ebook img

Reviews of Physiology, Biochemistry, and Pharmacology Volume 142 (Reviews of Physiology, Biochemistry, and Pharmacology) PDF

188 Pages·2001·10.88 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reviews of Physiology, Biochemistry, and Pharmacology Volume 142 (Reviews of Physiology, Biochemistry, and Pharmacology)

241 .goloisyh~ y sweiveR fo rtstmehco~ dna ygolocamrahP Editors .P.M Blaustein, Baltimore .R Greger, Freiburg H. Grunicke, Innsbruck .R Jahn, G6ttingen .J.W Lederer, Baltimore L.M. Mendell, Stony Brook A.Miyajima, Tokyo N. Pfanner, Freiburg .G Schultz, Berlin .M Schweiger, Berlin htiW 11 serugiF dna 3 selbaT r e g ~ n i r p S ISSN 0303-4240 ISBN 3-540-67983-9 Springer-Verlag Berlin Heidelberg New York Library of Congress-Catalog-Card Number 4763-47 This work is subject to copyright. llA rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other ,yaw and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright waL of September ,9 ,5691 in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright .waL Springer-Verlag a member in the BertelsmannSpringer Science + Business Media GmhH © Springer -Verlag Berlin Heidelberg 1002 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publi- cation does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature. Production: ORP EDIT GmbH, 62196 Heidelberg, Germany Printed on acid-free paper - SPIN: 10718053 27/3136wg-5 4 3 2 1 0 stnetnoC Modulation of Protein Kinase C in Antitumor Treatment By .J Hofmann, Innsbruck, Austria (With 4 Figures) . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Compartment-Specific Functions of the Ubiquitin-Protea- some Pathway By Th. Sommer, .E Jarosch and .U Lenk, Berlin, Germany (With 2 Figures and 2 Tables) ................ 97 Transgenic Models of cz2-Adrenergic Receptor Subtype Function By .L Hein, Wiirzburg, Germany (With 5 Figures) ...................... 161 Indexed in Current Contents Modulation of Protein Kinase C in Antitumor Treatment J. Hofmann Institute of Medical Chemistry and Biochemistry University of lnnsbruck A-6020 Innsbruck Austria Contents 1 Introduction ........................................................................................... 3 2 PKC in Cell Proliferation and Tumor Growth ..................................... 7 2.1 PKC Isoenzymes and Cell Proliferation ..................................... 7 2.2 PKC Expression in Tumor Cells and Tumors ............................ 11 2,3 Antiproliferative and Antitumor Effects of PKC-Modulation .. 16 2.3.1 Bryostatins ......................................................................... 16 2.3.2 Phospholipid Analogues .................................................. 19 2.3.3 Staurosporine-Derivatives ............................................... 20 2.3.4 Antisense Oligonucleotides ............................................. 22 2.3.5 Remarks and Conclusions ............................................... 24 3 PKC and Apoptosis ................................................................................ 25 3.1 Introduction .................................................................................. 25 3,2 PKC Activation Promotes Apoptosis .......................................... 25 3.3 PKC Activation Prevents Apoptosis ........................................... 26 3.4 PKC Inhibition Promotes Apoptosis .......................................... 27 3.5 PKC Inhibition Prevents Apoptosis ............................................ 29 3.6 PKC Isoenzymes and Apoptosis .................................................. 30 3.7 Remarks and Conclusions ........................................................... 35 4 PKC and MDR ........................................................................................ 38 4.1 Introduction .................................................................................. 