ebook img

Reasoning in geometry How first learning to appreciate the generality of arguments helps students PDF

280 Pages·2012·11.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reasoning in geometry How first learning to appreciate the generality of arguments helps students

Reasoning in geometry How first learning to appreciate the generality of arguments helps students come to grips with the notion of proof MScThesis writtenby OlgaGrigoriadou underthesupervisionof Dr. WolterKaper,andsubmittedinpartialfulfillmentofthe requirementsforthedegreeof MScinMathematicsandScienceEducation attheUniversityofAmsterdam. February2012 Abstract Oneoftheaimsofteachinggeometryatschoollevelistohelpstudentsunderstandwhatcounts as an acceptable argument in mathematics (a ‘proof’) and to move from using inductive ar- guments to using deductive ones for supporting mathematical statements. The research study described in this thesis focuses on students’ reasoning when they start abandoning inductive arguments for deductive ones. More specifically, we propose a teaching module (partly based onexistingliterature)whichassistsstudentsinthislearningprocess,andwepresenttheresults ofimplementingthismoduleonasampleof20studentsinaGreekhighschool. Weexaminethe changeinthekindsofreasoningusedbystudentsateachpointoftheinterventionandtheeffect ofthischangeonthebeliefsofstudentsaboutmathematicsandproof. Ourresultssuggestthat layingemphasisonmakingcleartothestudentsthedistinctionbetweendeductiveandinductive argumentsatthebeginningofthelessonscycle,canhelpthemtounderstandbettertheconcept ofmathematicalproofandtoproduceproofs. Acknowledgements First and foremost I would like to thank Wolter, my supervisor. I still have vivid memories of the moment when I first talked to Wolter about my ideas. He was so enthusiastic that we kept exchanging long emails about the topic for a few days after, sharing our ideas and our enthusiasm. This was a great push forward for me, and made me even more excited to put all my ideas to work. I feel very lucky to have worked with such an enthusiastic, helpful and hardworkingsupervisor. Wolter’sfeedbackandsupportalwayscamerightwhenIneededthem, and we exchanged productive criticism at all times. Without him, the way to the end of this projectwouldhavebeenmuchmoredifficult. Iwouldalsoliketothankthestudentsthatparticipatedintheteachingintervention. These studentsofferedwithenthusiasmmuchoftheirfreetimeinreturnfornewexperiencesinmath- ematics. Igreatlyappreciatetheefforttheyputin,allthewaythroughtheintervention,andtheir feedback. It was my first teaching experience, and I feel lucky that this was with such lovely andmotivatedstudents. IthankthemallwholeheartedlyandIwishthemgoodluckinwhatever they do in their lives! Of course, I would not have met these students had it not been for the cooperatingteacher,MakisPanteliadis,whogavemepermissiontoworkwiththestudentsfrom hisclassesforthisproject. Hiscomments,helpandsupportwereatalltimesuseful,forwhich Iwouldliketothankhim. Finally,Iwouldliketothankallthepeoplethatsupportedmeduringthisproject: myteach- ers and fellow students at the AMSTEL institute who guided me and shared their experiences withme;myfriendsallovertheworldforsupportingmeandhelpingmeforgetaboutthisproject duringmyholidays;Olga,Rodi,VassilisandGiannisfortakingpicturesandvideosduringthe intervention;myprofessorAnastasiosPatronisfromtheUniversityofPatrasforintroducingme to the world of mathematics education and for the fruitful discussions we had during the first stagesofthisproject;myparentsforteachingmetoneverstoplearning;andmypartnerTikitu forproofreadingandhelpingmestructurethisthesisandforbeingthereformewhateverIdo. Contents Contents i ListofFigures v ListofTables vii 1 Introduction 1 2 TheoreticalFramework 3 2.1 Themeaningofproof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Deductiveversusinductivereasoning . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Geometryasadeductivescience . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 Previousresearchonstudents’geometricalreasoning . . . . . . . . . . . . . . 6 2.4.1 TheVanHieletheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4.2 Schoenfeldonstudents’beliefsaboutproof . . . . . . . . . . . . . . . 7 2.4.3 TheHarel&Sowderproofschemes . . . . . . . . . . . . . . . . . . . 8 2.4.4 TheprojectJustifyingandProvinginSchoolMathematics(JPSM) . . . 15 2.5 VanHielelevelsandHarel&Sowderproofschemes: Acorrespondence . . . . 16 2.6 PreviousresearchontheVanHieletheory . . . . . . . . . . . . . . . . . . . . 17 2.7 TeachingstrategiesassistingthemovethroughtheVanHielelevels . . . . . . 18 2.8 Conclusionsandhowourresearchbuildsontheliterature . . . . . . . . . . . . 22 3 AimsandResearchQuestions 25 3.1 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 ResearchQuestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 ResearchSetting 29 4.1 Theplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.2 TheGreekeducationalsystem . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 GeometryintheGreekcurriculum . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4 ThegeometrybooksoftheGreekGymnasium . . . . . . . . . . . . . . . . . . 