ebook img

Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor ... PDF

25 Pages·2016·2.41 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor ...

RESEARCHARTICLE Role of Autoregulation and Relative Synthesis of Operon Partners in Alternative Sigma Factor Networks JatinNarula☯,AbhinavTiwari☯,OlegA.Igoshin* DepartmentofBioengineering,RiceUniversity,Houston,Texas,UnitedStatesofAmerica ☯Theseauthorscontributedequallytothiswork. *[email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Despitethecentralroleofalternativesigmafactorsinbacterialstressresponseandviru- lencetheirregulationremainsincompletelyunderstood.Hereweinvestigateoneofthe best-studiedexamplesofalternativesigmafactors:theσBnetworkthatcontrolsthegeneral stressresponseofBacillussubtilistouncoverwidelyrelevantgeneraldesignprinciplesthat OPENACCESS describethestructure-functionrelationshipofalternativesigmafactorregulatorynetworks. Citation:NarulaJ,TiwariA,IgoshinOA(2016) WeshowthattherelativestoichiometryofthesynthesisratesofσB,itsanti-sigmafactor RoleofAutoregulationandRelativeSynthesisof RsbWandtheanti-anti-sigmafactorRsbVplaysacriticalroleinshapingthenetworkbehav- OperonPartnersinAlternativeSigmaFactor Networks.PLoSComputBiol12(12):e1005267. iorbyforcingtheσBnetworktofunctionasanultrasensitivenegativefeedbackloop.Wefur- doi:10.1371/journal.pcbi.1005267 therdemonstratehowthisnegativefeedbackregulationinsulatesalternativesigmafactor Editor:StefanKlumpp,MaxPlanckInstituteof activityfromcompetitionwiththehousekeepingsigmafactorforRNApolymeraseand ColloidsandInterfaces,GERMANY allowsmultiplestresssigmafactorstofunctionsimultaneouslywithlittlecompetitive Received:August17,2016 interference. Accepted:November23,2016 Published:December15,2016 Copyright:©2016Narulaetal.Thisisanopen AuthorSummary accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which Understandingtheregulationofbacterialstressresponseholdsthekeytotacklingthe permitsunrestricteduse,distribution,and problemsofemergingresistancetoanti-bacteria’sandantibiotics.Tothisend,herewe reproductioninanymedium,providedtheoriginal studyoneofthelongestservingmodelsystemsofbacterialstressresponse:theσBpathway authorandsourcearecredited. ofBacillussubtilis.ThesigmafactorσBcontrolsthegeneralstressresponseofBacillussub- DataAvailabilityStatement:Allrelevantdataare tilistoavarietyofstressconditionsincludingstarvation,antibioticsandharmfulenviron- withinthepaperanditsSupportingInformation mentalperturbations.Recentstudieshavedemonstratedthatanincreaseinstresstriggers files. pulsatileactivationofσB.Usingmathematicalmodelingweidentifythecorestructural Funding:TheresearchwassupportedbyNational designfeatureofthenetworkthatareresponsibleforitspulsatileresponse.Wefurther InstituteofGeneralMedicalSciences(https://www. demonstratehowthesamecoredesignfeaturesarecommontoavarietyofstressresponse nigms.nih.gov,grant#096189)andNational pathways.Asaresultofthesefeatures,cellscanrespondtomultiplesimultaneousstresses ScienceFoundation,DivisionofMolecularand withoutinterferenceorcompetitionbetweenthedifferentpathways. CellularBiosciences(https://www.nsf.gov/div/ index.jsp?div=MCB,grant#MCB-1616755)toOAI. Thefundershadnoroleinstudydesign,data collectionandanalysis,decisiontopublish,or preparationofthemanuscript. PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 1/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks CompetingInterests:Theauthorshavedeclared Introduction thatnocompetinginterestsexist. Bacteriasurviveinstressfulenvironmentalconditionsbyinducingdramaticchangesintheir geneexpressionpatterns[1,2].Foravarietyofstresses,theseglobalchangesingeneexpression arebroughtaboutbytheactivationofalternativeσ-factorsthatbindtheRNApolymerasecore enzymeanddirectittowardstheappropriatestressresponseregulons[3].Consequently,to ensurethattheseσ-factorsareonlyactiveunderspecificenvironmentalconditions,bacteria haveevolvedregulatorysystemstocontroltheirproduction,activityandavailability[3,4]. Theseregulatorynetworkscanbehighlycomplexbutfrequentlysharefeaturessuchasanti-σ- factors,partnerswitchingmechanismsandproteolyticactivation[4].Thecomplexityofthese