshomeostatic behavior—makingthesteadystaterobusttovariationsofparameters[22].Thisexplainswhy inFig1Castep-increaseinthephosphataseconcentrationinourmodelleadstoaσBpulsefol- lowedbyreturntonearlythesamesteadystate.PlottingthetrajectoryoftheσBpulse(green curve,Fig2C)onthe([σB],[B ])planeandoverthepost-translationalandtranscriptional T responses(Fig2C)illustratesthemechanismdrivingthispulsatileresponse.Startingattheini- tialsteadystate(redcircle),anincreaseinphosphataseshiftstheultrasensitivepost-transla- tionalresponse(cyantobluecurve)sothatfreeσBisrapidlyreleasedfromtheRsbW -σB 2 complexwhereastotalσBlevelsremainrelativelyunchanged.TheincreaseinσBoperontran- scriptioneventuallycausesaccumulationoftotalσBandtheanti-σ-factorRsbW.Thisinturn forcestheσBleveltodecrease,followingthepost-translationalresponsecurve,tothenew steadystate(graycircle)whichhasverylittlefreeσBtherebycompletingtheσBpulse. Thesameanalysiscanbeappliedfordifferentvaluesofrelativesynthesisrates,i.e.those thatcorrespondtoFig1Dand1E.AsshowninS2Figtheseparametervaluesdonotproduce anultrasensitivenon-monotonicpost-translationalresponse.Consequentlytheydonotlead totheemergenceofoverallnegativefeedbackexplainingtheirnon-pulsingdynamics.To determineifthepresenceorabsenceofnegativefeedbackmoregenerallyexplainsthedifferent dynamicalresponsesinFig1C–1E,wesampleddifferentcombinationsofrelativesynthesis PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 6/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks rates([RsbW ]/[B ]=λ and[RsbV ]/[B ]=λ )andcalculatedthepost-translationalsensi- T T W T T V tivities.Ourcalculationsshowedthatbasedonthesignofpost-translationalsensitivity(LG ) P therelativesynthesisparameterspacecanbedividedintothreeregions(Fig2D).For(λ ,λ ) W V combinationsinRegionIthesensitivityisalwayspositive.Increaseinλ leadsthesysteminto W anultrasensitivenegativeregime(LG <0and|LG |(cid:29)1)inRegionII.Afurtherincreasein P P λ oradecreaseinλ transitionsthesystemintoanon-responsive(LG *0)stateinRegion W V P III.Dynamicsimulationsforsampled(λ ,λ )combinationsconfirmthatpulsatileresponses W V tostep-upinphosphataseconcentrationarerestrictedtoRegionIIwheretheeffectivefeed- backisnegative(S2Fig). Tounderstandtheboundariesbetweenthethreeregionsandhowthelevelofthephospha- taseaffectsthenetwork,wedevelopedasimplifiedanalyticalmodelthatisbasedontheobser- vationthatRsbWandRsbVbindstronglytoeachother[18](seeS1Textfordetails).This approximationallowedustodeterminetheboundariesinFig2D(blackandredlines)and resultedinaclearbiologicalinterpretationofthethreeregions.InRegionItheamountof RsbW,irrespectiveofphosphataselevel,isinsufficienttobindallofitspartnersandconse- quentlysomefractionofσBalwaysremainsfreeorunboundtoRsbW.IncontrastinRegion II,theamountofphosphatasedetermineshowmuchRsbVisinitsinactivephosphorylated formRsbV~PandthereforewhethertheamountofRsbWissufficienttobindallofitspart- nersdependsonthelevelsofRsbV~P.Asaresult,forthisregion,theratioofkinaseandphos- phatase(P )fluxesdeterminesthepost-translationalresponse.Lastly,RegionIIIisthe T oppositeofRegionIinthattheamountofRsbWismorethansufficienttobindallofitspart- ners,evenwhenallRsbVisunphosphorylated.Asaresult,irrespectiveofphosphataselevels, verylittleσBisfreeanditslevelisnearlyinsensitivetochangesintotalσB.Thusnegativefeed- backandconsequentlypulsingareonlypossibleinRegionIIwherechangesinphosphatase canshiftthebalancebetweentheprevalentpartnercomplexes. Theroleofnegativefeedbackinproducingapulsatileresponsealsoexplainswhypulsing doesnotoccurinstrainswhereσBoperonistranscribedconstitutively[13].Inthiscase,theσB networklacksthenegativefeedbacknecessarytoproduceapulsatileresponse.Astep-increase inphosphatasestillleadstoanincreaseinfreeσBduetothechangeinthepost-translational response;however,thisnotfollowedbyanincreaseintotalσBlevels(S2CFig).Consequently, anincreaseinphosphataseresultsinamonotonicincreaseinfreeσBratherthanapulse (S2FFig). Theonlyactualmeasurementsofλ andλ weremadebyDelumeauetal.