30 5 Methodology,TeachingDesignandAnalysisFramework 35 5.1 Identifyingthestudents’VanHielelevels . . . . . . . . . . . . . . . . . . . . 36 5.2 Identifyingthestudents’kindsofreasoning . . . . . . . . . . . . . . . . . . . 36 i CONTENTS 5.2.1 AdaptingtheinstrumentsoftheJPSMprojecttoourresearch . . . . . 36 5.2.2 Classifyingthestudents’kindsofreasoningbasedontheHarel&Sow- derproofschemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3 Identifyingthestudents’beliefsaboutmathematicsandproof . . . . . . . . . . 40 5.3.1 TheadaptedSchoenfeldquestionnaire . . . . . . . . . . . . . . . . . . 40 5.3.2 Ourquestionnaireaboutwhatthestudentsbelievetheylearned . . . . . 40 5.3.3 AnadaptedversionofcertainJPSMprojecttasks . . . . . . . . . . . . 41 5.4 DeterminingthecorrelationbetweenproofschemesandVanHielelevels . . . 41 5.5 Designingandevaluatingateachingstrategy . . . . . . . . . . . . . . . . . . 41 5.5.1 Themovefromthedescriptivetothetheoreticallevelinthreestages . . 42 5.5.2 ThefiveVanHielephasesforeightconceptsinourteachingsequence . 44 5.5.3 Methodforevaluatingourteachingstrategy . . . . . . . . . . . . . . . 49 5.6 Otherdatacollectionmethods . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6 TheIntervention 51 6.1 Populationandsample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 Studentparticipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3 Diaryoftheintervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7 Results 65 7.1 TheUsiskinVanHieletestresults . . . . . . . . . . . . . . . . . . . . . . . . 65 7.2 TheHarel&Sowderproofschemescodingprocess . . . . . . . . . . . . . . . 69 7.3 CorrelationsbetweenVanHielelevelandHarel&Sowderproofscheme . . . . 78 7.4 Theroleofourteachingstrategy: Aqualitativeanalysis . . . . . . . . . . . . . 82 7.4.1 Movingthroughthethreestagestowardsdeductiveproofschemes . . . 82 7.4.2 Moving through the five Van Hiele teaching phases towards the theo- reticalVanHielelevel . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.5 Students’beliefsaboutmathematicsandproof . . . . . . . . . . . . . . . . . . 120 7.5.1 ModifiedSchoenfeldquestionnaireresults . . . . . . . . . . . . . . . . 120 7.5.2 Students’ownideasonhowtheirbeliefschanged . . . . . . . . . . . . 124 7.5.3 Students’ understanding of the validity, convincingness and generality ofarguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8 ConclusionsandDiscussion 149 8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.1.1 AnsweringSQ.1andH.1 . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.1.2 AnsweringSQ.2andH.2 . . . . . . . . . . . . . . . . . . . . . . . . . 150 8.1.3 AnsweringSQ.3andH.3 . . . . . . . . . . . . . . . . . . . . . . . . . 151 8.1.4 Answeringourmainresearchquestion . . . . . . . . . . . . . . . . . . 152 8.2 Discussionandrecommendations. . . . . . . . . . . . . . . . . . . . . . . . . 153 References 159 FurtherReading 165 ii CONTENTS A Pre-andpost-testsandquestionnaires 167 A.1 TheoriginalUsiskinVanHieletest . . . . . . . . . . . . . . . . . . . . . . . . 168 A.2 TheVanHieletestasusedinourresearch . . . . . . . . . . . . . . . . . . . . 181 A.3 ThemodifiedSchoenfeldquestionnaire . . . . . . . . . . . . . . . . . . . . . 190 A.4 Beliefs&reflectionsquestionnaire . . . . . . . . . . . . . . . . . . . . . . . . 192 B Taskrelatedworksheets 193 B.1 TRIANGLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 B.2 ANGLESUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 B.3 CHOOSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 B.4 CONCEPTIONSABOUTPROOF . . . . . . . . . . . . . . . . . . . . . . . . 205 B.5 QUAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 B.6 OPPANG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 B.7 BIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.8 BIS-GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.9 EXT-GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 B.10 TRIMID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 B.11 TRIMID-GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 B.12 QUADMID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 B.13 IFTHEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 C Handouts 215 C.1 Invitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 C.2 Introductiontothelessonscontentandexpectations . . . . . . . . . . . . . . . 218 C.3 Theprosandconsofarguments . . . . . . . . . . . . . . . . . . . . . . . . . 219 C.4 Hownewtruthsarediscoveredingeometry . . . . . . . . . . . . . . . . . . . 222 C.5 Whatwediscoveredinthegeometrylessons . . . . . . . . . . . . . . . . . . . 223 C.6 Wheredoesitallbegin? Themapofaxioms . . . . . . . . . . . . . . . . . . . 240 C.7 ThestoryofEuclideangeometry . . . . . . . . . . . . . . . . . . . . . . . . . 241 D Tablesandresults 243 D.1 VanHielepre-test: Analysisandcomparisonwithotherstudies . . . . . . . . . 244 D.2 DistributionofanswerstotheVRandEPquestionsinTaskCHOOSING . . . 256 D.3 VRandEPscoresbeforeandafterourintervention . . . . . . . . . . . . . . . 258 D.4 Moreresultsofthebeliefs&reflectionsquestionnaire . . . . . . . . . . . . . . 258 iii CONTENTS iv

Description:
Reasoning in geometry. How first learning to appreciate the generality of arguments helps students come to grips with the notion of proof. MSc Thesis.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.