Mon.Not.R.Astron.Soc.000,000–000(0000) Printed7January2015 (MNLATEXstylefilev2.2) Reanalysis of radial velocity data from the resonant planetary system HD128311 Hanno Rein1 1UniversityofToronto,DepartmentofEnvironmentalandPhysicalSciences,1265MilitaryTrail,TorontoOntarioM1C1A4 e-mail:[email protected] 5 Submitted:25November2014—Revised:13December2014–Accepted:22December2014 1 0 ABSTRACT 2 The multi-planetary system HD128311 hosts at least two planets. Its dynamical formation n history has been studied extensively in the literature. We reanalyse the latest radial velocity a dataforthissystemwiththeaffine-invariantMarkovchainMonteCarlosamplerEMCEE.Us- J ingthehighorderintegratorIAS15,weperformafullydynamicalfit,allowingtheplanetsto 5 interactduringthesamplingprocess.AstabilityanalysisusingtheMEGNOindicatorreveals thatthesystemislocatedinastableislandoftheparameterspace.Incontrasttoaprevious ] study,wefindthatthesystemislockedina2:1meanmotionresonance.Theresonantangle P ϕ is librating with a libration amplitude of approximately 37◦. The existence of mean mo- E 1 tionresonanceshasimportantimplicationforplanetformationtheories.Ourresultsconfirm . h predictionsofmodelsinvolvingplanetmigrationandstochasticforces. p - Keywords: methods:numerical—gravitation—planetsandsatellites:dynamicalevolution o andstability—stars:individual(HD128311) r t s a [ 1 THEPLANETARYSYSTEMHD128311 a system in a MMR favours the idea that giant planets migrated 1 when they were still embedded in a protoplanetary disc (Lee & v ThefirstplanetaroundHD128311wasdiscoveredbyButleretal. Peale2002;Rein&Papaloizou2009). 0 8 (2003). A second planet was found two years later (Vogt et al. Inthisletterwereanalysethecombinedradialvelocity(RV) 9 2005). Both planets are most likely gas giants with minimum datasets including the recalibrated data from the Hobby-Eberly 0 masses of 1.8 Mjup and 3.2 Mjup. A third signal has been discov- Telescope(HET)andtheLickObservatory.OurRVdataisthereby 0 eredbyMcArthuretal.(2014)butitsplanetarynaturehasyettobe equivalent to that of McArthur et al. (2014) but we do not take . confirmed. Soon after its discovery HD128311 began to emerge intoaccounttheastrometricobservationsinourmodelwhichonly 1 0 as a test bed of planet formation scenarios within the scientific constrain the system’s inclination. In contrast to previous stud- 5 community. A large number of groups studied the formation and ies,weuseafullydynamicalmodel,allowingplanetstointeract, 1 evolutionofthissystemwithparticularfocusonthesystem’sdy- ratherthanbeingonfixedKeplerianorbits.Weuseauseamod- : namicalhistory(Beauge´etal.2006;Quillen2006;Sa´ndor&Kley ernMarkovchainMonteCarlosamplertoexplorethehighdimen- v 2006;Sa´ndoretal.2007;Michtchenkoetal.2008;Meschiarietal. sional parameters space and converge on a new set of orbital pa- i X 2009; Crida et al. 2008; Lee & Thommes 2009; Voyatzis et al. rameters.ThedetailsaredescribedinSection2.Wethenperform r 2009; Barnes & Greenberg 2006; Raymond et al. 2008; Rein & longtermorbitintegrationstostudythestabilityinSection3us- a Papaloizou2009;Lecoanetetal.2009;Gayon-Markt&Bois2009; ing the fast chaos indictor MEGNO (Cincotta & Simo´ 2000). In Goz´dziewski & Konacki 2006; E´rdi et al. 2007; Giuppone et al. Section4weconcludebydiscussingtheresonantnatureofthesys- 2010). temandtheimplicationsforplanetformationscenariosinvolving The most important dynamical feature of HD128311 is its stochasticmigration. proximitytoa2:1meanmotionresonance(MMR).Earlyobserva- tionssupportedtheideathatHD128311isinresonance,although some of the orbital solutions were dynamically unstable on short 2 MARKOVCHAINMONTECARLO timescales(Vogtetal.2005).ThemostrecentworkonHD128311 byMcArthuretal.