Springer Tracts in Mechanical Engineering Esteban Ferrer Adeline Montlaur Editors Recent Advances in CFD for Wind and Tidal Offshore Turbines Springer Tracts in Mechanical Engineering Series editors Seung-Bok Choi, Inha University, Incheon, South Korea Haibin Duan, Beijing University of Aeronautics and Astronautics, Beijing, P.R. China Yili Fu, Harbin Institute of Technology, Harbin, P.R. China Carlos Guardiola, Universitat Politècnica de València, València, Spain Jian-Qiao Sun, University of California, Merced, USA Young W. Kwon, Naval Postgraduate School, Monterey, CA, USA Springer Tracts in Mechanical Engineering (STME) publishes the latest develop- ments in Mechanical Engineering - quickly, informally and with high quality. The intentistocoverallthemainbranchesofmechanicalengineering,boththeoretical and applied, including: (cid:129) Engineering Design (cid:129) Machinery and Machine Elements (cid:129) Mechanical structures and stress analysis (cid:129) Automotive Engineering (cid:129) Engine Technology (cid:129) Aerospace Technology and Astronautics (cid:129) Nanotechnology and Microengineering (cid:129) Control, Robotics, Mechatronics (cid:129) MEMS (cid:129) Theoretical and Applied Mechanics (cid:129) Dynamical Systems, Control (cid:129) Fluids mechanics (cid:129) Engineering Thermodynamics, Heat and Mass Transfer (cid:129) Manufacturing (cid:129) Precision engineering, Instrumentation, Measurement (cid:129) Materials Engineering (cid:129) Tribology and surface technology Within the scopes of the series are monographs, professional books or graduate textbooks,editedvolumesaswellasoutstandingPh.D.thesesandbookspurposely devoted to support education in mechanical engineering at graduate and post-graduate levels. Indexed by SCOPUS and Springerlink. Tosubmitaproposalorrequestfurtherinformation,pleasecontact:Dr.LeontinaDi Cecco [email protected] or Li Shen [email protected]. Please check our Lecture Notes in Mechanical Engineering at http://www.springer. com/series/11236ifyouareinterestedinconferenceproceedings.Tosubmitaproposal, [email protected]@springer.com. More information about this series at http://www.springer.com/series/11693 Esteban Ferrer Adeline Montlaur (cid:129) Editors Recent Advances in CFD for Wind and Tidal Offshore Turbines 123 Editors Esteban Ferrer Adeline Montlaur ETSIAE-UPM- Schoolof Aeronautics Escolad’EnginyeriadeTelecomunicació i Universidad PolitécnicadeMadrid Aeroespacial deCastelldefels Madrid,Spain Universitat PolitècnicadeCatalunya Castelldefels, Barcelona,Spain ISSN 2195-9862 ISSN 2195-9870 (electronic) SpringerTracts inMechanical Engineering ISBN978-3-030-11886-0 ISBN978-3-030-11887-7 (eBook) https://doi.org/10.1007/978-3-030-11887-7 LibraryofCongressControlNumber:2018968533 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Contents Simple Models for Cross Flow Turbines . . . . . . . . . . . . . . . . . . . . . . . . 1 Esteban Ferrer and Soledad Le Clainche Suppressing Vortex Induced Vibrations of Wind Turbine Blades with Flaps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Sergio González Horcas, Mads Holst Aagaard Madsen, Niels Nørmark Sørensen and Frederik Zahle Prediction of the Wake Behind a Horizontal Axis Tidal Turbine Using a LES-ALM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Pablo Ouro, Magnus Harrold, Luis Ramirez and Thorsten Stoesser Harmonic Balance Navier–Stokes Analysis of Tidal Stream Turbine Wave Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 A. Cavazzini, M. S. Campobasso, M. Marconcini, R. Pacciani and A. Arnone Analysis of the Aerodynamic Loads on a Wind Turbine in Off-Design Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 G. Santo, M. Peeters, W. Van Paepegem and J. Degroote An Algorithm for the Generation of Biofouled Surfaces for Applications in Marine Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . 61 Sotirios Sarakinos and Angela Busse A Higher-Order Chimera Method Based on Moving Least Squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Luis Ramírez, Xesús Nogueira, Pablo Ouro, Fermín Navarrina, Sofiane Khelladi and Ignasi Colominas A Review on Two Methods to Detect Spatio-Temporal Patterns in Wind Turbines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Soledad Le Clainche, José M. Vega, Xuerui Mao and Esteban Ferrer v vi Contents Towards Numerical Simulation of Offshore Wind Turbines Using Anisotropic Mesh Adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 L. Douteau, L. Silva, H. Digonnet, T. Coupez, D. Le Touzé and J.-C. Gilloteaux Numerical Modelling of a Savonius Wind Turbine Using the URANS Turbulence Modelling Approach . . . . . . . . . . . . . . . 105 Tomasz Krysinski, Zbigniew Bulinski and Andrzej J. Nowak The Standard and Counter-Rotating VAWT Performances with LES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Horia Dumitrescu, Alexandru Dumitrache, Ion Malael and Radu Bogateanu A High-Order Finite Volume Method for the Simulation of Phase Transition Flows Using the Navier–Stokes–Korteweg Equations . . . . . . 