networkshasimpededaclearmechanisticunderstandingoftheresultingdynamicalproper- ties.Inthisstudy,wefocusononeofthebeststudiedexamplesofalternativeσ-factors,the generalstress-responseregulatingσBinBacillussubtilis[5]tounderstandhowthestructureof theσ-factorregulatorynetworksisrelatedtotheirfunctionalresponse. TheσB-mediatedresponseistriggeredbydiverseenergyandenvironmentalstresssignals andactivatesexpressionofabroadarrayofgenesneededforcellsurvivalintheseconditions [5].ActivityofσBistightlyregulatedbyapartner-switchingnetwork(Fig1Aand1B)compris- ingσB,itsantagonistanti-σ-factorRsbW,andanti-anti-σ-factorRsbV.Intheabsenceofstress, RsbWdimer(RsbW )bindstoσBandpreventsitsassociationwithRNApolymerasethereby 2 keepingtheσBregulonOFF.UndertheseconditionsmostofRsbViskeptinthephosphory- latedform(RsbV~P)bythekinaseactivityofRsbW .RsbV~PhasalowaffinityforRsbW 2 2 andcannotinteractwithiteffectively[6].However,inthepresenceofstress,RsbV~Pis dephosphorylatedbyoneorbothofthededicatedphosphatasecomplexes:RsbQPforenergy stressandRsbTUforenvironmentalstress[7–10].DephosphorylatedRsbVattackstheσB- RsbW complextoinduceσBrelease,therebyturningtheσBregulonON[11].Notably,the 2 genesencodingσBanditsregulatorsliewithinaσB-controlledoperon[12],therebyresulting inpositiveandnegativefeedbackloops. Recently,itwasshownthatunderenergystressσBisactivatedinastochasticseriesoftran- sientpulsesandincreasingstressresultedinhigherpulsefrequencies[13].Ithasalsobeen shownthatincreaseinenvironmentalstressorsuchasethanolleadstoasingleσBpulsewith anamplitudethatissensitivetotherateofstressorincrease[14].Whileitisclearthatthepul- satileactivationofσBisrootedinthecomplexarchitectureofitsregulatorynetwork(Fig1A and1B)itsmechanismisnotfullyunderstood.PreviousmathematicalmodelsoftheσBnet- workeitherdidnotproducethepulsatileresponse[15]ormadesimplificationstothenetwork [13]thataresomewhatinconsistentwithexperimentallyobserveddetails.Asaresult,it remainsunclearwhichdesignfeaturesoftheσBnetworkenableitsfunctionalproperties. ToaddresstheseissueswedevelopadetailedmathematicalmodeloftheσBnetworkand examineitsdynamicstounderstandthemechanisticprinciplesunderlyingthepulsatile response.Bydecouplingthepost-translationalandtranscriptionalcomponentsofthenetwork weshowthatanultrasensitivenegativefeedbackbetweenthetwoisthebasisforσBpulsing. MoreoverwefindthattherelativesynthesisratesofσBanditsoperonpartnersRsbWand RsbV,playsacriticalroleindeterminingthenatureoftheσBresponse.Wealsouseour model,togetherwithpreviouslypublishedexperimentaldatafrom[13,14],toexplainhowthe σBnetworkisabletoencodetherateofstressincreaseandthesizeofstochasticburstsofstress phosphataseintotheamplitudesofσBpulses. Wefurtherdevelopthismodeltoinvestigatehowthenetworkfunctionsinthecontextof otherσ-factors.Asinmanyotherbacteria,σBisoneofthemanyσ-factorsthatcomplexwith RNA-polymerasecorethatispresentinlimitedamounts[3,16].Therefore,wheninduced thesealternativeσ-factorscompetewithoneanotherandthehousekeepingσ-factorσAfor PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 2/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks Fig1.σBgeneralstressresponsenetwork.A.NetworkdiagramoftheσBgeneralstressresponse.The networkhastwomodules:atranscriptionalmodulethatinputsthefreeσBlevelandoutputsthetotal concentrationsofoperonproteinsRsbV(RsbV ),RsbW(RsbW )andσB(B );andapost-translational T T T modulethatusesRsbV ,RsbW andB andthestressphosphataselevelsasinputstooutputthelevelof T T T freeσB.Inthepost-translationalmodule,energyandenvironmentalstressesactivatethestress-sensing phosphatasesRsbQP(QP)andRsbTU(TU)whichdephosphorylateRsbVwhichinturnactivatesσBby releasingitfromtheσB-RsbW complex.NoteonlythemonomericformsofRsbWandRsbVhavebeen 2 shownforsimplicity.B.SimplifiedviewoftheσBnetwork.TheσBnetworkworksasafeedbackloopwherein freelevelcontrolsRsbV ,RsbW andB levelsviaoperontranscriptionandthethreeoperoncomponents T T T togetherwiththestressleveldeterminethefreeσBlevel.Thefeedbackloopsigniscanbeeitherpositiveor negativedependingonwhetherincreaseinoperoncomponentlevelsimpactsfreeσBleveleitherpositivelyor negatively.C-E.DynamicsoffreeσBinresponsetoastep-increaseinphosphataseconcentrationfordifferent combinationsoftherelativesynthesisratesofσBoperonpartners(λ =RsbW /B ,λ =RsbV /B ). W T T V T T doi:10.1371/journal.pcbi.1005267.g001 RNApolymerase.Weuseourmodeltoinvestigatehowthedesignofthisnetworkenablesitto functioneveninthepresenceofcompetitionfromσAwhichhasasignificantlyhigheraffinity forRNApolymerase[17].Lastly,weinvestigatehowmultiplealternativeσ-factorscompete whencellsareexposedtomultiplestressessimultaneously.Usingourmodelweidentifydesign featuresthatareubiquitousinstressσ-factorregulationandcriticaltobacterialsurvivalunder diversetypesofstresses. Results BiochemicallyaccuratemodelofσBpulsing Inarecentstudy,Lockeetal.[13]demonstratedthatastep-increaseinenergystressresultsin pulsatileactivationofσB.Thestudyalsoproposedaminimalmathematicalmodelofthenet- workwhichreproducedpulsinginσB.However,thismodelincludedseveralassumptions inconsistentwithexperimentallyobserveddetails:(i)Phosphorylationanddephosphorylation reactionswereassumedtofollowMichaelis-Mentenkineticsdespitethefactthatkinase (RsbW)andphosphataseconcentrationsareknowntobecomparabletosubstrate(RsbV) PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 3/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks concentrations[18]sotheapproximationbreaksdown[19],(ii)σBandRsbVarerepresented asasinglelumpedvariableratherthanseparatespeciesand,(iii)partner-switching,andthe formationanddissociationofvariousRsbW complexeswerenotincludedexplicitly.Though 2 thisminimalmodelproducespulsesresemblingtheirexperimentalobservations,itdoesnot depictabiochemicallyaccuratepictureoftheσBnetwork.Consequentlyitcannotbeusedto uncoverthedesignfeaturesthatenableσBpulsing. TounderstandtheσBnetworkresponsewebuiltonourearlierstudy[15]todevelopa detailedmathematicalmodelthatexplicitlyincludesallknownmolecularinteractionsinthe network.Notethatwemadeonesignificantchangetothemodeldiscussedin[15].Themodel in[15]assumedthatthesynthesisratesforσBanditsoperonpartners(RsbWandRsbV)fol- lowthestoichiometryoftheirbindingratios(i.e.RsbW /B =2andRsbW /RsbV =1;where T T T T B ,RsbW andRsbV representtotalσB,RsbWandRsbVconcentrationsrespectively).How- T T T everexperimentalmeasurementshaveshownthatσB,RsbWandRsbVareproducedinnon- stoichiometricratios[18].Theexactmechanismunderlyingthesenon-stoichiometricratiosis currentlyonlyincompletelyunderstood.However,analysisoftheopen-readingframesinthe operonshowedthatrsbVandrsbWmaybetranslationallycoupledduetooverlappingtermi- nationandinitiationcodons[20]whichmayensurethattheyareexpressedinsimilar amounts.ThesameanalysisalsoshowedthatthersbWandsigBreadingframesoverlapped andthatthisoverlapwasprecededbyaregionofdyadsymmetrywhichmayformastem-loop structure[20].ThesefeaturesmayinterferewithsigBtranslationandleadtolowerexpression ofσBthanitsbindingpartnersRsbVandRsbW.Toaccountforthesefeatures,incontrastto ourearlierstudy,weassumedσB,RsbWandRsbVcanbeproducedinnon-stoichiometric ratiosandstudiedhowchangesinrelativesynthesisratesofσBoperonpartnersaffectthe responseoftheσBnetworktostep-increasesinenergystressphosphataselevels.Wenotethat RsbX,anegativeregulatorofRsbTUphosphatase[21],isnotincludedinourmodel.RsbXwas excludedforsimplicitysinceitisnotessentialforthepulsatileresponseoftheσBnetwork[14]. SimulationsofthisdetailedmodelshowedthatdifferentcombinationsofRsbW:σB(λ ) W andRsbV:σB(λ )relativesynthesisratesleadtoqualitativelydifferentdynamicalresponsesof V theσBnetwork.Foroperonpartnersynthesisratiossimilartothoseestimatedin[18],(i.e. RsbW >2B andRsbW (cid:25)RsbV )ourmodelrespondedtoastep-upincreaseofthephos- T T T T phatasewithapulsatileσBresponse(Fig1C)thatresembledtheexperimentallyobserved behavior[13].Incontrast,whenRsbW:σBandRsbV:σBrelativesynthesisratesfollowthestoi- chiometryoftheirbindingratiospulsingisnotobservedandtheσBactivitymonotonically increasesovertime(Fig1D).PulsingalsodisappearswhenRsbWsynthesisishighenoughto neutralizebothitsbindingpartners(Fig1E). Pulsingoriginatesfromemergentnegativefeedbackinthenetwork Tounderstandwhythepulsatileresponseisonlyobservedforcertainoperonpartnersynthesis rates,weinvestigatedourmathematicalmodelbydecouplingthenetwork’stranscriptional andpost-translationalresponses(asshowninFig1A).ByvaryingtheσBoperontranscription rate,whilekeepingtherelativesynthesisratesofRsbW:σB(λ )andRsbV:σB(λ )fixed,we W V wereabletocalculatethepost-translationalresponse(Fig2A,bluecurve)oftheσBnetwork: [σB]=F ([B ],[P ]).ThisfunctiondescribeshowthefreeσBconcentrationvariesasafunc- p T T tionofB (totalconcentrationofσB)andP (totalphosphataseconcentration).Notethat T T althoughwereferonlytoB forbrevity,RsbW andRsbV arealwaysassumedtoincreasein T T T proportiontotheB forthispost-translationalresponse.Thispost-translationalfunctionis T analogoustoaninvitroassaywhereinvariouscombinationsoftotalσB(BT−andproportional amountsofRsbW andRsbV )andtotalphosphatase(P )aremixedtogetherandthenthe T T T PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 4/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks Fig2.NegativefeedbackdrivesthepulsatileresponseoftheσBnetwork.A.Decoupledpost- translational(bluecurve)andtranscriptional(blackcurve)responsesoftheσBnetworkforλ =RsbW /B = W T T 4,λ =RsbV /B =4.5.σBandB representtheconcentrationsoffreeandtotalσB.Redcirclemarksthe V T T T steadystatesofthefullsystem.NotethatRsbW andRsbV areassumedtoalwaysincreaseinproportionto T T theB forbothpost-translationalandtranscriptionalresponses.B.Sensitivityofthepost-translational T response(LG )tochangesintotalσBconcentration(operonproduction).C.RepresentationoftheσB P pulsatiletrajectoryintheσB-B phaseplane(greencurve).Blueandcyancurvesarethedecoupledpost- T translationalresponsesathighandlowphosphataseconcentrations.Blackcurveisthetranscriptional response.D.(λ ,λ )relativesynthesisparameterspaceisdividedintoregionswithpositive(RegionI), W V negative(RegionII)andzero(RegionIII)post-translationalsensitivitythatrespectivelycorrespondtoan effectivepositive,negativeandnofeedbackintheσBnetwork.Redandblacklinesrepresenttheanalytically calculatedregionboundariesλ =2+λ andλ =2(1+λ k /k). W V W V deg k doi:10.1371/journal.pcbi.1005267.g002 resultingfreeσBconcentrationismeasured.Inparallel,wecalculatedthetranscriptional response(Fig2A,blackcurve)[B ]=F ([σB])whichanalogoustoatranscriptionalreporter T T constructinvivo,describeshowchangesinthefreeσBconcentrationaffecttotalσBconcentra- tions(andRsbW andRsbV concentrationswhicharealwaysproportionaltoB ).Inthis T T T analysisframework,thesteadystateofthecompleteclosedloopnetworkcanbedetermined bysimultaneouslysolvingthepost-translationalandtranscriptionalequations,[σB]=F ([B ], P T [P ])and[B ]=F ([σB])ateachphosphataseconcentrationP .Graphingbothfunctionspro- T T T T videdthesteady-statesolutionastheirintersectionpoint(Fig2A,redcircle). Thisdecouplingapproximationallowsustoquantifythesignandstrengthoffeedbackin thefullmodel.TheeffectivesignofthefeedbackintheσBnetworkisgivenbythesignofthe productofthesensitivitiesoftworesponsefunctions,i.e.sign((@F /@[σB])(cid:1)(@F /@[B ])). T P T Sinceσ-factorsfunctionasactivatorsoftranscription,F ([σB])isamonotonicallyincreasing T functionofσB(i.e.@F /@[σB]>0).Consequently,thesignofthefeedbackintheσBnetworkis T PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 5/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks givenbythesignofthesensitivityofthepost-translationalresponsetoRsbB (i.e.@F /@[B ]). T P T Inotherwords,ifincreaseintheoperonproductionleadstoanincreaseinfreeσBthenthe feedbackispositive,whereasifincreaseintheoperonproductionleadstoadecreaseinfreeσB thenthefeedbackisnegative.OurresultsshowthatfortheparameterschoseninFig1CF isa P non-monotonicfunctionofB (Fig2A,bluecurve).AtlowRsbB ,freeσBincreasesasafunc- T T tionofB becauseRsbWissequesteredintheW V complex.HoweverathigherB ,thekinase T 2 2 T fluxdominatesthephosphatasefluxresultinginanincreasedRsbV~Pandthefreeingof RsbW fromRsbV.FreedRsbW sequestersσBintheW σBcomplex.Furthermore,inthetotal 2 2 2 σBconcentrationrangewhere@F /@[B ]<0inFig2B,thepost-translationalresponseisquite P T steep(Fig2A),i.e.smallchangesinB leadtosignificantdecreasesinfreeσB.Thisultrasensitiv- T itycanbequantifiedbycalculatingtheslopeinlogarithmicspace,i.e. d½sB(cid:138)=½sB(cid:138) dlog½sB(cid:138) LG ¼ ¼ P d½B (cid:138)=½B (cid:138) dlog½B (cid:138) T T T ThisdimensionlessquantitycharacterizestheratioofrelativechangesinσBandB atsteady T state(Fig2B).ThesignofLG definestheeffectivesignofthefeedbackloopandifthemagni- P tudeof|LG |>1definesanultrasensitiveresponse.FortheσBnetwork,intheregionaround P thesteadystateLG <−1indicatingthattheσBnetworkoperatesinanultrasensitivenegative P feedbackregime.Twotypesofpost-translationalreactionsthatareknowntoproduceultrasen- sitivityplayarolehere(S1AandS1BFig):(1)Zero-orderultrasensitivityduetocompetition betweenRsbWkinaseandRsbQP/RsbTUphosphatasesforRsbVand(2)moleculartitration duetosequestrationofσBbyRsbW.Notablyaroundthesteadystate,whereasboththefraction ofunphosphorylatedRsbVandthefractionoffreeσBdecreaseultrasensitivelyasafunctionof increaseinoperonexpression(proportionaltoB )thelatterisfarmoresensitive(S1CFig). T ThisindicatesthatmoleculartitrationbetweenσBanditsbindingpartnersmaycontribute moretotheultrasensitivityofthepost-translationalresponsethanthezero-ordercompetition betweenRsbWandstressphosphatases.Irrespectiveoftheirrelativecontributionshowever, ourresultsshowthatbothmechanismscombinetoensurethatnearthesteadystatetheσBnet- workoperatesinanultrasensitivenegativefeedbackregime. Notably,negativefeedbackisoneofthefewnetworkmotifscapableofproducingadaption- likepulsatileresponses[22].Moreover,ultrasensitivityofthefeedbackensureshomeostatic behavior—makingthesteadystaterobusttovariationsofparameters[22].Thisexplainswhy inFig1Castep-increaseinthephosphataseconcentrationinourmodelleadstoaσBpulsefol- lowedbyreturntonearlythesamesteadystate.PlottingthetrajectoryoftheσBpulse(green curve,Fig2C)onthe([σB],[B ])planeandoverthepost-translationalandtranscriptional T responses(Fig2C)illustratesthemechanismdrivingthispulsatileresponse.Startingattheini- tialsteadystate(redcircle),anincreaseinphosphataseshiftstheultrasensitivepost-transla- tionalresponse(cyantobluecurve)sothatfreeσBisrapidlyreleasedfromtheRsbW -σB 2 complexwhereastotalσBlevelsremainrelativelyunchanged.TheincreaseinσBoperontran- scriptioneventuallycausesaccumulationoftotalσBandtheanti-σ-factorRsbW.Thisinturn forcestheσBleveltodecrease,followingthepost-translationalresponsecurve,tothenew steadystate(graycircle)whichhasverylittlefreeσBtherebycompletingtheσBpulse. Thesameanalysiscanbeappliedfordifferentvaluesofrelativesynthesisrates,i.e.those thatcorrespondtoFig1Dand1E.AsshowninS2Figtheseparametervaluesdonotproduce anultrasensitivenon-monotonicpost-translationalresponse.Consequentlytheydonotlead totheemergenceofoverallnegativefeedbackexplainingtheirnon-pulsingdynamics.To determineifthepresenceorabsenceofnegativefeedbackmoregenerallyexplainsthedifferent dynamicalresponsesinFig1C–1E,wesampleddifferentcombinationsofrelativesynthesis PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 6/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks rates([RsbW ]/[B ]=λ and[RsbV ]/[B ]=λ )andcalculatedthepost-translationalsensi- T T W T T V tivities.Ourcalculationsshowedthatbasedonthesignofpost-translationalsensitivity(LG ) P therelativesynthesisparameterspacecanbedividedintothreeregions(Fig2D).For(λ ,λ ) W V combinationsinRegionIthesensitivityisalwayspositive.Increaseinλ leadsthesysteminto W anultrasensitivenegativeregime(LG <0and|LG |(cid:29)1)inRegionII.Afurtherincreasein P P λ oradecreaseinλ transitionsthesystemintoanon-responsive(LG *0)stateinRegion W V P III.Dynamicsimulationsforsampled(λ ,λ )combinationsconfirmthatpulsatileresponses W V tostep-upinphosphataseconcentrationarerestrictedtoRegionIIwheretheeffectivefeed- backisnegative(S2Fig). Tounderstandtheboundariesbetweenthethreeregionsandhowthelevelofthephospha- taseaffectsthenetwork,wedevelopedasimplifiedanalyticalmodelthatisbasedontheobser- vationthatRsbWandRsbVbindstronglytoeachother[18](seeS1Textfordetails).This approximationallowedustodeterminetheboundariesinFig2D(blackandredlines)and resultedinaclearbiologicalinterpretationofthethreeregions.InRegionItheamountof RsbW,irrespectiveofphosphataselevel,isinsufficienttobindallofitspartnersandconse- quentlysomefractionofσBalwaysremainsfreeorunboundtoRsbW.IncontrastinRegion II,theamountofphosphatasedetermineshowmuchRsbVisinitsinactivephosphorylated formRsbV~PandthereforewhethertheamountofRsbWissufficienttobindallofitspart- nersdependsonthelevelsofRsbV~P.Asaresult,forthisregion,theratioofkinaseandphos- phatase(P )fluxesdeterminesthepost-translationalresponse.Lastly,RegionIIIisthe T oppositeofRegionIinthattheamountofRsbWismorethansufficienttobindallofitspart- ners,evenwhenallRsbVisunphosphorylated.Asaresult,irrespectiveofphosphataselevels, verylittleσBisfreeanditslevelisnearlyinsensitivetochangesintotalσB.Thusnegativefeed- backandconsequentlypulsingareonlypossibleinRegionIIwherechangesinphosphatase canshiftthebalancebetweentheprevalentpartnercomplexes. Theroleofnegativefeedbackinproducingapulsatileresponsealsoexplainswhypulsing doesnotoccurinstrainswhereσBoperonistranscribedconstitutively[13].Inthiscase,theσB networklacksthenegativefeedbacknecessarytoproduceapulsatileresponse.Astep-increase inphosphatasestillleadstoanincreaseinfreeσBduetothechangeinthepost-translational response;however,thisnotfollowedbyanincreaseintotalσBlevels(S2CFig).Consequently, anincreaseinphosphataseresultsinamonotonicincreaseinfreeσBratherthanapulse (S2FFig). Theonlyactualmeasurementsofλ andλ weremadebyDelumeauetal.[18]usinga W V quantitativewesternblotassay.Interestinglytheyreportthatλ =2.9,λ =1.7intheabsence W V ofstressandλ =2.4,λ =2.65inthepresenceofstress.Thesemeasurementssuggestthatthe W V ratiosmightchangedependingonwhethercellsareunderstress.Althoughthemechanism underlyingthischangeisunclear,ourmodelpredictsthatbothmeasuredratiopairsliewithin thenegativefeedbackregimeshowninFig2D.Accordinglyoursimulationsshowthatthenet- workrespondstostep-increasesinphosphataselevelswithapulsatileresponseforbothpre- stressandpost-stress(λ ,λ )values(S3Fig).However,duetoreducedultrasensitivityofthe W V systemfortheseparameters,concertationoffreeσBfollowingincreaseinthestress(phospha- tase)doesnotperfectlyadapttothepre-stressvalue(S3Fig).Inanattempttomatchthenear- perfectadaptationreportedinRefs.[13,14]we’vechosentodofurtheranalysiswithλ =4 W andλ =4.5. V Notably,oursimulationsalsoshowedthatitisnotessentialforthephosphataselevelto remainfixedafterastress-inducedstep-increase.Infact,wefoundthatadilutionmediated declineinphosphataselevelpost-step-increasehaslittleimpactonthepulseamplitude(S4 Fig).Thisobservationcanbeexplainedbytherelativelyrapiddynamicsofthepost-transla- tionalresponseascomparedtothegradualnatureofdilutionandsuggeststhatpulsatile PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 7/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks dynamicsarerelevantevenforexperimentalconditionswherephosphataselevelsdonot remainfixedinstressfulconditions[14,23]. Furtherourdecouplingmethodalsoshedslightonanotherexperimentalobservationby Lockeetal.[13]:thedependenceofσBpulseamplitudeonthephosphataselevel.Specifically, wefoundthatσBpulseamplitudeisathreshold-linearfunctionofthephosphataseconcentra- tion(S5Fig).Ourdecouplingmethodshowsthatthisthreshold-linearbehaviorarisesbecause theσBnetworkonlyoperatesinanegativefeedbackregimeforphosphataseconcentrations higherthanathreshold.Belowthephosphatasethreshold,thepost-translationalresponse [σB]=F ([B ],[P ])*0andisinsensitivetoRsbB (S5BandS5CFig).Thus,thefullsystem P T T T lacksthenegativefeedbackandasaresultσBdoesnotpulse.Usingouranalyticalapproxima- tionwefoundthatthisphosphatasethresholdisproportionaltothebasallevelofRsbWkinase synthesisrateandtheratioofthekinaseandphosphatasecatalyticrateconstants(S5Dand S5EFig).IncreaseinthebasalσBoperonexpressionrateincreasesthephosphatasethreshold. Further,anincreaseintherelativesynthesisrateofRsbW(λ =[RsbW ]/[B ])makesthe W T T phosphatasethresholdmoresensitivetotheσBoperonexpressionrate,whereasadecreasein ratioofthekinaseandphosphatasecatalyticrateconstantsmakesitlesssensitive(S5Dand S5EFig).Thisshowsthatthephosphatasethresholdrepresentstheconcentrationatwhichthe phosphataseisabletomatchthebasalkinaseflux. Altogethertheseresultsshowhowtheultrasensitivenegativefeedbackplaysacriticalrole indeterminingmanypropertiesoftheσBnetworkpulsatileresponseandhowthedecoupling methodcanfacilitatetheidentificationofessentialdesignfeaturesthatenabletheexistenceof thisnegativefeedback. UnderenergystressconditionsσBnetworkencodesphosphataseburst sizeintopulseamplitudes IntheprecedingsectionswehaveshownhowtheσBnetworkrespondstoastep-increasein RsbQPorRsbTUphosphatasesbyproducingasinglepulseofactivity.However,Lockeetal. [13]haveshownthatanincreaseinenergystressleadstoasustainedresponsewithaseriesof stochasticpulsesinσBactivity.Thisstudyfurthershowedthatthissustainedpulsingresponse isdrivenbynoisyfluctuationsinlevelofenergy-stress-sensingphosphataseRsbQP.Whilethe meanlevelofRsbQPisregulatedtranscriptionallybyenergystress,itsconcentrationinsingle cellscanfluctuateduetothestochasticityofgeneexpression[8,13].Todetermineifourmodel couldexplainthisresponsetostochasticfluctuationsinRsbQP,wemodifiedittoincludefluc- tuationsintheconcentrationofthisphosphatase. Basedonprevioustheoretical[24,25]andexperimental[26]studiesweassumethatfluctu- atingphosphataselevelfollowsagammadistributionwhichisdescribedbytwoparameters— burstsize(b,averagenumberofmoleculesproducedperburst)andburstfrequency(a,num- berofburstspercellcycle).Themeanphosphataseinthiscaseistheproductofburstsizeand burstfrequency(hP i=ab).Thus,energystresscanincreasemeanphosphatasebychanging T burstsizeorburstfrequencyorboth.Inotherwords,stressconditionscanincreasephospha- taselevelsbyeitherproducingmorephosphatasemoleculespertranscription-translation eventorbymakingtheseeventsmorefrequent.Whiletheresultsof[13]cannotexcludeeither mechanism,wecanuseourmodeltouncoverwhichmechanismsisdominant. First,weperformedstochasticsimulationsinwhichmeanphosphataseconcentrationwas variedbychangingburstsize.Thesesimulationsreproducedalltheexperimentally-observed featuresoftheσBpulsatileresponse.Specificallyourresultsshowthatstochasticburstsinstress phosphataselevelsleadtopulsesofσBactivity(Fig3A).Moreover,consistentwiththeexperi- mentalobservationsof[13],ourmodelshowedthattheamplitudeofσBpulsesincreases PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 8/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks Fig3.PulsatileresponseoftheσBnetworktostochasticphosphataseburstsduringenergystress. ModelsimulationsforσBnetworkresponsewhereenergystressleadstoanincreaseinstress-sensing phosphataseRsbQPburstsize(A-D)orRsbQPburstfrequency(E-H).A,E.Simulationsshowstochastic burstsinlevelsofRsbQPleadtopulsesofσBtargetpromoteractivity.Lightanddarkgreencurvesaresample trajectoryfromstochasticsimulationathighandlowstressrespectively.NotethatσBtargetpromoteractivity pulseamplitudeincreasessignificantlywithincreasingstressforburstsizemodulation(A)butnotforburst frequencymodulation(E).B,F.MeanσBpulseamplitudeincreaseslinearlyasafunctionofmean phosphataselevelforburstsizemodulation(B)butisinsensitivetomeanphosphataselevelforburst frequencymodulation(F).Greencirclesanderrorbarsshowmeansandstandarddeviationscalculatedfrom stochasticsimulations.Blacklineisalinearfit.C,G.Withincreasingmeanphosphataselevel,meanσBpulse frequencyincreasesultrasensitivelyforburstsizemodulation(C)andlinearlyforburstfrequencymodulation (G).Greencirclesanderrorbarsshowmeansandstandarddeviationscalculatedfromstochasticsimulations. BlackcurvesareaHill-equationfitwithn =5.6in(C)andalinearfitin(G)respectively.D,H.MeanσBtarget Hill expressionincreasesultrasensitivelyasafunctionofmeanphosphataselevelforbothburstsize(D)and burstfrequency(H)modulation.GreencirclesarethemeanσBtargetexpressioncalculatedfromstochastic simulations.BlackcurveisaHill-equationfitwithn =2in(D)andinn =1.2(H). Hill Hill doi:10.1371/journal.pcbi.1005267.g003 linearlywiththestressphosphataselevel(Fig3Aand3B).Finally,wefoundthatstress-medi- atedincreasesinphosphataseconcentrationleadtoanultrasensitive(effectiveHillcoefficient ~5.6)increaseinthefrequencyofσBpulsing(Fig3C)andanultrasensitive(effectiveHillcoef- ficient~2)increaseinthelevelofσBtargetexpression(Fig3D). Next,wecomparedtheseresultswithstochasticsimulationsinwhichburstfrequencywas modulated(Fig3E–3H).ThesesimulationsalsoledtoanincreaseinσBpulsing(Fig3E)anda non-linearincreaseinthelevelofσBtargetexpressionasmeanphosphataselevelwasincreased withmorefrequentbursts(Fig3H).However,wefoundthatσBpulseamplituderemainscon- stantforburstfrequencymodulation(Fig3Eand3F)unlikethe~5-foldincreaseforburst-size modulation(Fig3B).Moreover,thefrequencyofσBpulsesincreaselinearlywithphosphatase levelunlikethenon-linearincreaseobservedwithburst-size-increasesimulations(compare Fig3Cand3G).Notablytheexperimentalobservationsreportedin[13]showthatσBpulse amplitudedoesincrease(~3-fold)withanincreaseinenergystressthussuggestingthat increaseinphosphataseconcentrationathighstressisprimarilytheresultofincreaseinburst size. Tofurtherreinforcetheroleofmeanburst-sizemodulationincontrollingtheσBpulsatile responsewenextexaminedthecumulativehistogramsofpulseamplitudesatdifferentphos- phataseconcentrations.Thesehistogramscarrydifferentsignaturesforburst-sizeorburst-fre- quencyencoding.Thedistributionofpulseamplitudesisunchangedwithincreaseinburst frequency(S6AFig)becauseσBpulseamplitudeisdeterminedbyphosphataseburstsizeand notburstfrequency.Incontrast,ifphosphataselevelsarecontrolledbychangingmeanburst sizethenthedistributionofpulseamplitudeschangesaccordingly.Consequently,the PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 9/25 DesignandFunctionalPropertiesofthePartner-Switchingσ-factorNetworks normalizedcumulativehistogramsofpulseamplitudesoverlapforburst-frequencyencoding (S6AFig)butnotburst-sizeencoding(S6BFig).Applyingthistesttothedatafrom[13],we foundthatthenormalizedcumulativepulseamplitudeshistogramsdonotoverlap(S6CFig). TheseresultspredictthatstressaffectstheσBnetworkviaburst-sizemodulationofphospha- taseproductionwhichisthenencodedintoσBpulseamplitudes.Whilethemolecularmecha- nismthatintroducesenergystresstothenetworkisstillnotfullyunderstood,ourprediction placesanimportantconstraintonit. σBnetworkencodesrateofenvironmentalstressincreaseintopulse amplitudes OurmodelcanalsobeusedtostudytheresponseofσBnetworktoenvironmentalstress. Unliketheenergystressphosphatase,theenvironmentalstressphosphataseRsbUisregulated post-translationallybybindingofRsbT[27–29].RsbTistrappedbyitsnegativeregulators underunstressedconditionsbutisreleaseduponstress.Consequently,theconcentrationof RsbTUcomplexistightlycontrolledatthepost-translationallevelandisthereforeexpectedto berelativelyinsensitivetogeneexpressionfluctuationsbutsensitivetothelevelofenviron- mentalstress.Asaresult,step-upincreasesinenvironmentalstressagentslikeethanolproduce rapidincreasesinRsbTUandresultinonlyasinglepulseofσBactivity[14].Howeverithas beenshownthatforgradualincreasesinstress,σBpulseamplitudedependsontherateof stressincrease[14].Toexplainthisresponse,wemodeledgradualstresswithrampedincrease inRsbTUcomplexconcentration(Fig4A).Oursimulationsshowedthatthedetailedmodelof σBnetworkisindeedabletocapturetheeffectofrateofstressincreaseonσBpulseamplitudes. SpecificallyforafixedincreaseinRsbTUcomplex,thepulseamplitudedecreasesnon-linearly asafunctionofthedurationofphosphataseramp(Fig4Band4E). Fig4.RatesensitivityoftheσBpulsatileresponsetoenvironmentalstress.A.Rampedincreasesin RsbTUcomplexconcentrationwereusedasmodelinputstosimulatedifferentratesofstressincreaseinσB network.B.σBpulseamplitudesinthewildtypemodel(k =0.72hr-1isthedegradationrateofσBoperon deg proteins)resultingfromtherampedincreasesinphosphataseconcentrationshownin(A).C,D.σBpulse amplitudesresultingfromtherampedincreaseinphosphataseconcentrationshownin(C)forvarious degradation/dilutionrates(D).E.Non-lineardependenceσBpulseamplitudeonphosphataserampduration forvariousdegradation/dilutionrates.CirclesandsolidcurvesrepresentsimulationresultsandHill-equation fitsrespectively.Colorsrepresentdifferentk valuesasin(D).F.K ,thehalf-maximalconstantofthe deg ramp non-lineardependenceofamplitudeonrampduration,asafunctionofk . deg doi:10.1371/journal.pcbi.1005267.g004 PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1005267 December15,2016 10/25

Description:
Segall-Shapiro TH, Meyer AJ, Ellington AD, Sontag ED, Voigt CA (2014) A 'resource Nannapaneni P, Hertwig F, Depke M, Hecker M, Mader U, et al.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.