A&A542,A20(2012) Astronomy DOI:10.1051/0004-6361/201118111 & (cid:2)c ESO2012 Astrophysics (cid:2) Quasi-stellar objects in the ALHAMBRA survey I. Photometric redshift accuracy based on 23 optical-NIR filter photometry I.Matute1,I.Márquez1,J.Masegosa1,C.Husillos1,A.delOlmo1,J.Perea1,E.J.Alfaro1,A.Fernández-Soto2, M.Moles1,3,J.A.L.Aguerri4,T.Aparicio-Villegas1,N.Benítez1,T.Broadhurst5,J.Cabrera-Cano1,6,F.J.Castander7, J.Cepa4,8,M.Cerviño1,D.Cristóbal-Hornillos1,3,L.Infante9,R.M.GonzálezDelgado1,V.J.Martínez10,11, A.Molino1,F.Prada1,andJ.M.Quintana1 1 InstitutodeAstrofísicadeAndalucía(CSIC),GlorietadelaAstronomías/n,18008Granada,Spain e-mail:[matute;isabel;pepa;cesar;chony;jaime;emilio;benitez;mcs;rosa;amb;fprada;quintana]@iaa.es 2 InstitutodeFísicadeCantabria(CSIC-UC),39005Santander,Spain;e-mail:[email protected] 3 CentrodeEstudiosdeFísicadelCosmosdeAragón(CEFCA),44001Teruel,Spain;e-mail:[moles;dch]@cefca.es 4 InstitutodeAstrofísicadeCanarias,LaLaguna,Tenerife,Spain;e-mail:[email protected] 5 SchoolofPhysicsandAstronomy,TelAvivUniversity,Israel;e-mail:[email protected] 6 FacultaddeFísica.DepartamentodeFísicaAtómica,MolecularyNuclear,UniversidaddeSevilla,Sevilla,Spain e-mail:[email protected] 7 InstitutdeCiènciesdel’Espai,IEEC-CSIC,Barcelona,Spain;e-mail:[email protected] 8 DepartamentodeAstrofísica,FacultaddeFísica,UniversidaddelaLaguna,Spain;e-mail:[email protected] 9 DepartamentodeAstronomía,PontificiaUniversidadCatólica,Santiago,Chile;e-mail:[email protected] 10 Departamentd’AstronomíaiAstrofísica,UniversitatdeValència,Valencia,Spain;e-mail:[email protected] 11 ObservatoriAstronòmicdelaUniversitatdeValència,Valencia,Spain Received16September2011/Accepted7February2012 ABSTRACT Context.Eventhespectroscopiccapabilitiesoftoday’sgroundandspace-basedobservatoriescannotkeepupwiththeenormousflow ofdetections(>105 deg−2)unveiledinmoderncosmological surveysas:i)wouldberequiredenormous telescopetimetoperform thespectroscopic follow-upsandii)spectraremainunattainable forthefainterdetectedpopulation. Inthepastdecade, thetypical accuracy ofphotometric redshift (photo-z) determination hasdrasticallyimproved. Nowdays, ithas becomeaperfect complement tospectroscopy, closingthegapbetweenphotometricsurveys andtheirspectroscopic follow-ups. Thephoto-zprecision foractive galacticnuclei(AGN)hasalwayslaggedbehindthatforthegalaxypopulationowingtothelackofpropertemplatesandtheirintrinsic variability. Aims.Our goal is to characterize the ability of the Advanced Large, Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey in assigning accurate photo-z’s to broad-line AGN (BLAGN) and quasi-stellar objects (QSOs) based on their ALHAMBRA very-low-resolution optical-near-infrared (NIR) spectroscopy. This will serve as a benchmark for any future compilationofALHAMBRAselectedQSOsandthebasisforthestatisticalanalysisrequiredtoderiveluminosityfunctionsupto z∼5. Methods.WeselectedasampleofspectroscopicallyidentifiedBLAGNandQSOsandusedalibraryoftemplates(includingtheSEDs ofAGNandbothnormalandstarburstgalaxies,aswellasstars)tofitthe23photometricdatapointsprovidedbyALHAMBRAin theopticalandNIR(20medium-bandopticalfiltersplusthestandardJHKs). Results.WefindthattheALHAMBRAphotometryisabletoprovideanaccuratephoto-zandspectralclassificationfor∼88%ofthe 170spectroscopicallyidentifiedBLAGN/QSOsover2.5deg2indifferentareasofthesurveyandbrighterthanm =23.5(equivalent 678 tor ∼24.0).Thederivedphoto-zaccuracyisbelow1%andiscomparabletothemostrecentresultsinothercosmologicalfields SLOAN that use photometric information over a wider wavelength range. The fraction of outliers (∼12%) is mainly caused by the larger photometricerrorsforthefaintestsourcesandtheintrinsicvariabilityoftheBLAGN/QSOpopulation.Asmallfractionofoutliers mayhaveanincorrectlyassignedspectroscopicredshift. Conclusions.ThedefinitionoftheALHAMBRAsurveyintermsofthenumberoffilters,filterproperties,arealcoverage,anddepth isabletoprovidephotometricredshiftsforBLAGN/QSOswithaprecisionsimilartoanyprevioussurveythatmakesuseofmedium- bandopticalphotometry.Inagreementwithpreviousliteratureresults,ouranalysisalsorevealsthat,inthe0<z<4redshiftinterval, veryaccuratephoto-zcanbeobtainedwithouttheuseofNIRbroadbandphotometryattheexpenseofaslightincreaseintheoutliers. Theimportance of NIRdataisexpected toincreaseat higher z(z > 4). Theseresultsarerelevant for thedesign of futureoptical follow-upsofsurveyscontainingalargefractionofBLAGN,suchasmanyX–rayorradiosurveys. Keywords.galaxies:active–cosmology:observations–quasars:general–galaxies:evolution–galaxies:distancesandredshifts 1. Introduction (cid:2) Based on observations collected at the German-Spanish Astronomical center,Calar Alto(Almeria,Spain), jointlyoperated by Theroleofactivegalacticnuclei(AGN)intheformationofthe theMax-Planck-InstitutfürAstronomieatHeidelbergandtheInstituto