ebook img

Reanalysis of radial velocity data from the resonant planetary system HD128311 PDF

0.77 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Reanalysis of radial velocity data from the resonant planetary system HD128311

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed7January2015 (MNLATEXstylefilev2.2) Reanalysis of radial velocity data from the resonant planetary system HD128311 Hanno Rein1 1UniversityofToronto,DepartmentofEnvironmentalandPhysicalSciences,1265MilitaryTrail,TorontoOntarioM1C1A4 e-mail:[email protected] 5 Submitted:25November2014—Revised:13December2014–Accepted:22December2014 1 0 ABSTRACT 2 The multi-planetary system HD128311 hosts at least two planets. Its dynamical formation n history has been studied extensively in the literature. We reanalyse the latest radial velocity a dataforthissystemwiththeaffine-invariantMarkovchainMonteCarlosamplerEMCEE.Us- J ingthehighorderintegratorIAS15,weperformafullydynamicalfit,allowingtheplanetsto 5 interactduringthesamplingprocess.AstabilityanalysisusingtheMEGNOindicatorreveals thatthesystemislocatedinastableislandoftheparameterspace.Incontrasttoaprevious ] study,wefindthatthesystemislockedina2:1meanmotionresonance.Theresonantangle P ϕ is librating with a libration amplitude of approximately 37◦. The existence of mean mo- E 1 tionresonanceshasimportantimplicationforplanetformationtheories.Ourresultsconfirm . h predictionsofmodelsinvolvingplanetmigrationandstochasticforces. p - Keywords: methods:numerical—gravitation—planetsandsatellites:dynamicalevolution o andstability—stars:individual(HD128311) r t s a [ 1 THEPLANETARYSYSTEMHD128311 a system in a MMR favours the idea that giant planets migrated 1 when they were still embedded in a protoplanetary disc (Lee & v ThefirstplanetaroundHD128311wasdiscoveredbyButleretal. Peale2002;Rein&Papaloizou2009). 0 8 (2003). A second planet was found two years later (Vogt et al. Inthisletterwereanalysethecombinedradialvelocity(RV) 9 2005). Both planets are most likely gas giants with minimum datasets including the recalibrated data from the Hobby-Eberly 0 masses of 1.8 Mjup and 3.2 Mjup. A third signal has been discov- Telescope(HET)andtheLickObservatory.OurRVdataisthereby 0 eredbyMcArthuretal.(2014)butitsplanetarynaturehasyettobe equivalent to that of McArthur et al. (2014) but we do not take . confirmed. Soon after its discovery HD128311 began to emerge intoaccounttheastrometricobservationsinourmodelwhichonly 1 0 as a test bed of planet formation scenarios within the scientific constrain the system’s inclination. In contrast to previous stud- 5 community. A large number of groups studied the formation and ies,weuseafullydynamicalmodel,allowingplanetstointeract, 1 evolutionofthissystemwithparticularfocusonthesystem’sdy- ratherthanbeingonfixedKeplerianorbits.Weuseauseamod- : namicalhistory(Beauge´etal.2006;Quillen2006;Sa´ndor&Kley ernMarkovchainMonteCarlosamplertoexplorethehighdimen- v 2006;Sa´ndoretal.2007;Michtchenkoetal.2008;Meschiarietal. sional parameters space and converge on a new set of orbital pa- i X 2009; Crida et al. 2008; Lee & Thommes 2009; Voyatzis et al. rameters.ThedetailsaredescribedinSection2.Wethenperform r 2009; Barnes & Greenberg 2006; Raymond et al. 2008; Rein & longtermorbitintegrationstostudythestabilityinSection3us- a Papaloizou2009;Lecoanetetal.2009;Gayon-Markt&Bois2009; ing the fast chaos indictor MEGNO (Cincotta & Simo´ 2000). In Goz´dziewski & Konacki 2006; E´rdi et al. 2007; Giuppone et al. Section4weconcludebydiscussingtheresonantnatureofthesys- 2010). temandtheimplicationsforplanetformationscenariosinvolving The most important dynamical feature of HD128311 is its stochasticmigration. proximitytoa2:1meanmotionresonance(MMR).Earlyobserva- tionssupportedtheideathatHD128311isinresonance,although some of the orbital solutions were dynamically unstable on short 2 MARKOVCHAINMONTECARLO timescales(Vogtetal.2005).ThemostrecentworkonHD128311 byMcArthuretal.