[18]usinga W V quantitativewesternblotassay.Interestinglytheyreportthatλ =2.9,λ =1.7intheabsence W V ofstressandλ =2.4,λ =2.65inthepresenceofstress.Thesemeasurementssuggestthatthe W V ratiosmightchangedependingonwhethercellsareunderstress.Althoughthemechanism underlyingthischangeisunclear,ourmodelpredictsthatbothmeasuredratiopairsliewithin thenegativefeedbackregimeshowninFig2D.Accordinglyoursimulationsshowthatthenet- workrespondstostep-increasesinphosphataselevelswithapulsatileresponseforbothpre- stressandpost-stress(λ ,λ )values(S3Fig).However,duetoreducedultrasensitivityofthe W V systemfortheseparameters,concertationoffreeσBfollowingincreaseinthestress(phospha- tase)doesnotperfectlyadapttothepre-stressvalue(S3Fig).Inanattempttomatchthenear- perfectadaptationreportedinRefs.[13,14]we’vechosentodofurtheranalysiswithλ =4 W andλ =4.5. V Notably,oursimulationsalsoshowedthatitisnotessentialforthephosphataselevelto remainfixedafterastress-inducedstep-increase.Infact,wefoundthatadilutionmediated declineinphosphataselevelpost-step-increasehaslittleimpactonthepulseamplitude(S4 Fig).Thisobservationcanbeexplainedbytherelativelyrapiddynamicsofthepost-transla- tionalresponseascomparedtothegradualnatureofdilutionandsuggeststhatpulsatile PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 7/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks dynamicsarerelevantevenforexperimentalconditionswherephosphataselevelsdonot remainfixedinstressfulconditions[14,23]. Furtherourdecouplingmethodalsoshedslightonanotherexperimentalobservationby Lockeetal.[13]:thedependenceofσBpulseamplitudeonthephosphataselevel.Specifically, wefoundthatσBpulseamplitudeisathreshold-linearfunctionofthephosphataseconcentra- tion(S5Fig).Ourdecouplingmethodshowsthatthisthreshold-linearbehaviorarisesbecause theσBnetworkonlyoperatesinanegativefeedbackregimeforphosphataseconcentrations higherthanathreshold.Belowthephosphatasethreshold,thepost-translationalresponse [σB]=F ([B ],[P ])*0andisinsensitivetoRsbB (S5BandS5CFig).Thus,thefullsystem P T T T lacksthenegativefeedbackandasaresultσBdoesnotpulse.Usingouranalyticalapproxima- tionwefoundthatthisphosphatasethresholdisproportionaltothebasallevelofRsbWkinase synthesisrateandtheratioofthekinaseandphosphatasecatalyticrateconstants(S5Dand S5EFig).IncreaseinthebasalσBoperonexpressionrateincreasesthephosphatasethreshold. Further,anincreaseintherelativesynthesisrateofRsbW(λ =[RsbW ]/[B ])makesthe W T T phosphatasethresholdmoresensitivetotheσBoperonexpressionrate,whereasadecreasein ratioofthekinaseandphosphatasecatalyticrateconstantsmakesitlesssensitive(S5Dand S5EFig).Thisshowsthatthephosphatasethresholdrepresentstheconcentrationatwhichthe phosphataseisabletomatchthebasalkinaseflux. Altogethertheseresultsshowhowtheultrasensitivenegativefeedbackplaysacriticalrole indeterminingmanypropertiesoftheσBnetworkpulsatileresponseandhowthedecoupling methodcanfacilitatetheidentificationofessentialdesignfeaturesthatenabletheexistenceof thisnegativefeedback. UnderenergystressconditionsσBnetworkencodesphosphataseburst sizeintopulseamplitudes IntheprecedingsectionswehaveshownhowtheσBnetworkrespondstoastep-increasein RsbQPorRsbTUphosphatasesbyproducingasinglepulseofactivity.However,Lockeetal. [13]haveshownthatanincreaseinenergystressleadstoasustainedresponsewithaseriesof stochasticpulsesinσBactivity.Thisstudyfurthershowedthatthissustainedpulsingresponse isdrivenbynoisyfluctuationsinlevelofenergy-stress-sensingphosphataseRsbQP.Whilethe