(2014)includesnewradialvelocitydata,are- We use a Markov chain Monte Carlo method to fit the observed calibrationofolderdatasetsandastrometricandphotometriccon- radial velocity datasets. In comparison to the fit performed by straints.Theauthorsfoundthattheplanetsintheirbestfitmodel McArthuretal.(2014)weuseafullydynamicaltwoplanetmodel. arenotinaMMR.WhetherthissystemisinaMMRornotisan Forthispurpose,wecouplethehighorderIAS15(Rein&Spiegel important constraint for planet formation scenarios. For example 2015) integrator which is available within the REBOUND package (cid:13)c 0000RAS 2 HannoRein 150 m/s] 100 city [ 50 o vel 0 al adi 50 r 100 s] m/ 20 al [ 0 u sid 20 e r 0 1000 2000 3000 4000 time [days] Figure1. Radialvelocitydataandmodel.ThetimeisrelativetoJD2450983.83.Toppanel:RVdatapoints,MCMCmean(red),MCMCsamples(gray). Bottompanel:residualerrorsnotincludingjitters. (Rein&Liu2012)totheEMCEEpackage.EMCEEisanopen-source, linescorrespondto50randomlydrawnsamplesfromtheMCMC parallelized affine-invariant Marcov chain Monte Carlo sampler posteriordistribution. writteninpython(Foreman-Mackeyetal.2013). We assume co-planarity of the planets but allow the orbital planetobeinclinedfromthelineofsightbyananglei.Thecen- 3 LONGTERMSTABILITY tral object has a fixed mass of M = 0.828M . We have four or- ∗ (cid:12) bital elements and one mass parameter, msin(i), for each planet. We focus on parameters close to those of the converged MCMC TheorbitalparametersaretheperiodP,theeccentricitye,thear- samples and run a total of 57600 realisations of HD128311 for gumentofperiapsisωandthemeananomalyM.Forthesampling tmax = 105 years to map out the structure of the phase space. A process, we perform a coordinate transformation to h = esin(ω) smaller subset was integrated for tmax = 106 years, but no qual- andk = ecos(ω)variables.Thisallowsustoavoidthecoordinate itative differences could be observed. As in the previous section singularityate=0andspeedupconvergence(foradiscussionsee weuseREBOUNDandthehighorderIAS15integratorfortheselong Houetal.2012).WeuseaJacobicoordinates,i.e.theouterplanet’s term integrations. We declarea system unstable if at least one of orbitalparametersaregivenwithrespecttothecentreofmassof the planets gets ejected, if the planets have a close encounter, or thestarandtheinnerplanet.BuildingupontheworkofMcArthur ifthesemi-majoraxisofatleastoneplanetchangesbymorethan etal.(2014),wefurtherincludeanindividualoffsetγandjitterpa- 50%.WerefertothisdefinitionasLagrangestabilityandcallthe rameter sforeachRVdataset(fourforLick,oneforHET).This timeuntilinstabilityLagrangetimescale. allowsthemodeltoaccountforvariationsintheoffsetsfordiffer- For systems that are Lagrange stable, we measure the Mean entinstrumentsaswellasvariationsintheLickdetectorsbetween ExponentialGrowthofNearbyOrbits,MEGNO(Cincotta&Simo´ observingruns.Thetotalnumberoffreeparametersisthus21. 2000). MEGNO is a fast chaos indicator similar to the tradi- tionalLyapunovexponent,butgivesmoreusefulresultsonshorter Atotalof500walkersareevolvedforseveralthousandgener- timescales.WecomputetheMEGNOvalue(cid:104)Y(cid:105)byintegratingthe ations.Bothanglesωand Maswellastheeccentricityeforeach variationalequations(Mikkola&Innanen1999)usingIAS15.Fora planethaveauniformpriors.WefollowHouetal.(2012)anduse definitionof(cid:104)Y(cid:105)andadetaileddiscussionoftheMEGNOindicator uninformativeJefferyspriorsfortheperiod,theplanetmassaswell seeCincotta&Simo´(2000)andGoz´dziewskietal.