ebook img

Real Hypersurfaces in CP^2 AND CH^2 whose structure Jacobi operator is Lie D-parallel PDF

0.09 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Real Hypersurfaces in CP^2 AND CH^2 whose structure Jacobi operator is Lie D-parallel

CP2 CH2 Real hypersurfaces in and whose structure D Jacobi operator is Lie -parallel KonstantinaPanagiotidouandPhilipposJ.Xenos MathematicsDivision-SchoolofTechnology,AristotleUniversityofThessaloniki,Thessaloniki54124,Greece 2 1 E-mail:[email protected],[email protected] 0 2 n ABSTRACT.In[3],[7]and[8]resultsconcerningtheparallelnessoftheLiederivativeofthestructureJacobi a operatorofarealhypersurfacewithrespecttoξandtoanyvectorfieldXwereobtainedinbothcomplex J projectivespaceandcomplexhyperbolicspace.Inthepresentpaper,westudytheparallelnessoftheLie 2 1 derivativeofthestructureJacobioperatorofarealhypersurfacewithrespecttovectorfieldXǫDinCP2and CH2.Moreprecisely,weprovethatsuchrealhypersurfacesdonotexist. ] G Keywords:Realhypersurface,LieD-parallelness,StructureJacobioperator,Complexprojectivespace, D Complexhyperbolicspace. . h t MathematicsSubjectClassification(2000):Primary53C40;Secondary53C15,53D15. a m [ 1 1 Introduction v 0 4 A complex n-dimensional Kaehler manifold of constant holomorphic sectional curvature c is 5 calledacomplexspaceform,whichisdenotedbyM (c). Acompleteandsimplyconnectedcom- 2 n . plex space form is complex analyticallyisometric to a complexprojectivespace CPn, a complex 1 0 EuclideanspaceCnoracomplexhyperbolicspaceCHnifc>0,c=0orc<0respectively. 2 LetM be a realhypersurfaceina complexspace formM (c), c 6= 0. Thenan almostcontact 1 n : metric structure (ϕ,ξ,η,g) can be defined on M induced from the Kaehler metric and complex v i structure J on M (c). The structure vector field ξ is called principalif Aξ = αξ, where A is the X n shapeoperatorofMandα = η(Aξ)isasmoothfunction. ArealhypersurfaceissaidtobeaHopf r a hypersurfaceifξisprincipal. Theclassificationproblemofrealhypersurfacesincomplexspaceformsisofgreatimportancein DifferentialGeometry.ThestudyofthiswasinitiatedbyTakagi(see[10]),whoclassifiedhomoge- neousrealhypersurfacesinCPnandshowedthattheycouldbedividedintosixtypes,whicharesaid tobeoftypeA1,A2,B,C,DandE. Berndt(see[1])classifiedhomogeneousrealhypersurfacesin CHnwithconstantprincipalcurvatures. TheJacobioperatorwithrespecttoXonMisdefinedbyR(·,X)X,whereRistheRiemmanian curvatureofM.ForX =ξ theJacobioperatoriscalledstructureJacobioperatorandisdenotedby l = R(·,ξ)ξ. It hasa fundamentalrole in almostcontactmanifolds. Manydifferentialgeometers havestudiedrealhypersurfacesintermsofthestructureJacobioperator. ThestudyofrealhypersurfaceswhosestructureJacobioperatorsatisfiesconditionsconcernedto theparallelnessofitisaproblemofgreatimportance. In[6]thenonexistenceofrealhypersurfaces ThefirstauthorisgrantedbytheFoundationAlexandrosS.Onasis.GrantNr:GZF044/2009-2010. 