(2014)includesnewradialvelocitydata,are- We use a Markov chain Monte Carlo method to fit the observed calibrationofolderdatasetsandastrometricandphotometriccon- radial velocity datasets. In comparison to the fit performed by straints.Theauthorsfoundthattheplanetsintheirbestfitmodel McArthuretal.(2014)weuseafullydynamicaltwoplanetmodel. arenotinaMMR.WhetherthissystemisinaMMRornotisan Forthispurpose,wecouplethehighorderIAS15(Rein&Spiegel important constraint for planet formation scenarios. For example 2015) integrator which is available within the REBOUND package (cid:13)c 0000RAS 2 HannoRein 150 m/s] 100 city [ 50 o vel 0 al adi 50 r 100 s] m/ 20 al [ 0 u sid 20 e r 0 1000 2000 3000 4000 time [days] Figure1. Radialvelocitydataandmodel.ThetimeisrelativetoJD2450983.83.Toppanel:RVdatapoints,MCMCmean(red),MCMCsamples(gray). Bottompanel:residualerrorsnotincludingjitters. (Rein&Liu2012)totheEMCEEpackage.EMCEEisanopen-source, linescorrespondto50randomlydrawnsamplesfromtheMCMC parallelized affine-invariant Marcov chain Monte Carlo sampler posteriordistribution. writteninpython(Foreman-Mackeyetal.2013). We assume co-planarity of the planets but allow the orbital planetobeinclinedfromthelineofsightbyananglei.Thecen- 3 LONGTERMSTABILITY tral object has a fixed mass of M = 0.828M . We have four or- ∗ (cid:12) bital elements and one mass parameter, msin(i), for each planet. We focus on parameters close to those of the converged MCMC TheorbitalparametersaretheperiodP,theeccentricitye,thear- samples and run a total of 57600 realisations of HD128311 for gumentofperiapsisωandthemeananomalyM.Forthesampling tmax = 105 years to map out the structure of the phase space. A process, we perform a coordinate transformation to h = esin(ω) smaller subset was integrated for tmax = 106 years, but no qual- andk = ecos(ω)variables.Thisallowsustoavoidthecoordinate itative differences could be observed. As in the previous section singularityate=0andspeedupconvergence(foradiscussionsee weuseREBOUNDandthehighorderIAS15integratorfortheselong Houetal.2012).WeuseaJacobicoordinates,i.e.theouterplanet’s term integrations. We declarea system unstable if at least one of orbitalparametersaregivenwithrespecttothecentreofmassof the planets gets ejected, if the planets have a close encounter, or thestarandtheinnerplanet.BuildingupontheworkofMcArthur ifthesemi-majoraxisofatleastoneplanetchangesbymorethan etal.(2014),wefurtherincludeanindividualoffsetγandjitterpa- 50%.WerefertothisdefinitionasLagrangestabilityandcallthe rameter sforeachRVdataset(fourforLick,oneforHET).This timeuntilinstabilityLagrangetimescale. allowsthemodeltoaccountforvariationsintheoffsetsfordiffer- For systems that are Lagrange stable, we measure the Mean entinstrumentsaswellasvariationsintheLickdetectorsbetween ExponentialGrowthofNearbyOrbits,MEGNO(Cincotta&Simo´ observingruns.Thetotalnumberoffreeparametersisthus21. 2000). MEGNO is a fast chaos indicator similar to the tradi- tionalLyapunovexponent,butgivesmoreusefulresultsonshorter Atotalof500walkersareevolvedforseveralthousandgener- timescales.WecomputetheMEGNOvalue(cid:104)Y(cid:105)byintegratingthe ations.Bothanglesωand Maswellastheeccentricityeforeach variationalequations(Mikkola&Innanen1999)usingIAS15.Fora planethaveauniformpriors.WefollowHouetal.(2012)anduse definitionof(cid:104)Y(cid:105)andadetaileddiscussionoftheMEGNOindicator uninformativeJefferyspriorsfortheperiod,theplanetmassaswell seeCincotta&Simo´(2000)andGoz´dziewskietal.