ebook img

Reliability Assessment for Low-cost Unmanned Aerial Vehicles PDF

122 Pages·2014·16.55 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reliability Assessment for Low-cost Unmanned Aerial Vehicles

Reliability Assessment for Low-cost Unmanned Aerial Vehicles ADISSERTATION SUBMITTEDTOTHEFACULTYOFTHEGRADUATESCHOOL OFTHEUNIVERSITYOFMINNESOTA BY PaulMichaelFreeman INPARTIALFULFILLMENTOFTHEREQUIREMENTS FORTHEDEGREEOF DOCTOROFPHILOSOPHY GaryJ.Balas,co-advisor PeterJ.Seiler,co-advisor November2014 ©PaulMichaelFreeman 2014 ALLRIGHTSRESERVED Acknowledgements Personal: TBD This material is based upon work supported by the National Science Foundation under GrantNo. 0931931entitledCPS:EmbeddedFaultDetectionforLow-Cost, Safety-CriticalSys- tems;Dr. TedBaker,ProgramManager. Anyopinions,󰅮indings,andconclusionsorrecommen- dations expressed in this material are those of the author and do not necessarily re󰅮lect the viewsoftheNationalScienceFoundation. i Dedication TBD ii Abstract Existinglow-costunmannedaerospacesystemsareunreliable,andengineersmustblendreli- abilityanalysiswithfault-tolerantcontrolinnovelways. ThisdissertationintroducestheUni- versityofMinnesotaunmannedaerialvehicle󰅮lightresearchplatform,acomprehensivesim- ulationand󰅮lighttestfacilityforreliabilityandfault-toleranceresearch. Anindustry-standard reliabilityassessmenttechnique,thefailuremodesandeffectsanalysis,isperformedforanun- manned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintainingeffectorhealthisessentialforsafe󰅮light;failuresmayleadtolossof controlincidents. Failurelikelihood,severity,andriskarequalitativelyassessedforseveralef- fectorfailuremodes. Designchangesarerecommendedtoimproveaircraftreliabilitybasedon thisanalysis. Mostnotably,thecontrolsurfacesaresplit,providingindependentactuationand dual-redundancy. Thesimulationmodelsforcontrolsurfaceaerodynamiceffectsareupdated tore󰅮lectthesplitsurfacesusinga󰅮irst-principlesgeometricanalysis. Thefailuremodesandeffectsanalysisisextendedbyusingahigh-󰅮idelitynonlinearaircraft simulation. Atrimstatediscoveryisperformedtoidentifytheachievablesteady,wings-level 󰅮light envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals signi󰅮icant inherent performance limitations for candidate adaptive/recon󰅮igurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedbacklooptomakesafety-criticalunmannedsystemsmorereliable. Controlsurfaceimpairmentsthatdooccurmustbequicklyandaccuratelydetected. This dissertation also considers fault detection and identi󰅮ication for an unmanned aerial vehicle usingmodel-basedandmodel-freeapproachesandappliesthosealgorithmstoexperimental faultedandunfaulted󰅮lighttestdata. Flighttestsareconductedwithactuatorfaultsthataffect theplantinputandsensorfaultsthataffectthevehiclestatemeasurements. Amodel-based detectionstrategyisdesignedandusesrobustlinear󰅮ilteringmethodstorejectexogenousdis- turbances,e.g. wind,whileprovidingrobustnesstomodelvariation. Adata-drivenalgorithm isdevelopedtooperateexclusivelyonraw󰅮lighttestdatawithoutphysicalmodelknowledge. Thefaultdetectionandidenti󰅮icationperformanceofthesecomplementarybutdifferentmeth- odsiscompared. Together,enhancedreliabilityassessmentandmulti-prongedfaultdetection andidenti󰅮icationtechniquescanhelptobringaboutthenextgenerationofreliablelow-cost unmannedaircraft. iii Contents Acknowledgements i Dedication ii Abstract iii ListofTables vii ListofFigures viii 1 Introduction 1 2 UMNFlightResearchPlatform 4 2.1 ExperimentalFlightTestHardware . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 AirframesandR/CComponents . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Avionics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.4 GroundStation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 SoftwareandSimulationPackage . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 NonlinearSimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Software-in-the-LoopSimulation . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 Hardware-in-the-LoopSimulation . . . . . . . . . . . . . . . . . . . . . . 12 2.3 FRPContributiontoResearchCommunity . . . . . . . . . . . . . . . . . . . . . . 12 3 FailureModesandEffectsAnalysis 13 3.1 FMEAOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 IbisHardwareElements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 AirframeSubsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 iv 3.2.2 PowerplantSubsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 EffectorsSubsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.4 AvionicsandSensorsSubsystem . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 FailuresModesandEffectsAnalysisofIbisUAV . . . . . . . . . . . . . . . . . . . 