(2001)1. asthejitterparameters.Weinitializethewalkerswithmassandpe- In Figure 2 we show a slice of the parameter space in the riodparametersthatareroughlythoseofpreviousresultstospeed planeoftheouterplanet’speriodandeccentricity, P ande .All upconvergence.Ourexperimentsshowedthattheprecisedetailson 2 2 other orbital parameters are those listed in Table 1. All simula- howthewalkersareinitializeddonotmatter.Finally,weperform tions in red regions are Lagrange unstable. The shade of red in- asimpledeclusteringalgorithmafter1000generationsbyremov- dicatestheLagrangetimescale.Simulationsinblueregionsremain ingthosesamplesfromtheensemblethathavealikelihoodsignifi- stablefortheentireintegration.Theshadeofbluecorrespondsto cantlysmallerthanthebestsamples(Houetal.2012). theMEGNO(cid:104)Y(cid:105).Avalueof(cid:104)Y(cid:105)=2(darkblue)indicatesastable AftertheMCMChasconvergedandhasbeendeclustered,we quasi-periodicorbit,whereasavaluelargerthan2indicateschaotic sampleitover1250generationsandcalculatethemeanofallpa- behaviour.Onecanseeinthefigurethatseeminglystablesystems rametersaswellasthetwosigmaconfidenceintervals.Theresults are listed in Table 1. In Figure 1 we plot the observed radial ve- locitydatapointswiththeoffsetadjustedaccordingtoourmodel. 1 Note that there is a typo in the denominator of δ˙ in Equation 5 of TheredlinecorrespondstothemeansolutionofTable1.Thegray Goz´dziewskietal.(2001). (cid:13)c 0000RAS,MNRAS000,000–000 ReanalysisofradialvelocitydatafromtheresonantplanetarysystemHD128311 3 0.6 105 4 0.5 104 rs] Y fi y › 0.4 e [ or m at 103 y ti dic e2 0.3 stabilit 3 bility in n a 102 e i st g O 0.2 ran GN g E a M L 101 0.1 2 100 700 800 900 1000 1100 1200 P [days] 2 Figure2. LagrangestabilityplotinthevicinityoftheMCMCsolution.Theaxescorrespondtotheperiodandeccentricityoftheouterplanet.Redregionsare Lagrangeunstable.Blueregionsarestableforthedurationoftheintegration.Darkblueregionsarestablequasi-periodicsolutionsaccordingtotheMEGNO indicator.ThewhitecrossshowsthenominalmeanorbitalparameterslistedinTable1.TheblackdotsshowsamplesoftheMCMCposterior. whichareclosetothestabilityboundaryareinfactchaoticandthus TheexistenceofaMMRisanimportantobservableinmany mightbecomeunstableoverlongertimescales. planetformationscenarios.AsysteminaMMRsupportstheidea ThewhitecrossinFigure2showsthemeanorbitalparameters that giant planets migrated into their current position while they oftheMCMCsample.TheblackdotsshowtheindividualMCMC werestillembeddedinaprotoplanetarydisc(Lee&Peale2002). samplesfromtheposteriordistribution.Boththemeansolutionand Furthermore,Rein&Papaloizou(2009)predictedthatifthesys- allMCMsamplesarelocatedwellwithinastableisland.Notethat tem did undergo a phase of stochastic migration, then ϕ should 1 theeccentricitye isnotwellconstrained.However,theobserved librate at moderate amplitudes whereas ϕ should be close to the 2 2 RVdataisinconsistentwiththeassumptionofacircularorbit. separatrix of libration. Our results are in perfect agreement with The observational data is currently not good enough to con- thisprediction,thussupportingtheideathatbothplanetmigration strainthemutualinclinationofthetwoplanets.Totesttheeffects andstochasticforcesoccurredduringthesystem’sevolution. ofmutuallyinclinedorbits,werananadditional14400simulations withthesameinitialconditionsasbeforebutperturbedeachsystem witharandommutualinclinationof∼2◦.Ourresultsindicatethat thesystem’sstabilityisnotsignificantlyaffectedbyasmallamount ACKNOWLEDGMENTS ofmutualinclinationoveramillionyeartimescale. We thank Barbara McArthur for sharing the latest radial velocity dataset.DanielTamayoandananonymousrefereeprovidedvalu- able feedback. This research has been supported by the NSERC 4 MEANMOTIONRESONANCEANDCONCLUSIONS DiscoveryGrantRGPIN-2014-04553. TheperiodratioinourMCMCsample,P /P ,iswithin2%ofa2:1 2 1 meanmotionresonance.Theperiodratioaloneisnotasufficient criteria for a MMR. To test whether the system is in a MMR or REFERENCES notwethereforemonitorthetworesonantanglesϕ =λ −2λ + 1 1 2 ω and ϕ = λ −2λ +ω , where λ is the mean longitude. In Barnes,R.&Greenberg,R.2006,ApJ,638,478 1 2 1 2 2 allofourMCMCsamples,ϕ islibratingaround0◦.Thelibration Beauge´,C.,Michtchenko,T.A.,&Ferraz-Mello,S.2006,MN- 1 amplitudesrangefromcloseto0◦toupto90◦withameanof37◦. RAS,365,1160 Theresonantangleϕ islibratinginthemajoritybutnotallofthe Butler, R. P., Marcy, G. W., Vogt, S. S., Fischer, D. A., Henry, 2 samples.Themeanlibrationamplitudeforϕ is76.5◦.Ourfindings G.W.,Laughlin,G.,&Wright,J.T.2003,ApJ,582,455 2 differqualitativelyfromthoseofMcArthuretal.(2014)whofound Cincotta,P.M.&Simo´,C.2000,A&AS,147,205 thattheplanetsarenotinaMMR. Crida,A.,Sa´ndor,Z.,&Kley,W.2008,A&A,483,325 (cid:13)c 0000RAS,MNRAS000,000–000 4 HannoRein E´rdi,B.,Nagy,I.,Sa´ndor,Z.,Su¨li,A´.,&Fro¨hlich,G.2007,MN- Table1.ModelparametersfromMCMCsample. RAS,381,33 Parameter Valueand2-σconfidenceinterval Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013,PASP,125,306 epoch JD 2450983.83(fixed) Gayon-Markt,J.&Bois,E.2009,MNRAS,399,L137 stellarmass M∗ 0.828M(cid:12)(fixed) Giuppone, C. A., Beauge´, C., Michtchenko, T. A., & Ferraz- inclination i 63.8+23.7◦ Mello,S.2010,MNRAS,407,390 −35.9 Goz´dziewski, K., Bois, E., Maciejewski, A. J., & Kiseleva- Planet1 Eggleton,L.2001,A&A,378,569 minimummass m1sin(i) 1.83+−00..1158Mjup Goz´dziewski,K.&Konacki,M.2006,ApJ,647,573 period P1 460.1+−43..26days Hou,F.,Goodman,J.,Hogg,D.W.,Weare,J.,&Schwab,C.2012, eccentricity e1 0.30+−00..0034 ApJ,745,198 Lecoanet,D.,Adams,F.C.,&Bloch,A.M.2009,ApJ,692,659 argumentofperiapsis ω1 −76.2+−69..42◦ Lee,M.H.&Peale,S.J.2002,ApJ,567,596 meananomaly M1 259.2+−1112..96◦ Lee,M.H.&Thommes,E.W.2009,ApJ,702,1662 Planet2 McArthur, B. E., Benedict, G. F., Henry, G. W., Hatzes, A., minimummass m2sin(i) 3.20+−00..0088Mjup CAopcJh,r7a9n5,,W41.D.,Harrison,T.,Johns-Krull,C.,&Nelan,E.2014, period P2 910.7+−76..60days Meschiari,S.,Wolf,A.S.,Rivera,E.,Laughlin,G.,Vogt,S.,& eccentricity e2 0.12+−00..0086 Butler,P.2009,PASP,121,1016 argumentofperiapsis ω2 −19.7+−2132..20◦ Michtchenko,T.A.,Beauge´,C.,&Ferraz-Mello,S.2008,MN- RAS,387,747 meananomaly M2 184.2+−2100..07◦ Mikkola, S. & Innanen, K. 1999, Celestial Mechanics and Dy- LickRadialVelocitiesstartingJD2450983 namicalAstronomy,74,59 offseta γ1 1.2+−43..16m/s Quillen,A.C.2006,MNRAS,365,1367 jitterb s1 1.5+−31..84m/s RAaypmJ,o6n8d7,,SL.1N0.7,Barnes,R.,Armitage,P.J.,&Gorelick,N.2008, LickRadialVelocitiesstartingJD2451409 Rein,H.&Liu,S.-F.2012,A&A,537,A128 offseta γ2 7.9+−1113..40m/s Rein,H.&Papaloizou,J.C.B.2009,A&A,497,595 jitterb s2 5.2+−14.09.9m/s RSa´enind,oHr,.Z&.&SpKielgeyel,,WD..2S0.0260,1A5,&MAN,4R5A1S,,L43416,1424 LickRadialVelocitiesstartingJD2452333 Sa´ndor,Z.,Kley,W.,&Klagyivik,P.2007,A&A,472,981 offseta γ3 11.2+−2117..06m/s Vogt, S. S., Butler, R. P., Marcy, G. W., Fischer, D. A., Henry, jitterb s3 6.4+−15.77.1m/s G.W.,Laughlin,G.,Wright,J.T.,&Johnson,J.A.2005,ApJ, 632,638 LickRadialVelocitiesstartingJD2452515 Voyatzis, G., Kotoulas, T., & Hadjidemetriou, J. D. 2009, MN- offseta γ4 3.3+−1100..40m/s RAS,395,2147 jitterb s4 2.8+−62..66m/s HETRelativeRadialVelocities offseta γ5 0.6+−11..54m/s jitterb s5 2.2+−12..90m/s Notes: aOffsetsarerelativetothosefoundbyMcArthuretal.(2014)andareall consistentwithzero. bJitterisaddedontopofthereportedRVerrorswhichdonotincludestellar variabilityandadditionalinstrumentalnoise. (cid:13)c 0000RAS,MNRAS000,000–000