38 4.2 PKC-Activity in MDR1-Mediated Drug Resistance ................... 38 4.3 Arguments Against a Role of PKC Activity in MDR ................. 39 4.4 PKC Inhibition or Downmodulation in MDR ............................ 40 4.5 Arguments Against a RoleofPKC Inhibition in MDR ............. 42 4.6 Phorbol Ester and MDR Modulation .......................................... 43 4.7 Results Indicating no Influence of Phorbol Esters in MDR Modulation ..................................................................... 45 .J Hofmann 4.8 Influence of PGP Phosphorylation on MDR .............................. 46 4.9 Arguments Against an Involvement of PGP Phosphorylation ............................................................... 48 4.10 Effects of PKC on the Levels of MDRI-mRNA and PGP ........... 48 4.11 Arguments against a Role of PKC on MDRI-mRNA and PGP Levels ............................................................................. 49 4.12 The Role ofPKC Isoenzymes on MDR1-Mediated MDR .......... 50 4.13 Remarks and Conclusions ........................................................... 51 PKC Modulation in Drug Resistance not Mediated by MDR ............. 54 5.1 PKC Inhibiton Enhances the Sensitivity to Antitumor Drugs ...................................................................... 54 5.2 PKC Activation Enhances the Sensitivity to Antitumor Drugs ...................................................................... 57 5.3 PKC Isoenzymes in the Modulation of Antiproliferative Activity ........................................................ 57 5.4 Remarks and Conclusions ........................................................... 58 6 Summary ............................................................................................... 59 References .................................................................(cid:127)..................(cid:127)..(cid:127)....... 60 Modulation of Treatment Antitumor in C Kinase Protein 1 Introduction Protein kinase C (PKC) is a family of serine/threonine specific protein kinases. The PKC isoenzymes can be classified into three groups: )i the con- ventional (cPKCs) ,~c ~I, ,II~[ and y (require negatively charged phospholip- ids, diacylglycerol or phorbol ester, and calcium for optimal activation), ii) the novel (nPKCs) 8, ,~ 0, tl/L (mouse/human) and p (require negatively charged phospholipids, diacylglycerol or phorbol ester, but no calcium), and iii) the atypical (aPKCs) ~Jt (mouse/human) and ~ (do not require calcium, diacylglycerol or phorbol ester, but only negatively charged phospholipids for optimal activity) (Nishizulm, ;5991 Newton and Johnson, 1998). The PKC isoenzymes (Fig. )1 are characterized by four conserved (C1-CA) and five variable (VI-VS) domains (Stabel and Parker, Azzi 1991; et al., ;2991 Hug and Sarre, ;3991 Stabel, 1994). The regulatory domain consists of the 1C and the 2C region. CI contains the pseudosubstrate region that can inhibit the enzyme by binding to the catalytic site (CA). In PKCp, the pseudosubstr.ate domain is lacking. 1C also contains tandemly repeated cysteine-rich regions to which DAG (diacylglycerol), phorbol esters and bryostatins can bind. cPKCs and nPKCs contain two zinc fingers in thep horbol ester binding site, aPKCs are characterized by a single zinc t'mger. 2C contains the calcium binding region present only in cPKCs but not in nPKCs and aPKCs. Between the 2C and the 3C region the so called hinge region is situated which serves as cleavage site for calpain and trypsin during degradation. The 3C region is believed to be the ATP binding site and the C4 region the catalytic site. CKP isoenzymes seem to play an important role in activation of signal transduction pathways leading to synaptic transmissions, the activation of ion fluxes, secretion, proliferation, cell cycle