127 Abel Martínez, Luis Ramírez, Xesús Nogueira, Fermín Navarrina and Sofiane Khelladi An a Posteriori Very Efficient Hybrid Method for Compressible Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Javier Fernández-Fidalgo, Xesús Nogueira, Luis Ramírez and Ignasi Colominas Introduction Offshore wind and tidal turbines areevolving asimportant renewable technologies to supply clean energy. In particular, the unpredictability of wind or solar energy can be compensated by the predictability of tidal turbines, which are governed by periodicandpredictabletidalcycles.Consequently,tidalenergyprovidesaconstant reliable source of clean energy. Regarding offshore wind, the less turbulent atmo- sphericboundarylayerontheseasurface(whencomparedtoonshoresites)hasthe potential for increasing energy harvesting. Furthermore, less restrictive regulations inoffshoreenvironmentshaveenabledlargerstructuresandturbinerotors.Offshore windturbinescanbefixedtotheseagroundinshallowwatersorcanfloatindeeper waters. Tidal turbines share aerodynamic characteristics with their close relative wind turbines. Both technologies use airfoil-shaped blades that rotate driven by the lift force produced by the flow on the blades. The environments in which wind and tidal turbines operate share some similarities, and both environments experience highlevelsofturbulencewitheddiesofvariablesizeandshape,andthickboundary layers shaping the incoming flow. However, some environmental conditions are characteristicofthetidalenvironments.Thepresenceofthedeformableseasurface, itsconfiningeffectandthedeformationduetotheenergyextractedbytidalturbines are major differences between air and water technologies. Among the types of offshore turbines that are being considered by manufactures, one can distinguish between horizontal axis turbines (HAT) or axial flow turbines (AFT) and vertical axis turbines (VAT) or crossflow turbines (CFT). On the one hand, horizontal axis turbines (HATs or AFTs) have their axis of rotation aligned with the flow stream. This technology requires orientation for the rotor plane to be perpendicular to the flow stream. Tidal devices have simpler orientation mechanisms since tidal currents are mainly bidirectional (tidal cycle) and 180° blade pitching suffices. In marine devices, blades are thicker and rotate more slowly to withstand the augmented forces resulting from the higher density of the water. On the other hand, vertical axis turbines (VATs or CFTs) have their axis of rotation perpendicular to the flow stream. This type of device has the advantageofnotrequiringorientationsincetheyrotateindependentlyofthestream vii viii Introduction directionandhencesomeresearchersarguethatthistechnologyismoresuitablefor offshore environment as it would minimise maintenance costs through reduced control systems (e.g. yaw mechanism). Their main drawback is that they are gen- erallylessefficientthanHAT.Todate,VATshavehadlimitedusewithinthewind energy sector, where the three-bladed axial flow turbine (HAT) has been widely adopted. However, it is thoughtthat VAT configurations may be advantageous for new emergent markets as offshore wind and tidal turbines. In summary, the simulation of offshore turbines requires taking into account some, if not all of the complex physics of offshore environments (e.g. sea surface deformation) and different turbine types, and consequently, new CFD tools are required.In2015,we published “CFDfor Wind andTidalOffshoreTurbines”[1], where various authors contributed to new CFD techniques to tackle some of the physics of offshore turbines. The present book incorporates more recent develop- ments in the topic. This book encompasses novel CFD techniques to compute offshore wind and tidal applications. All included papers have been presented at the 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) (ECCM 6) and the 7th European Conference on Computational Fluid Dynamics (ECFD 7) that was held in Glasgow in 2018. The book includes con- tributions of researchers from academia and industry. Madrid, Spain Esteban Ferrer December 2018 Adeline de Montlaur Reference 1. Ferrer E, Montlaur A (2015) CFD for wind and tidal offshore turbines. Springer tracts in mechanicalengineering,SpringerIntPublishingAG Simple Models for Cross Flow Turbines EstebanFerrerandSoledadLeClainche Abstract Using a high order discontinuous Galerkin numerical method with slidingmeshes,wesimulateone,twoandthreebladedcross-flowturbinestoextract statistics of the generated wakes (time averaged velocities and Reynolds stresses). Subsequently,wecomparethewakesresultingfromsimplemodels(acircularcylin- derandanactuatordisc)tothetimeaveragedcross-flowturbinewakes.Additionally, weprovideresultsforareducedordermodelbasedondynamicmodedecomposi- tion(LeClaincheandFerrer,Energies,11(3),2018,[1]).Whilstsimplifiedmodels finddifficultiesincapturingwakeasymmetriescharacteristicofcross-flowturbines, ourproposedreducedordermodelcapturesmeanvaluesandReynoldsstresseswith goodaccuracy,showingthepotentialofthelasttechniquetospeedupthesimulation ofcross-flowturbinestatistics. 1 Introduction CrossFlowTurbines(CFT)arealsoreferredtoasvertical-axis,H-rotorsorDarrieus type turbines, however the term cross-flow turbine is preferred since the absolute turbinepositionisomittedandtherelativeflow-axisgeometryisemphasisedthrough thisterminology.Thistypeofturbinehashadlimitedusewithintheonshorewind energysector,wherethethreebladedaxialflowconcepthasbeenwidelyadopted. However,ithasbeenargued(e.g.[2,3])thatCFTmaybeadvantageousforwindand tidaloffshoreenvironments.Ontheonehand,theseturbinesdonotrequireorientation astheyrotateindependentlyofthestreamdirection,whichleadstoreducedcontrol systems (e.g. yaw mechanism) and diminished maintenance costs. On the second hand,thesedevicesallowforthegeneratortobelocatedatsealevel(andnotinthe B E.Ferrer( )·S.LeClainche ETSIAE-UPM-SchoolofAeronautics,UniversidadPolitécnicadeMadrid, PlazaCardenalCisneros3,28040Madrid,Spain e-mail:[email protected] S.LeClainche e-mail:[email protected] ©SpringerNatureSwitzerlandAG2019 1 E.FerrerandA.Montlaur(eds.),RecentAdvancesinCFDforWind andTidalOffshoreTurbines,SpringerTractsinMechanicalEngineering, https://doi.org/10.1007/978-3-030-11887-7_1