(2001)1. asthejitterparameters.Weinitializethewalkerswithmassandpe- In Figure 2 we show a slice of the parameter space in the riodparametersthatareroughlythoseofpreviousresultstospeed planeoftheouterplanet’speriodandeccentricity, P ande .All upconvergence.Ourexperimentsshowedthattheprecisedetailson 2 2 other orbital parameters are those listed in Table 1. All simula- howthewalkersareinitializeddonotmatter.Finally,weperform tions in red regions are Lagrange unstable. The shade of red in- asimpledeclusteringalgorithmafter1000generationsbyremov- dicatestheLagrangetimescale.Simulationsinblueregionsremain ingthosesamplesfromtheensemblethathavealikelihoodsignifi- stablefortheentireintegration.Theshadeofbluecorrespondsto cantlysmallerthanthebestsamples(Houetal.2012). theMEGNO(cid:104)Y(cid:105).Avalueof(cid:104)Y(cid:105)=2(darkblue)indicatesastable AftertheMCMChasconvergedandhasbeendeclustered,we quasi-periodicorbit,whereasavaluelargerthan2indicateschaotic sampleitover1250generationsandcalculatethemeanofallpa- behaviour.Onecanseeinthefigurethatseeminglystablesystems rametersaswellasthetwosigmaconfidenceintervals.Theresults are listed in Table 1. In Figure 1 we plot the observed radial ve- locitydatapointswiththeoffsetadjustedaccordingtoourmodel. 1 Note that there is a typo in the denominator of δ˙ in Equation 5 of TheredlinecorrespondstothemeansolutionofTable1.Thegray Goz´dziewskietal.(2001). (cid:13)c 0000RAS,MNRAS000,000–000 ReanalysisofradialvelocitydatafromtheresonantplanetarysystemHD128311 3 0.6 105 4 0.5 104 rs] Y fi y › 0.4 e [ or m at 103 y ti dic e2 0.3 stabilit 3 bility in n a 102 e i st g O 0.2 ran GN g E a M L 101 0.1 2 100 700 800 900 1000 1100 1200 P [days] 2 Figure2. LagrangestabilityplotinthevicinityoftheMCMCsolution.Theaxescorrespondtotheperiodandeccentricityoftheouterplanet.Redregionsare Lagrangeunstable.Blueregionsarestableforthedurationoftheintegration.Darkblueregionsarestablequasi-periodicsolutionsaccordingtotheMEGNO indicator.ThewhitecrossshowsthenominalmeanorbitalparameterslistedinTable1.TheblackdotsshowsamplesoftheMCMCposterior. whichareclosetothestabilityboundaryareinfactchaoticandthus TheexistenceofaMMRisanimportantobservableinmany mightbecomeunstableoverlongertimescales. planetformationscenarios.AsysteminaMMRsupportstheidea ThewhitecrossinFigure2showsthemeanorbitalparameters that giant planets migrated into their current position while they oftheMCMCsample.TheblackdotsshowtheindividualMCMC werestillembeddedinaprotoplanetarydisc(Lee&Peale2002). samplesfromtheposteriordistribution.Boththemeansolutionand Furthermore,Rein&Papaloizou(2009)predictedthatifthesys- allMCMsamplesarelocatedwellwithinastableisland.Notethat tem did undergo a phase of stochastic migration, then ϕ should 1 theeccentricitye isnotwellconstrained.However,theobserved librate at moderate amplitudes whereas ϕ should be close to the 2 2 RVdataisinconsistentwiththeassumptionofacircularorbit. separatrix of libration. Our results are in perfect agreement with The observational data is currently not good enough to con- thisprediction,thussupportingtheideathatbothplanetmigration strainthemutualinclinationofthetwoplanets.Totesttheeffects andstochasticforcesoccurredduringthesystem’sevolution. ofmutuallyinclinedorbits,werananadditional14400simulations withthesameinitialconditionsasbeforebutperturbedeachsystem witharandommutualinclinationof∼2◦.Ourresultsindicatethat thesystem’sstabilityisnotsignificantlyaffectedbyasmallamount ACKNOWLEDGMENTS ofmutualinclinationoveramillionyeartimescale. We thank Barbara McArthur for sharing the latest radial velocity dataset.DanielTamayoandananonymousrefereeprovidedvalu- able feedback. This research has been supported by the NSERC 4 MEANMOTIONRESONANCEANDCONCLUSIONS DiscoveryGrantRGPIN-2014-04553. TheperiodratioinourMCMCsample,P /P ,iswithin2%ofa2:1 2 1 meanmotionresonance.Theperiodratioaloneisnotasufficient criteria for a MMR. To test whether the system is in a MMR or REFERENCES notwethereforemonitorthetworesonantanglesϕ =λ −2λ + 1 1 2 ω and ϕ = λ −2λ +ω , where λ is the mean longitude. In Barnes,R.&Greenberg,R.2006,ApJ,638,478 1 2 1 2 2 allofourMCMCsamples,ϕ islibratingaround0◦.Thelibration Beauge´,C.,Michtchenko,T.A.,&Ferraz-Mello,S.2006,MN- 1 amplitudesrangefromcloseto0◦toupto90◦withameanof37◦. RAS,365,1160 Theresonantangleϕ islibratinginthemajoritybutnotallofthe Butler, R. P., Marcy, G. W., Vogt, S. S., Fischer, D. A., Henry, 2 samples.Themeanlibrationamplitudeforϕ is76.5◦.Ourfindings G.W.,Laughlin,G.,&Wright,J.T.2003,ApJ,582,455 2 differqualitativelyfromthoseofMcArthuretal.(2014)whofound Cincotta,P.M.&Simo´,C.2000,A&AS,147,205 thattheplanetsarenotinaMMR. Crida,A.,Sa´ndor,Z.,&Kley,W.2008,A&A,483,325 (cid:13)c 0000RAS,MNRAS000,000–000 4 HannoRein E´rdi,B.,Nagy,I.,Sa´ndor,Z.,Su¨li,A´.,&Fro¨hlich,G.2007,MN- Table1.ModelparametersfromMCMCsample. RAS,381,33 Parameter Valueand2-σconfidenceinterval Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013,PASP,125,306 epoch JD 2450983.83(fixed) Gayon-Markt,J.&Bois,E.2009,MNRAS,399,L137 stellarmass M∗ 0.828M(cid:12)(fixed) Giuppone, C. A., Beauge´, C., Michtchenko, T. A., & Ferraz- inclination i 63.8+23.7◦ Mello,S.2010,MNRAS,407,390 −35.9 Goz´dziewski, K., Bois, E., Maciejewski, A. J., & Kiseleva- Planet1 Eggleton,L.2001,A&A,378,569 minimummass m1sin(i) 1.83+−00..1158Mjup Goz´dziewski,K.&Konacki,M.2006,ApJ,647,573 period P1 460.1+−43..26days Hou,F.,Goodman,J.,Hogg,D.W.,Weare,J.,&Schwab,C.2012, eccentricity e1 0.30+−00..0034 ApJ,745,198 Lecoanet,D.,Adams,F.C.,&Bloch,A.M.2009,ApJ,692,659 argumentofperiapsis ω1 −76.2+−69..42◦ Lee,M.H.&Peale,S.J.2002,ApJ,567,596 meananomaly M1 259.2+−1112..96◦ Lee,M.H.&Thommes,E.W.2009,ApJ,702,1662 Planet2 McArthur, B. E., Benedict, G. F., Henry, G. W., Hatzes, A., minimummass m2sin(i) 3.20+−00..0088Mjup CAopcJh,r7a9n5,,W41.D.,Harrison,T.,Johns-Krull,C.,&Nelan,E.2014, period P2 910.7+−76..60days Meschiari,S.,Wolf,A.S.,Rivera,E.,Laughlin,G.,Vogt,S.,& eccentricity e2 0.12+−00..0086 Butler,P.2009,PASP,121,1016 argumentofperiapsis ω2 −19.7+−2132..20◦ Michtchenko,T.A.,Beauge´,C.,&Ferraz-Mello,S.2008,MN- RAS,387,747 meananomaly M2 184.2+−2100..07◦ Mikkola, S. & Innanen, K. 1999, Celestial Mechanics and Dy- LickRadialVelocitiesstartingJD2450983 namicalAstronomy,74,59 offseta γ1 1.2+−43..16m/s Quillen,A.C.2006,MNRAS,365,1367 jitterb s1 1.5+−31..84m/s RAaypmJ,o6n8d7,,SL.1N0.7,Barnes,R.,Armitage,P.J.,&Gorelick,N.2008, LickRadialVelocitiesstartingJD2451409 Rein,H.&Liu,S.-F.2012,A&A,537,A128 offseta γ2 7.9+−1113..40m/s Rein,H.&Papaloizou,J.C.B.2009,A&A,497,595 jitterb s2 5.2+−14.09.9m/s RSa´enind,oHr,.Z&.&SpKielgeyel,,WD..2S0.0260,1A5,&MAN,4R5A1S,,L43416,1424 LickRadialVelocitiesstartingJD2452333 Sa´ndor,Z.,Kley,W.,&Klagyivik,P.2007,A&A,472,981 offseta γ3 11.2+−2117..06m/s Vogt, S. S., Butler, R. P., Marcy, G. W., Fischer, D. A., Henry, jitterb s3 6.4+−15.77.1m/s G.W.,Laughlin,G.,Wright,J.T.,&Johnson,J.A.2005,ApJ, 632,638 LickRadialVelocitiesstartingJD2452515 Voyatzis, G., Kotoulas, T., & Hadjidemetriou, J. D. 2009, MN- offseta γ4 3.3+−1100..40m/s RAS,395,2147 jitterb s4 2.8+−62..66m/s HETRelativeRadialVelocities offseta γ5 0.6+−11..54m/s jitterb s5 2.2+−12..90m/s Notes: aOffsetsarerelativetothosefoundbyMcArthuretal.(2014)andareall consistentwithzero. bJitterisaddedontopofthereportedRVerrorswhichdonotincludestellar variabilityandadditionalinstrumentalnoise. (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.