control, differentiation or tu- morigenesis. PKC has become of major interest as target for therapeutic C4 3C c ~ deteled ni ~) I C C2 deteled yltrap ni ,~ t deleted ni 8,0,~ G L, ,t t~ representation I. Schematic Fig. of kinase protein .C different the shows cartoon The domains of CKP in the form inactive of the enzyme .J Hofmann ADRIAMYCIN ETOPOSIDE ETOPOSIDE TENIPOSIDE TEN IPOSIDE CAMPTOTHECIN NITROGEN MUSTARD cis-PLATIN cis-PLATIN NITROGEN MUSTARD ADRrAMYCIN MMS 5-FLUOROURACIL MITOXANTRONE VINBLASTINE VINBLASTINE DAUNOMYCIN IRRADIATION IRRADIATION cis-PLATIN / x.e~, s,=, I .e,.2,o~.o 35p 35p .cym .sol $ar PLK/72p 1 xab/2-I..'cb bctla~J 2MDM crs-v MTA ~i~.C EGR-I~ HYPOXIA- p=l~vAr / c-ju. INDUCED Bk-FN MULTICELLULAR I ACTIVATION OF CONFLUENCE- REDUCED UNCOGENES DEPENDENT. APOPTOSIS / ADRIAMYCIN ADRIAMYCIN DNA-REPAIR ~rmlv ETOPOSIDE ETOPOSIDE Tepoisomera i MITOXANTRONE TMGM .... / / \ INTRACELLULAR ....... TENIPOSIDE CYCLOPHOSPHAMIDE 1HHLMh / ~. ~ DISTRIBUTION MDIATUONXOAMNYTCRIONN E cis-PLATIN -- ~ hMS ^L. | ....... "~4~t~b:-.D~- M ~ 2P~M ~ ACTINOMYCIN D p~,L jH.-.~M,.qBU.r..i.L. ...... S Mismatch UNAPolp ~'riapeR ~ . PJ'~070I ~ " MRP3. M IXI, ,PRL r..r, ,PRC8 ~ Hp. TAXOL N/TRO, SOUREA HMG-domai'n ~ / X / VesicularrTranspott VINBLASTINE %~i~'./ J,' .L 1ACRB ~ ~ Membrane noitazidiulF IRRADIATION BRCA2 / ~ X VINCRISTINE METHOTREXATE T \ cis-PLATIN INTRACELLULAR I \ T /AHLiI:/. .... NOITAVITCA I DETATUM INACTIVATION DECUDER UPTAKE DESSERPXEREVO UNDEREXPRESSED 054-P ADRIAMYCIN snienoihtollateM ETOPOSIDE esaremos;opoT I dna II esarefsnarT-S-enoihtatulG TOPOTECAN edimar~c'y~o.cu4C es~hlnyS D - ~.I :." h',.F ro a s t: cis-PLATIN alalidlmyhT esahtnyS enidityC Deaminase elalofordyhiD esatcudeR etalydrmyhT esahtnyS CYCLOPHOSPHAMIDE ediloolcunobiR esatcudeR nicymoeiB esalordyH CHLORAMBUCIL etatrapsA esalymabracsnarT MELPHALAN eninoihlemlysonedA-S esahlnyS NITROGEN MUSTARD ADRIAMYCIN ARA-C ETOPOSIDE METHOTREXATE cis-PLATIN VINCRISTINE ADRIAMYClN RYCLOPHOSPHAMIDE ETOPOSIDE MITOMYC~N C TENIPOSIDE MELPHALAN TOPOTECAN CHLORAMBUCIL AMSACRINE 5-FLUOROURACIL 5-FLUOROURACIL AF','k-C MF THOTREXATE 3LEOMYCIN HvDROXYUREA PALA MDL 28,842 Fig. 2. Mechanisms causing resistance to antitumor treatment. ATM, ataxia telangi- ectasia gene, (Westphal et al., 1998; Xu and Baltimore, 1996), bcl-2/bax (Farrow and Brown, 1996, Zunino et al., 1997; Haq and Zanke, 1998), bcr/abl (McGahon et al., 1994), BCRP, breast cancer resistance protein (Doyle et al., 1998; Ross et a/, 1999); bleomycin hydrolase (EI-Deiry, 1997), BRCA1 (Husain et al., 1998; Chen et al., 1998), BRCA2 (Chert et al., 1998; Chert et al., 1999), c-ab (White and Prives, 1999), c-jun (Sanchez-Perez and Perona, 1999), cytidine deaminase (EI-Deiry, 1997), DNA poll, DNA poymerase 31 (Ochs et al., 1999), dihydrofolate reductase (Schimke, 1986), DT- diaphorase (Riley and Workman, 1992; Fitzsimmons et al., 1996; El-Deity, 1997), EGR-1 (Ahmed et al, 1996), los (Niimi et al., 1991), glucosylceramide synthase Modulation fo Protein esaniK C ni Antitumor tnemtaerT intervention in a range of different diseases (Gescher et al., 1992; Bradshaw et al., 1993; Basu 1993; Deacon et al., 1997; Nixon, 1997; Goekjian and Jirousek, 1999). PKC may be involved in chronic granulomatous disease, allergy, asthma, rheumatoid arthritis (Westmacott et al, 1991), transplanta- tion (Woodley et al., 1991), AIDS (Kinter et al., 1990; Accornero et aL, 1998), Alzheimer's disease (Chauhan et al., 1991), multiple sclerosis (Defranco, 1991), hypertension (El< et al., 1989), cardiac hypertrophy (Kwiatkowska- Patzer and Domanska-Janik, 1991), atherosclerosis (Kariya et al., 1987), diabetes (Inoguchi et al., 1992; Ishil et al., 1996) and cancer (Basu, 1993; Blobe et al., 1994, Gescher, 1998). PKC is the intracellular receptor for tumor promoting phorbol esters (Castagna et al., 1982; Niedel et