meanlevelofRsbQPisregulatedtranscriptionallybyenergystress,itsconcentrationinsingle cellscanfluctuateduetothestochasticityofgeneexpression[8,13].Todetermineifourmodel couldexplainthisresponsetostochasticfluctuationsinRsbQP,wemodifiedittoincludefluc- tuationsintheconcentrationofthisphosphatase. Basedonprevioustheoretical[24,25]andexperimental[26]studiesweassumethatfluctu- atingphosphataselevelfollowsagammadistributionwhichisdescribedbytwoparameters— burstsize(b,averagenumberofmoleculesproducedperburst)andburstfrequency(a,num- berofburstspercellcycle).Themeanphosphataseinthiscaseistheproductofburstsizeand burstfrequency(hP i=ab).Thus,energystresscanincreasemeanphosphatasebychanging T burstsizeorburstfrequencyorboth.Inotherwords,stressconditionscanincreasephospha- taselevelsbyeitherproducingmorephosphatasemoleculespertranscription-translation eventorbymakingtheseeventsmorefrequent.Whiletheresultsof[13]cannotexcludeeither mechanism,wecanuseourmodeltouncoverwhichmechanismsisdominant. First,weperformedstochasticsimulationsinwhichmeanphosphataseconcentrationwas variedbychangingburstsize.Thesesimulationsreproducedalltheexperimentally-observed featuresoftheσBpulsatileresponse.Specificallyourresultsshowthatstochasticburstsinstress phosphataselevelsleadtopulsesofσBactivity(Fig3A).Moreover,consistentwiththeexperi- mentalobservationsof[13],ourmodelshowedthattheamplitudeofσBpulsesincreases PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 8/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks Fig3.PulsatileresponseoftheσBnetworktostochasticphosphataseburstsduringenergystress. ModelsimulationsforσBnetworkresponsewhereenergystressleadstoanincreaseinstress-sensing phosphataseRsbQPburstsize(A-D)orRsbQPburstfrequency(E-H).A,E.Simulationsshowstochastic burstsinlevelsofRsbQPleadtopulsesofσBtargetpromoteractivity.Lightanddarkgreencurvesaresample trajectoryfromstochasticsimulationathighandlowstressrespectively.NotethatσBtargetpromoteractivity pulseamplitudeincreasessignificantlywithincreasingstressforburstsizemodulation(A)butnotforburst frequencymodulation(E).B,F.MeanσBpulseamplitudeincreaseslinearlyasafunctionofmean phosphataselevelforburstsizemodulation(B)butisinsensitivetomeanphosphataselevelforburst frequencymodulation(F).Greencirclesanderrorbarsshowmeansandstandarddeviationscalculatedfrom stochasticsimulations.Blacklineisalinearfit.C,G.Withincreasingmeanphosphataselevel,meanσBpulse frequencyincreasesultrasensitivelyforburstsizemodulation(C)andlinearlyforburstfrequencymodulation (G).Greencirclesanderrorbarsshowmeansandstandarddeviationscalculatedfromstochasticsimulations. BlackcurvesareaHill-equationfitwithn =5.6in(C)andalinearfitin(G)respectively.D,H.MeanσBtarget Hill expressionincreasesultrasensitivelyasafunctionofmeanphosphataselevelforbothburstsize(D)and burstfrequency(H)modulation.GreencirclesarethemeanσBtargetexpressioncalculatedfromstochastic simulations.BlackcurveisaHill-equationfitwithn =2in(D)andinn =1.2(H). Hill Hill doi:10.1371/journal.pcbi.1005267.g003 linearlywiththestressphosphataselevel(Fig3Aand3B).Finally,wefoundthatstress-medi- atedincreasesinphosphataseconcentrationleadtoanultrasensitive(effectiveHillcoefficient ~5.6)increaseinthefrequencyofσBpulsing(Fig3C)andanultrasensitive(effectiveHillcoef- ficient~2)increaseinthelevelofσBtargetexpression(Fig3D). Next,wecomparedtheseresultswithstochasticsimulationsinwhichburstfrequencywas modulated(Fig3E–3H).ThesesimulationsalsoledtoanincreaseinσBpulsing(Fig3E)anda non-linearincreaseinthelevelofσBtargetexpressionasmeanphosphataselevelwasincreased withmorefrequentbursts(Fig3H).However,wefoundthatσBpulseamplituderemainscon- stantforburstfrequencymodulation(Fig3Eand3F)unlikethe~5-foldincreaseforburst-size