1 innonflatcomplexspaceformwithparallelstructureJacobioperator(∇l = 0)wasproved. In[9] a weaker condition (D-parallelness, where D = ker(η)), that is ∇ l = 0 for any vector field X X orthogonalto ξ, was studied and it was proved the nonexistenceof such hypersurfacesin case of CPn (n ≥ 3). Theξ-parallelnessofstructureJacobioperatorincombinationwithotherconditions wasanotherproblemthatwasstudiedbymanyauthorssuchasKi,Perez,Santos,Suh([4]). The Lie derivative of the structure Jacobi operator is another condition that has been studied extensively.Moreprecisely,in[7]provedthenon-existenceofrealhypersurfacesinCPn,(n≥3), whoseLiederivativeofthestructureJacobioperatorwithrespecttoanyvectorfieldXvanishes(i.e. L l = 0). On the other hand, real hypersurfacesin CPn, (n ≥ 3), whose Lie derivative of the X structureJacobioperatorwithrespecttoξ vanishes(i.e. L l = 0,Lieξ-parallel)areclassified(see ξ [8]). IveyandRyanin[3]extendsomeoftheaboveresultsinCP2 andCH2. Moreprecisely,they provedthatinCP2andCH2thereexistnorealhypersurfacessatisfyingconditionL l=0,forany X vectorfield X, butrealhypersurfacessatisfyingconditionL l = 0 existand theyclassified them. ξ Additional,theyprovedthatthereexistnorealhypersurfacesinCPn orCHn,(n ≥ 3),satisfying conditionL l=0,foranyvectorfieldX. X Followingthenotionof[8],thestructureJacobioperatorissaidtobeLieD-parallel,whenthe LiederivativeofitwithrespecttoanyvectorfieldXǫDvanishes. Sothefollowingquestionraises naturally: ”Dothereexistrealhypersurfacesinnon-flatM2(c)withLieD-parallelstructureJacobiopera- tor?” In this paper, we study the abovequestionin CP2 and CH2. The conditionof Lie D-parallel structureJacobioperator,i.e. L l =0withXǫD,implies: X ∇ (lY)+l∇ X =∇ X +l∇ Y, (1.1) X Y lY X whereYǫTM. Weprovethefollowing: Main Theorem: There exist no real hypersurfaces in CP2 and CH2 equipped with Lie D- parallelstructureJacobioperator. 2 Preliminaries Throughoutthis paper all manifolds, vector fields e.t.c are assumed to be of class C∞ and all manifolds are assumed to be connected. Let M be a connected real hypersurface immersed in a nonflatcomplexspace form(M (c),G) with almostcomplexstructureJ ofconstantholomorphic n sectionalcurvaturec. LetNbealocallydefinedunitnormalvectorfieldonMandξ = −JN. For avectorfieldXtangenttoMwecanwriteJX = ϕ(X)+η(X)N,whereϕX andη(X)N arethe tangentialandthenormalcomponentofJX respectively. TheRiemannianconnection∇inM (c) n and∇inMarerelatedforanyvectorfieldsX,YonM: ∇ X =∇ X +g(AY,X)N Y Y ∇ N =−AX X 2 wheregistheRiemannianmetriconMinducedfromGofM (c)andAistheshapeoperatorofM n inM (c). Mhasanalmostcontactmetricstructure(ϕ,ξ,η)inducedfromJonM (c)whereϕisa n n (1,1)tensorfieldandηa1-formonMsuchthat([2]) g(ϕX,Y)=G(JX,Y), η(X)=g(X,ξ)=G(JX,N). Thenwehave 2 ϕ X =−X +η(X)ξ, η◦ϕ=0, ϕξ =0, η(ξ)=1 (2.1) g(ϕX,ϕY)=g(X,Y)−η(X)η(Y), g(X,ϕY)=−g(ϕX,Y) (2.2) ∇ ξ =ϕAX, (∇ ϕ)Y =η(Y)AX −g(AX,Y)ξ (2.3) X X Since the ambient space is of constant holomorphicsectional curvature c, the equations of Gauss andCodazziforanyvectorfieldsX,Y,ZonMarerespectivelygivenby c R(X,Y)Z = [g(Y,Z)X−g(X,Z)Y +g(ϕY,Z)ϕX (2.4) 4 −g(ϕX,Z)ϕY −2g(ϕX,Y)ϕZ]+g(AY,Z)AX −g(AX,Z)AY c (∇ A)Y −(∇ A)X = [η(X)ϕY −η(Y)ϕX −2g(ϕX,Y)ξ] (2.5) X Y 4 whereRdenotestheRiemanniancurvaturetensoronM. Relation(2.4)impliesthatthestructureJacobioperatorlisgivenby: c lX = [X −η(X)ξ]+αAX −η(AX)Aξ (2.6) 4 ForeverypointP ǫ M,thetangentspaceT M canbedecomposedasfollowing: P T M =span{ξ}⊕ker(η), P whereker(η) = {X ǫ T M : η(X) = 0}. Duetotheabovedecomposition,thevectorfieldAξ P canbewritten: Aξ =αξ+βU, (2.7) whereβ =|ϕ∇ ξ|andU =−1ϕ∇ ξ ǫker(η),providedthatβ 6=0. ξ β ξ 3 Some PreviousResults LetMbeanon-HopfhypersurfaceinCP2orCH2(i.e.M2(c),c6=0).Thenthefollowingrelations holdsoneverythree-dimensionalrealhypersurfaceinM2(c). Lemma3.1 LetMbearealhypersurfaceinM2(c). ThenthefollowingrelationsholdonM: AU =γU +δϕU +βξ, AϕU =δU +µϕU, (3.1) 3 ∇ ξ =−δU +γϕU, ∇ ξ =−µU +δϕU, ∇ ξ =βϕU, (3.2) U ϕU ξ ∇UU =κ1ϕU +δξ, ∇ϕUU =κ2ϕU +µξ, ∇ξU =κ3ϕU, (3.3) ∇UϕU =−κ1U −γξ, ∇ϕUϕU =−κ2U −δξ, ∇ξϕU =−κ3U −βξ, (3.4) whereγ,δ,µ,κ1,κ2,κ3aresmoothfunctionsonM. Proof:Let{U,ϕU,ξ}beanorthonormalbasisofM.Thenwehave: AU =γU +δϕU +βξ AϕU =δU +µϕU, whereγ,δ,µaresmoothfunctions,sinceg(AU,ξ)=g(U,Aξ)=βandg(AϕU,ξ)=g(ϕU,Aξ)= 0. Thefirstrelationof(2.3),becauseof(2.6)and(3.1),forX = U,X = ϕU andX = ξ implies (3.2),owingto(2.7). Fromthewellknownrelation:Xg(Y,Z)=g(∇ Y,Z)+g(Y,∇ Z)forX,Y,Zǫ{ξ,U,ϕU} X X weobtain(3.3)and(3.4),whereκ1,κ2andκ3aresmoothfunctions. (cid:3) BecauseofLemma3.1theCodazziequationimplies: Uβ−ξγ = αδ−2δκ3 (3.5) c 2 2 ξδ = αγ+βκ1+δ +µκ3+ −γµ−γκ3−β (3.6) 4 Uα−ξβ = −3βδ (3.7) ξµ = αδ+βκ2−2δκ3 (3.8) (ϕU)α = αβ+βκ3−3βµ (3.9) c 2 (ϕU)β = αγ+βκ1+2δ + −2γµ+αµ (3.10) 2 Uδ−(ϕU)γ = µκ1−κ1γ−βγ−2δκ2−2βµ (3.11) Uµ−(ϕU)δ = γκ2+βδ−κ2µ−2δκ1 (3.12) WerecallthefollowingProposition([3]): Proposition3.2 There doesnotexist real non-flathypersurfacein M2(c), whose structure Jacobi operatorvanishes. 4 AuxiliaryRelations IfMisarealnon-flathypersurfaceinCP2orCH2(i.e. M2(c),c6=0),weconsidertheopensubset WofpointsP ǫM,suchthatthereexistsaneighborhoodofeveryP,whereβ =0andNtheopen subsetofpointsQǫM, suchthatthereexistsaneighborhoodofeveryQ, whereβ 6= 0. Since, β is a smooth functionon M, then W∪N is an open and dense subset of M. In W ξ is principal. Furthermore,weconsiderV,ΩopensubsetsofN: V={Q ǫ N:α=0 in a neighborhood of Q}, Ω={Q ǫ N:α6=0 in a neighborhood of Q}, 4 whereV∪ΩisopenanddenseintheclosureofN. Proposition4.1 Let M be a real hypersurface in M2(c), equipped with Lie D-parallel structure Jacobioperator.Then,Visempty. Proof: Let {U,ϕU,ξ} be an orthonormal basis on V. The following relations hold, because of Lemma3.1 ′ ′ ′ ′ AU =γ U +δ ϕU +βξ, AϕU =δ U +µϕU, Aξ =βU (4.1) ′ ′ ′ ′ ∇ ξ =−δ U +γ ϕU, ∇ ξ =−µU +δ ϕU, ∇ ξ =βϕU, (4.2) U ϕU ξ ′ ′ ′ ′ ′ ∇ U =κ ϕU +δ ξ, ∇ U =κ ϕU +µξ, ∇ U =κ ϕU, (4.3) U 1 ϕU 2 ξ 3 ′ ′ ′ ′ ′ ∇ ϕU =−κ U −γ ξ, ∇ ϕU =−κ U −δ ξ, ∇ ϕU =−κ U −βξ, (4.4) U 1 ϕU 2 ξ 3 whereγ′,δ′,µ′,κ′,κ′,κ′ aresmoothfunctionsonV. 1 2 3 From(2.6)forX =U andX =ϕU,takingintoaccount(4.1),weobtain: c c 2 lϕU = ϕU lU =( −β )U. (4.5) 4 4 Relation(1.1),becauseof(4.2),(4.3)(4.4)and(4.5)implies: ′ δ = 0,for X =ϕU and Y =ξ (4.6) c ′ ′ 2 (µ −κ )( −β ) = 0,for X =ϕU and Y =ξ (4.7) 3 4 ′ ′ κ = γ ,for X=U and Y =ξ. (4.8) 3 OnV,relations(3.5)-(3.12),takingintoaccount(4.6),become: c ′ ′ ′ ′ ′ ′ ′ 2 βκ +µκ + = γ µ +γ κ +β (4.9) 1 3 3 4 ′ ′ κ = 3µ (4.10) 3 c ′ ′ ′ (ϕU)β = βκ + −2γ µ (4.11) 1 2 ′ ′ ′ ′ ′ ′ ′ (ϕU)γ = κ γ +βγ +2βµ −µκ . (4.12) 1 1 Dueto(4.7),weconsidertheopensubsetsV: c V1 ={P ǫ V:β2 6= in a neighborhood of P}, 4 c V′ ={P ǫ V:β2 = in a neighborhood of P}, 1 4 whereV1∪V′1isopenanddenseintheclosureofV. SoinV1 weobtain:µ′ =κ′3. OnV1,becauseofrelations(4.8)and(4.10),weobtainµ′ =κ′3 =γ′ =0. Relation (1.1), for X = U and Y = ϕU, due to (4.3), (4.4) and (4.5), implies: κ′ = 0. 1 Substitutingin(4.9)µ′ = κ′3 = γ′ = κ′1 = 0,leadsto: β2 = 4c,whichisimpossibleonV1. SoV1 isemptyandβ2 = c holdsonV. 4 OnV,becauseof(4.8)and(4.10),wehaveγ′ =κ′ =3µ′. Substitutingthelasttworelationsin 3 (4.9),implies: βκ′ = 9µ′2. Differentiationofβ2 = c withrespecttoϕU andtakingintoaccount 1 4 5 (4.13), γ′ = 3µ′ and βκ′ = 9µ′2, yields: c = −6µ′2, which is a contradictionbecause β2 = c. 1 4 Hence,V=∅. (cid:3) InwhatfollowsweworkinΩ. Byusing(2.6),becauseof(3.1),weobtain: c c 2 lU =( +αγ−β )U +αδϕU lϕU =αδU +(αµ+ )ϕU (4.13) 4 4 Relation(1.1)becauseof(3.2),(3.3)and(3.4)implies: c 2 δ(ακ3+ −β ) = 0 for X =U and Y =ξ (4.14) 4 c 2 ( +αµ)(κ3−γ)+αδ = 0 for X =U and Y =ξ (4.15) 4 c 2 2 ( +αγ−β )(µ−κ3)−αδ = 0 for X =ϕU and Y =ξ (4.16) 4 c δ(ακ3+ ) = 0 for X =ϕU and Y =ξ (4.17) 4 Dueto(4.17),weconsidertheopensubsetsΩ1andΩ′1ofΩ: Ω1 ={Q ǫ Ω: δ 6=0 in a neighborhood of Q}, ′ Ω ={Q ǫ Ω: δ =0 in a neighborhood of Q}, 1 whereΩ1∪Ω′1isopenanddenseintheclosureofΩ. InΩ1,from(4.14)and(4.17),wehave:β =0,whichisacontradiction,thereforeΩ1 =∅. Thus wehave:δ =0inΩandrelationsfromLemma3.1,(4.13),(4.15)and(4.16)becomerespectively: AU =γU +βξ, AϕU =µϕU, Aξ =αξ+βU (4.18) ∇ ξ =γϕU, ∇ ξ =−µU, ∇ ξ =βϕU (4.19) U ϕU ξ ∇UU =κ1ϕU, ∇ϕUU =κ2ϕU +µξ, ∇ξU =κ3ϕU, (4.20) ∇UϕU =−κ1U −γξ, ∇ϕUϕU =−κ2U, ∇ξϕU =−κ3U −βξ, (4.21) c c 2 lU =( +αγ−β )U lϕU =(αµ+ )ϕU (4.22) 4 4 c 2 ( +αγ−β )(µ−κ3)=0 (4.23) 4 c ( +αµ)(κ3−γ)=0. (4.24) 4 Owingto(4.23),weconsidertheopensubsetsΩ2andΩ′2ofΩ: Ω2 ={Q ǫ Ω: µ6=κ3 in a neighborhood of Q}, ′ Ω2 ={Q ǫ Ω: µ=κ3 in a neighborhood of Q}, whereΩ2∪Ω′2isopenanddenseintheclosureofΩ. SoinΩ2,wehave: β2 c γ = − and (4.21) implies: lU =0. (4.25) α 4α 6 Dueto(4.24)weconsiderΩ21andΩ′21theopensubsetsofΩ2: c Ω21 ={Q ǫ Ω2 : µ=− in a neighborhood of Q}, 4α c ′ Ω21 ={Q ǫ Ω2 : µ6=− in a neighborhood of Q}, 4α where Ω21 ∪Ω′21 is open and dense in the closure of Ω2. So in Ω21, (4.22) implies: lϕU = 0 andbecauseofProposition3.2weobtainΩ21 = ∅,thusinΩ2, wehaveµ 6= −4cα andasaresult: lϕU 6=0. Furthermore,becauseof(4.24)κ3 =γ. Lemma4.2 LetMbearealhypersurfaceinM2(c),equippedwithLieD-parallelstructureJacobi operator.ThenΩ2isempty. Proof:OnΩ2,relation(1.1)forX =ϕU andY =U owingto(4.20)and(4.21)implies:κ2lϕU = 0. Soκ2 =0. Duetothelast,relations(3.8)and(3.12)imply: Uµ=ξµ=0. (4.26) Relation (1.1) for X = U and Y = ϕU taking into account (4.20), (4.21), (4.22) and (4.25) implies:µ=−γandκ1 =0.Substitutionin(3.6)oftherelationswhichholdonΩ2implies:γ =0 andthisresultsin: β2 = c. DifferentiationofthelastwithrespecttoϕU,becauseof(3.10)leadsto 4 c=0,whichisacontradiction.ThiscompletestheproofofthepresentLemma. (cid:3) Summarizing,inΩwehave:δ =0andµ=κ3. Dueto(4.24),weconsiderΩ3andΩ′3theopen subsetsofΩ: c Ω3 ={Q ǫ Ω: µ6=− in a neighborhood of Q}, 4α c ′ Ω ={Q ǫ Ω: µ=− in a neighborhood of Q}, 3 4α whereΩ3∪Ω′3 isopenanddenseintheclosureofΩ. Sinceµ 6=−4cα,dueto(4.22)and(4.24)we obtain:lϕU 6=0andγ =µ=κ3,inΩ3. Lemma4.3 LetMbearealhypersurfaceinM2(c),equippedwithLieD-parallelstructureJacobi operator.ThenΩ3isempty. Proof:InΩ3relations(3.6),(3.9),(3.10)and(3.11)becomerespectively: c 2 2 αγ+βκ1+ = β +γ (4.27) 4 (ϕU)α = αβ−2βγ (4.28) c 2 (ϕU)β = 2αγ+βκ1+ −2γ (4.29) 2 (ϕU)µ=(ϕU)γ = 3βγ. (4.30) Relation(1.1)forX = Y = ϕU,becauseof(4.22),(4.28)and(4.30)implies: γ(2α−γ)= 0. Owingtothelastrelation,weconsiderΩ31andΩ′31theopensubsetsofΩ3: Ω31 ={Q ǫ Ω3 : γ 6=0 in a neighborhood of Q}, ′ Ω31 ={Q ǫ Ω3 : γ =0 in a neighborhood of Q}, 7 whereΩ31∪Ω′31isopenanddenseintheclosureofΩ3.InΩ31,γ =2α.Differentiationofthelatter withrespecttoϕU andtakingintoaccount(4.28)and(4.30)leadsto:αβ =0,whichisimpossible. SoΩ31isempty. ResumingonΩ3 wehave: γ = µ = κ3 = 0andrelation(3.8)implies: κ2 = 0. Relation(1.1) forX =U andY = ϕU,becauseof(4.20),(4.21)and(4.22)yields: κ1 =0andsorelation(4.27) implies:β2 = c. DifferentiationofthelastalongϕU andbecauseof(4.29)leadstoc=0,whichis 4 acontradictionandthiscompletestheproofofLemma4.3. (cid:3) SoonΩthefollowingrelationshold: c δ =0, µ=κ3 =− , 4α andrelation(4.22),becauseofthelastoneimplies: lϕU =0. Relation(1.1),forX = U andY = ϕU, becauseof(4.20)and(4.21)implies: κ1lU = 0. So κ1 =0,duetoProposition3.2. Duetotheaboverelations,onΩrelations(3.9),(3.10)and(3.11)becomerespectively: cβ (ϕU)α = αβ+ (4.31) 2α cγ c (ϕU)β = αγ+ + (4.32) 2α 4 cβ (ϕU)γ = βγ− (4.33) 2α Relation(1.1)forX =ϕU andY =U takingintoaccount(4.20),(4.21)and(4.22)yields: c 2 (ϕU)( +αγ−β ) = 0 (4.34) 4 c 2 κ2( +αγ−β ) = 0 (4.35) 4 c 2 (µ+γ)( +αγ−β ) = 0. (4.36) 4 Dueto(4.35),weconsider:Ω4andΩ′4theopensubsetsofΩ: c 2 Ω4 ={Q ǫ Ω: +αγ−β =0 in a neighborhood of Q}, 4 c ′ 2 Ω ={Q ǫ Ω: +αγ−β 6=0 in a neighborhood of Q}, 4 4 whereΩ4∪Ω′4isopenanddenseintheclosureofΩ. SoinΩ4wehave:γ = βα2 − 4cα andbecause of(4.22)lU =0,whichisimpossibleduetoProposition3.2.Therefore,Ω4 =∅ SoinΩwehave:κ2 =0andrelation(4.36)implies: µ=−γ. Lemma4.4 LetMbearealhypersurfaceinM2(c),equippedwithLieD-parallelstructureJacobi operator.ThenΩisempty. Proof:InΩrelations(3.8)and(3.12)yields:Uα=ξα=0. Usingtheaboverelations,weobtain: [U,ξ]α=Uξα−ξUα=0, c [U,ξ]α=(∇ ξ−∇ U)α= (ϕU)α. U ξ 2α 8 Combiningthelasttworelationsandtakingintoaccount(4.31),wehave: c= −2α2andsoµ = α 2 andγ = −α. Relation(4.33),becauseof(4.31)andthelasttworelationsimply: α = 0,whichis 2 impossibleinΩ. ThiscompletestheproofofLemma4.4. (cid:3) WeleadtothefollowingduetoLemmas4.1and4.4: Proposition4.5 Every realhypersurfacein M2(c), equippedwith Lie D-parallelstructure Jacobi operatorisaHopfhypersurface. 5 ProofofMainTheorem Since M is a Hopf hypersurface, due to Theorem 2.1, ([5]) , we have that α is a constant. We consideraunitvectorfieldZ ǫker(η), suchthatAZ = λZ,thenAϕZ = νϕZ. Then{ξ,Z,ϕZ} isanorthonormalbasisandthefollowingrelationholdsonM,(Corollary2.3,[5]): α c λν = (λ+ν)+ (5.1) 2 4 Therelation(2.6)implies: c c lZ =( +αλ)Z lϕZ =( +αν)ϕZ (5.2) 4 4 Relation(1.1)forX = Z andY = ϕZ andforX = ϕZ andY = Z,becauseof(5.2)andtaking theinnerproductofthemwithξimpliesrespectively: c (λ+ν)( +αν) = 0 (5.3) 4 c (ν+λ)( +αλ) = 0 (5.4) 4 I.Supposethatα6=0. Dueto(5.3)and(5.4),weconsidertheopensubsetofM: M1 ={P ǫ M :λ6=−ν in a neighborhood of P}. Because of (5.3) and (5.4) in M1 we have λ = ν = −4cα. In M1 (5.1) yields c = 0, which is a contradiction.Therefore,M1 =∅. Hence,inMwehave: λ = −ν. Substitutionofthelatterin(5.1)impliesc = −4λ2. Fromthe lastrelationweconcludethat:c<0andλ=constant. Theonlyhypersurfacethatwehaveinthis case is of type B in CH2. Substitutingthe eigenvaluesof this hypersurfacein λ = −ν leads to a contradiction. II.Supposeα=0. Relation(5.3)impliesλ = −ν andsofromrelation(5.1)weobtain: c = −4λ2. Fromthelast two relations, we conclude that the only case which occurs is that of a real hypersurfacein CH2 withthreedistinctconstanteigenvalues.SoitshouldbeoftypeBinCH2,butforsuchhypersurface αcannotvanish.Soweleadtoacontradictionandthiscompletestheproofofourmaintheorem. 9 References [1] J.Berndt,Realhypersurfaceswithconstantprincipalcurvaturesincomplexhyperbolicspace. J.ReineAngew.Math.395(1989),132-141. [2] D.E.Blair,Riemanniangeometryofconstantandsymplecticmanifolds.ProgressinMathemat- ics203,Birkha¨user,Boston,2002. [3] T.A.Ivey and P.J.Ryan, The Structure Jacobi Operator for Real Hypersurfaces in CP2 and CH2.ResultsMath.56(2009),473-488. [4] U-HKi,J.D.Perez,F.G.SantosandY.J.Suh: Realhypersurfacesincomplexspaceformswith ξ-parallelRiccitensorandstructureJacobioperator.J.KoreanMathSoc.,44,307-326(2007) [5] R.NiebergallandP.J.Ryan,Realhypersurfacesincomplexspaceforms.Math.Sci.Res.Inst. Publ.32(1997),233-305. [6] M.Ortega,J.D.PerezandF.G.Santos,Non-existenceofrealhypersurfaceswithparallelstruc- ture Jacobi operator in nonflat complex space forms. Rocky Mountain J. Math. 36 (2006), 1603-1613. [7] J.D.PerezandF.G.Santos,OntheLiederivativeofstructureJacobioperatorofrealhypersur- facesincomplexprojectivespace.Publ.Math.Debrecen66(2005),269-282. [8] J.D.Perez, F.G.Santos and Y.J.Suh, Real hypersurfaces in complex projective space whose structureJacobioperatorisLieξ-parallel.DifferentialGeom.Appl.22(2005),181-188. [9] J.D.Perez, F.G.Santos and Y.J.Suh, Real hypersurfaces in complex projective space whose structureJacobioperatorisD-parallel.Bull.Belg.Math.Soc.SimonStevin13(2006),459- 469. [10] R.Takagi,Onhomogeneousrealhypersurfacesinacomplexprojectivespace.OsakaJ.Math. 10(1973),495-506. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.