18 3.3.1 EvaluationMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.2 Airframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.3 Powerplant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.4 AvionicsandSensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.5 Effectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 RedesigningIbisforImprovedReliability 25 4.1 Baldr: Reliability-focusedIbisVariant. . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.1 IncreasedPhysicalRedundancy . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.2 OtherModi󰅮icationsduetoSplittingSurfaces . . . . . . . . . . . . . . . . 28 4.2 BaldrSimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.1 OriginalIbisAerodynamicModel . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.2 EnhancedBaldrAerodynamicModel . . . . . . . . . . . . . . . . . . . . 31 5 ReliabilityAssessmentUsingTrimStateDiscovery 45 5.1 TrimStateDiscoveryMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 AchievableSteadyWings-levelFlightEnvelopeforIbis . . . . . . . . . . . . . . . 48 5.3 LinearAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.1 Open-loopAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 FaultDetectionandIsolationforControlSurfaceImpairments 60 6.1 ExperimentalScope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.2 FaultScenariosConsidered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3 FlightTesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.4 Model-basedFaultDetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.4.1 DesignConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4.2 𝐻 FDIFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 ∞ 6.5 Data-drivenAnomalyDetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.6 FlightTestExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.6.1 LinearUAVSimulationPerformance . . . . . . . . . . . . . . . . . . . . . 73 6.6.2 Data-drivenvsModel-basedDetectorPerformance . . . . . . . . . . . . 74 v 7 ConclusionandDiscussion 79 Bibliography 81 AppendixA. FailureModesandEffectsAnalysisSummary 86 vi List of Tables 3.1 IbisUAVHardwareSubsystemsandComponents . . . . . . . . . . . . . . . . . . 20 3.2 FailureLikelihoodCategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 FMEARiskMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1 ModeledForceandMomentCoef󰅮icientsforIbis/FASERControlEffects . . . . . 30 4.2 Coef󰅮icientsinOriginal(Maroon)andEnhanced(Gold)AerodynamicModels . 44 6.1 ExperimentalFDIPerformanceMetrics . . . . . . . . . . . . . . . . . . . . . . . 78 A.1 FailureModes,Effects,andCriticalitySummary . . . . . . . . . . . . . . . . . . . 87 vii List of Figures 1.1 Boeing777󰅮lightcontrolsurfaces. Theunderlyingcomputation,electrical,and hyraulicsubsystemsaretripleredundant. . . . . . . . . . . . . . . . . . . . . . . 2 2.1 UltraStick120‘Ibis’UAVat󰅮lighttestinglocation. Thelandinggearwheelscan beswappedwithapairofskisfor󰅮lighttestingduringthewintermonths. . . . 5 2.2 Ultra Stick 120 UAV with Ultra Stick 25e models. The department maintains severalofthesmallerUltraStick25etestUAVs. . . . . . . . . . . . . . . . . . . . 6 2.3 MiniUltraStickmountedonstingduringexperimentsinUMNLow-SpeedWind Tunnel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 CoreUAVavionicsarchitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 GoldyFlightControlSystemavionicspallet. . . . . . . . . . . . . . . . . . . . . . 9 3.1 FlowchartoftypicalFMEAprocedures . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 IbisUAVin󰅮light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Reliabilityblockdiagramforpowerplantcomponents. . . . . . . . . . . . . . . . 17 3.4 Reliabilityblockdiagramforeffectorscomponents. . . . . . . . . . . . . . . . . 18 3.5 Reliabilityblockdiagramforavionicsandsensorscomponents. . . . . . . . . . 19 4.1 RudderandverticalstabilizeronUltraStick120(nottoscale). Thedirections ofthebody-󰅮ixedaxesareindicated. . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Rudder splitting with a candidate cut line and computed mean aerodynamic chords(MAC)fortheresultantpartitions. . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Bodyandstabilityframede󰅮initionsforexampleaircraft. . . . . . . . . . . . . . 29 4.4 Dragforcecoef󰅮icientforleftelevator(𝐶 ). Thecoef󰅮icientfortherightele- 𝐷 𝛿𝑒𝐿 vatorisidentical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.5 Dragforcecoef󰅮icientforleft󰅮lap(𝐶 ). Thecoef󰅮icientsfortheright󰅮lap,left 𝐷 𝛿𝑓𝐿 aileron,andrightaileronareidentical. . . . . . . . . . . . . . . . . . . . . . . . . 33 4.6 Sideforcecoef󰅮icientfortoprudder(𝐶 ). Thecoef󰅮icientforthebottomrud- 𝑌 𝛿𝑟𝑇 derisidentical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 viii

Description:
2.4 Core UAV avionics architecture. 4.3 Body and stability frame de initions for example aircraft 29 .. aem.umn.edu, including:.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.