modulation(Fig3B).Moreover,thefrequencyofσBpulsesincreaselinearlywithphosphatase levelunlikethenon-linearincreaseobservedwithburst-size-increasesimulations(compare Fig3Cand3G).Notablytheexperimentalobservationsreportedin[13]showthatσBpulse amplitudedoesincrease(~3-fold)withanincreaseinenergystressthussuggestingthat increaseinphosphataseconcentrationathighstressisprimarilytheresultofincreaseinburst size. Tofurtherreinforcetheroleofmeanburst-sizemodulationincontrollingtheσBpulsatile responsewenextexaminedthecumulativehistogramsofpulseamplitudesatdifferentphos- phataseconcentrations.Thesehistogramscarrydifferentsignaturesforburst-sizeorburst-fre- quencyencoding.Thedistributionofpulseamplitudesisunchangedwithincreaseinburst frequency(S6AFig)becauseσBpulseamplitudeisdeterminedbyphosphataseburstsizeand notburstfrequency.Incontrast,ifphosphataselevelsarecontrolledbychangingmeanburst sizethenthedistributionofpulseamplitudeschangesaccordingly.Consequently,the PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 9/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks normalizedcumulativehistogramsofpulseamplitudesoverlapforburst-frequencyencoding (S6AFig)butnotburst-sizeencoding(S6BFig).Applyingthistesttothedatafrom[13],we foundthatthenormalizedcumulativepulseamplitudeshistogramsdonotoverlap(S6CFig). TheseresultspredictthatstressaffectstheσBnetworkviaburst-sizemodulationofphospha- taseproductionwhichisthenencodedintoσBpulseamplitudes.Whilethemolecularmecha- nismthatintroducesenergystresstothenetworkisstillnotfullyunderstood,ourprediction placesanimportantconstraintonit. σBnetworkencodesrateofenvironmentalstressincreaseintopulse amplitudes OurmodelcanalsobeusedtostudytheresponseofσBnetworktoenvironmentalstress. Unliketheenergystressphosphatase,theenvironmentalstressphosphataseRsbUisregulated post-translationallybybindingofRsbT[27–29].RsbTistrappedbyitsnegativeregulators underunstressedconditionsbutisreleaseduponstress.Consequently,theconcentrationof RsbTUcomplexistightlycontrolledatthepost-translationallevelandisthereforeexpectedto berelativelyinsensitivetogeneexpressionfluctuationsbutsensitivetothelevelofenviron- mentalstress.Asaresult,step-upincreasesinenvironmentalstressagentslikeethanolproduce rapidincreasesinRsbTUandresultinonlyasinglepulseofσBactivity[14].Howeverithas beenshownthatforgradualincreasesinstress,σBpulseamplitudedependsontherateof stressincrease[14].Toexplainthisresponse,wemodeledgradualstresswithrampedincrease inRsbTUcomplexconcentration(Fig4A).Oursimulationsshowedthatthedetailedmodelof σBnetworkisindeedabletocapturetheeffectofrateofstressincreaseonσBpulseamplitudes. SpecificallyforafixedincreaseinRsbTUcomplex,thepulseamplitudedecreasesnon-linearly asafunctionofthedurationofphosphataseramp(Fig4Band4E). Fig4.RatesensitivityoftheσBpulsatileresponsetoenvironmentalstress.A.Rampedincreasesin RsbTUcomplexconcentrationwereusedasmodelinputstosimulatedifferentratesofstressincreaseinσB network.B.σBpulseamplitudesinthewildtypemodel(k =0.72hr-1isthedegradationrateofσBoperon deg proteins)resultingfromtherampedincreasesinphosphataseconcentrationshownin(A).C,D.σBpulse amplitudesresultingfromtherampedincreaseinphosphataseconcentrationshownin(C)forvarious degradation/dilutionrates(D).E.Non-lineardependenceσBpulseamplitudeonphosphataserampduration forvariousdegradation/dilutionrates.CirclesandsolidcurvesrepresentsimulationresultsandHill-equation fitsrespectively.Colorsrepresentdifferentk valuesasin(D).F.K ,thehalf-maximalconstantofthe deg ramp non-lineardependenceofamplitudeonrampduration,asafunctionofk . deg doi:10.1371/journal.pcbi.1005267.g004 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 10/25
Description: