ebook img

Robust Constrained Model Predictive Control Arthur George - MIT PDF

209 Pages·2004·5.02 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Robust Constrained Model Predictive Control Arthur George - MIT

Robust Constrained Model Predictive Control by Arthur George Richards Master of Science Massachusetts Institute of Technology, 2002 Master of Engineering University of Cambridge, 2000 Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2005 (cid:13)c Massachusetts Institute of Technology 2005. All rights reserved. Author .............................................................. Department of Aeronautics and Astronautics November 22, 2004 Accepted by......................................................... Jaime Peraire Professor of Aeronautics and Astronautics Chair, Committee on Graduate Students 2 Robust Constrained Model Predictive Control by Arthur George Richards Accepted by....................................................................... Jonathan P. How Associate Professor of Aeronautics and Astronautics Thesis Supervisor Accepted by....................................................................... Eric M. Feron Associate Professor of Aeronautics and Astronautics Accepted by....................................................................... John J. Deyst Jr. Associate Professor of Aeronautics and Astronautics Accepted by....................................................................... Dr. Jorge Tierno ALPHATECH Inc. 4 Robust Constrained Model Predictive Control by Arthur George Richards Submitted to the Department of Aeronautics and Astronautics on November 22, 2004, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract This thesis extends Model Predictive Control (MPC) for constrained linear systems subject to uncertainty, including persistent disturbances, estimation error and the effects of delay. Previous work has shown that feasibility and constraint satisfaction can be guaranteed by tightening the constraints in a suitable, monotonic sequence. Thisthesisextendsthatworkinseveralways, includingmoreflexibleconstrainttight- ening, applied within the prediction horizon, and more general terminal constraints, applied to ensure feasible evolution beyond the horizon. These modifications reduce the conservatism associated with the constraint tightening approach. Modifications to account for estimation error, enabling output feedback control, are presented, and we show that the effects of time delay can be handled in a similar manner. A further extension combines robust MPC with a novel uncertainty estima- tion algorithm, providing an adaptive MPC that adjusts the optimization constraints to suit the level of uncertainty detected. This adaptive control replaces the need for accurate a priori knowledge of uncertainty bounds. An approximate algorithm is de- veloped for the prediction of the closed-loop performance using the new robust MPC formulation, enabling rapid trade studies on the effect of controller parameters. The constraint tightening concept is applied to develop a novel algorithm for Decentralized MPC (DMPC) for teams of cooperating subsystems with coupled con- straints. The centralized MPC optimization is divided into smaller subproblems, each solving for the future actions of a single subsystem. Each subproblem is solved only once per time step, without iteration, and is guaranteed to be feasible. Simulation examples involving multiple Uninhabited Aerial Vehicles (UAVs) demonstrate that the new DMPC algorithm offers significant computational improvement compared to its centralized counterpart. The controllers developed in this thesis are demonstrated throughout in simulated examples related to vehicle control. Also, some of the controllers have been imple- mented on vehicle testbeds to verify their operation. The tools developed in this thesis improve the applicability of MPC to problems involving uncertainty and high complexity, for example, the control of a team of cooperating UAVs. 5 6 Acknowledgements I’dliketothankmyadvisor, Prof.JonathanHow, forallhisguidance, supportandfor letting me loose on some interesting problems. I also thank my committee members, Prof. Eric Feron, Prof. John Deyst and Dr. Jorge Tierno for their input and oversight, and Prof. Steve Hall for participating in the defense. Many fellow students have shaped my MIT experience, at work and beyond, in- cluding the members of the Aerospace Controls Lab, the Space Systems Lab and the various students of the Laboratory for Random Graduate Study in Room 409. Special thanks to the other founding members of Jon How’s MIT group for making settling in such a pleasure and for their continuing friendship. Yoshiaki Kuwata and Nick Pohlman were good enough to read this hefty document and help its preparation with their feedback. Simon Nolet generously gave much time and effort to help me with the SPHERES experiments. I thank my mother for her constant support throughout this endeavour and all that came before. Finally, I dedicate this thesis to two other family members who both had a hand in this somehow. For AER and GTB 7 8 Contents 1 Introduction 19 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.1.1 Robust feasibility and constraint satisfaction . . . . . . . . . 21 1.1.2 Decentralization/Scalability . . . . . . . . . . . . . . . . . . . 21 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.2.1 Model Predictive Control . . . . . . . . . . . . . . . . . . . . 22 1.2.2 Decentralized Control . . . . . . . . . . . . . . . . . . . . . . 23 1.3 Outline and Summary of Contributions . . . . . . . . . . . . . . . . 24 2 Robust MPC 27 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 Robustly-Feasible MPC . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Robust Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.5.1 Robust Feasibility Demonstration . . . . . . . . . . . . . . . 47 2.5.2 Spacecraft Control . . . . . . . . . . . . . . . . . . . . . . . . 48 2.5.3 Graphical Proof of Robustness . . . . . . . . . . . . . . . . . 54 2.5.4 Robust Convergence . . . . . . . . . . . . . . . . . . . . . . . 60 2.6 Variable Horizon MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 62 2.6.2 Variable Horizon Controller . . . . . . . . . . . . . . . . . . . 63 2.6.3 MILP Implementation . . . . . . . . . . . . . . . . . . . . . . 66 9 2.7 Variable Horizon Examples . . . . . . . . . . . . . . . . . . . . . . . 69 2.7.1 Space Station Rendezvous . . . . . . . . . . . . . . . . . . . . 69 2.7.2 UAV Obstacle Avoidance . . . . . . . . . . . . . . . . . . . . 72 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.A Proof of Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.A.1 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . 75 2.A.2 Proof of Proposition 2.2 . . . . . . . . . . . . . . . . . . . . . 77 2.A.3 Proof of Proposition 2.3 . . . . . . . . . . . . . . . . . . . . . 77 3 MPC with Imperfect Information 79 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.2 Handling Imperfect State Information . . . . . . . . . . . . . . . . . 82 3.2.1 MPC with Estimation Error . . . . . . . . . . . . . . . . . . 82 3.2.2 Finite Memory Estimator . . . . . . . . . . . . . . . . . . . . 84 3.2.3 Combining Finite Memory Estimator with MPC . . . . . . . 86 3.2.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.2.5 Time Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.2.6 Time Delay Example . . . . . . . . . . . . . . . . . . . . . . 91 3.3 Adaptive Prediction Error Bounds . . . . . . . . . . . . . . . . . . . 94 3.3.1 Bounding Set Estimation for Vector Signals . . . . . . . . . . 94 3.3.2 Adaptive MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.3.3 Adaptive MPC Examples . . . . . . . . . . . . . . . . . . . . 97 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.A Bound Estimation for Scalar Signals . . . . . . . . . . . . . . . . . . 100 4 Decentralized MPC 107 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.3 Centralized Robust MPC Problem . . . . . . . . . . . . . . . . . . . 111 4.4 Decentralized MPC Algorithm . . . . . . . . . . . . . . . . . . . . . 114 4.5 DMPC Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 10

Description:
This thesis extends Model Predictive Control (MPC) for constrained linear systems subject to uncertainty, including persistent disturbances, estimation error and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.