al., 1983; Leach et al., 1983). Short term exposure of intact cells with phorbol esters such as 12- O-tetradecanoylphorbol-13-acetate (phorbol-12-myristate-13-acetate, TPA) activates PKC, long term exposure down-regulates PKC activity. Phorbol esters are able to promote tumor formation. Therefore, it was presumed that noitavitca of PKC by TPA induces tumors and noitibihni may reduce -rac sisenegonic or tibihni tumor growth. However, snoitagitsevni revealed taht eht noitautis si more complicated. For example, nitatsoyrb ,I another PKC (Lavie et al., 1997; Liu et al., 1999), glutathione-S-transferase (Ozols et al., 1990, Tew,1994), heat shock (Ciocca et al., 1993); her-2/neu (Tsai et al., 1996), HMG- domains (Huang et al., 1994), hMLH1 (De las Alas et al. 1997), hMSH2 (Aebi et al., .)6991 hypoxia (Bush et al., 1978; Vaupel et al., 1989; Sakata et al., 1991; H6ckel et al., 1996), LRP, lung resistance-related protein (Scheffer et al., 1995), LDM 28,842, (Z)- 5'-fluoro-4",5"-didehydro-5"-deoxTadenosine (Dwivedi et al., 1999), mdm2 (Kondo et al., 1995a), MDRI (luliano and Ling, 1976; Gottesman and Pastan, 1993), mem- brane fluidization (Regev et al., 1999), metallothioneins (Kelley et al., 1988; Kaina et al., 1990; Kondo et al., 1995b), MGMT, O6-methylguanine-DNA methyltransferase (Erickson, 1991; Mattern et al., 1998), methyl methanesulfonate (MMS; Chen et al., 1998), mismatch repair (Moreland et al., 1999, White and Prives, 1999), MRP, mul- tidrug resistance-associated protein (Cole et al., 1994), MRP2 (Cui et al., 1999; Hooijberg et al., 1999), MRP3 (Kool et al., 1999), multiceUular resistance (Sutherland, 1988; Kobayashi et al., 1993; Pizao et al., 1993; Graham et al., 1994; $tCroix et al., 1996), myc (Sklar and Prochownik, 1991), NF-,cB (Wang et al., 1999b), P-450 (Doehmer et al., 1993), p53 (Lowe et al., 1993; Levine, 1997; Zunino et al., ;7991 Piovesan et al., 1998); p27/KIP (StCroix et al., 1996); p21/WAF1 twang and Walsh, ;6991 McDonald et al., 1996; Fan et al., 1997), pH (Martinez-Zaguilan et al, ;9991 Williams et al., 1999), ras (Scanlon et al., 1991; Isonishi et al., 1991; El-Deiry, 1997), reduced uptake (Fry and Jackson, 1986; Perez et al., 1990; $1apak et al., 1990; Chu, ;4991 Ma et al., 1998a; Moscow, 1998; Ma et al., 1998b), repair (Masumoto et al., ;9991 Chen et al., 1998; Husain et al., 1998, (:hen et al., 1999), ribonucleotide reduc- tase ksAC et al, 1993; neY et al., 1994), thymidilate synthase (Kinsela et ,La 1997), topoisomerase I and II (Yarbro, 1992; Robert and Larsen, 1998), vesicular transport (Dietel et al., 1990), v-src (Masumoto et aL, 1999) 6 .J Hofmann modulator with properties similar to those of TPA (Blurnberg, 1991; Ken- nedy et al., 1992; Szallasi et aL, 1994) does not induce tumor formation. The compound exhibits potent antitumor activity and is currently undergoing phase I (Jayson et al., 1995, Grant et al., )8991 and phase II (Propper et al., 1998) clinical evaluation as an anticancer drug. In addition to be a direct target of antitumor treatment, PKC has been shown to be involved in the resistance to anfitumor treatment and in the modulation of apoptosis. Resistance to cancer chemotherapy is a major PKC- INHIBITORS MILTEFOSINE ILM BRY 0 ~0 l,l ).,,t Z CG GF DEXN Fig. .3 Possible interactions between CKP and MDRl-mediated drug resistance. Activation of CKP might activate the drug efflux by phosphorylation of PGP (A), induce or activate proteins which modulate PGP ,B( Castro et al., 1999), or induce the transcription and translation of MDRI-mRNA (C). Inhibitors of CKP might prevent phosphorytation of PGP leading to a decrease the drug efflux (D), inhibit the efflux of drugs by direct interaction with the drug binding site(s) or the ATP- binding sites ofPGP (E), or prevent the expresosfiMoDnR I-mRNA (F)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.