earlystructuresandtheirlaterevolutionhasbeenreviewedover deAstrofísicadeAndalucía(CSIC). thepast15years,becomingakeyingredientofgalaxyevolution ArticlepublishedbyEDPSciences A20,page1of17 A&A542,A20(2012) models (e.g. Cattaneo 2002; Menci et al. 2003; Croton et al. probethefainterdetectedpopulation,whichisdifficulttoaccess 2006; Hopkins et al. 2010, and references therein). Evidence using current ground-basedspectroscopic observatories. In ad- shows that many, if not all, massive galaxies harborsupermas- dition,photo-zareusedtovalidateuncertainspectroscopicred- sive black holes (SMBHs; e.g. Kormendy & Richstone 1995). shiftstypicallyobtainedforspectraoflowsignal-to-noiseratio The close interactionbetween the formationand growth of the (S/N)orlimitedwavelengthcoverage(e.g.Fernández-Sotoetal. SMBH and the evolution of its host galaxy were initially re- 2001). Several computationalmethods have been developed to vealed by: i) the tight correlations between the masses of cen- derive photometric redshifts with increasingly high precision tral SMBHs and the velocity dispersions and luminosities of (BPZ, HyperZ, LePhare, ZEBRA, AnnZ, EAzY, among others). the bulges of many galaxies (Tremaine et al. 2002); ii) the re- Only recently have photo-z for AGN (Salvato et al. 2009; Luo markable similarities in the redshift at which starburst and ac- et al. 2010; Cardamone et al. 2010) reached accuracies similar cretionactivitiesocurredandiii)theobservationoftheso-called to those computed for normal and starburst galaxies (∼1–2%; downsizing effect not only for the galaxy population but also e.g.Ilbertetal2009).Adescriptionofthecurrentstateoftheart for AGN, i.e. the most massive galaxiesappear to have assem- photo-zcomputationaswellasadetailedperformancecompari- bledthemajorityoftheirstarsearlierthanlowermassgalaxies sonofvariousphoto-zcodeswasprovidedbyHildebrandtetal. (Cowieetal.1996;Zhengetal.2007),whilethedensityoflow- (2010). luminosityAGN peaksat lower z than the more powerfulones In this context,we presentthe analysis of photometricred- (e.g.Hasingeretal.2008,andreferencestherein).Therefore,the shiftsolutionsfoundforapopulationofspectroscopicallyiden- measureofthespacedensityofAGNwithcosmictimenotonly tified QSOs using the optical and near-infrared (NIR) multi- providesinformationabouttherelativeimportanceofaccretion band catalog of the ALHAMBRA survey. The ALHAMBRA activitytotheglobalenergyoutputintheuniversebutalsoplaces survey was designed with an optimal filter combination in or- important constraints on early structure formation and galaxy der to provide one of the most homogeneous,large, deep, and evolution(e.g.DiMatteoetal.2005;Hopkinsetal.2010). accurate photometricsurveys. Given the proposeddepth of the Quasi-stellar objects (QSOs) are the members of the AGN ALHAMBRA filters of AB ∼ 24.5−25, we expect to sample family that have particularly high intrinsic luminosities allow- the whole QSO LF up to z ∼ 4.2 and up to z ∼ 6 for sources ingthemtobedetectedatlargedistancesandtoprovideunique with M > −24.2.Atthe currentstage,thesurveyhasmapped B inside into the early history of the AGN-host galaxy interac- ∼2.5deg2 oftheskyinsevendifferentregions.Theresultspre- tion.Moreover,QSOsarepotentialcontributorstotheultraviolet sented here, and the comparison with existing data from other (UV)ionizingbackground(Cowieetal.2009)andhaveproba- cosmologicalsurveys,willprovethecapabilitiesofthesurveyto bly played a non-negligiblerole in the reionization of the uni- deriveaccuratephotometricredshiftsfortheBLAGN/QSOpop- verse(Fanetal.2006;Wangetal.2010). ulation. Furthermore, this test will potentially identify redshift The optical selection of QSOs has been performed mainly ranges for which QSO photo-z estimation maybe unreliable or with follow-up spectroscopic observations of color–color se- QSOswithatypicalSEDsthatwouldthenbesuitableformore lected candidates (e.g. SDSS, Richards et al. 2002; and 2dF, detailedstudy. Croom et al. 2004). These observations use slitless or prism This paper is structured as follows. In Sect.2, we describe spectroscopic surveys and poorly efficient flux–limited spec- the current photometric catalog from the ALHAMBRA sur- troscopic surveys (e.g. VIMOS–VLT Deep Survey, Gavignaud vey as well as the ancillary data available in each of the etal. 2006;Bongiornoet al. 2007).A noveltechniquewith re- ALHAMBRAfieldsfromothercosmologicalsurveys.Thissec- specttopreviousselectioncriteriawasintroducedbytheCADIS tion also introduces the QSO sample selection. The method- (Meisenheimeretal.1998)andCOMBO–17surveys(Wolfetal. ology followed during the photo-z determination is discussed 2003). These photometric surveys used several optical broad– in Sect.3 while in Sect.4 we quantify the precision of our and medium-band filters to characterize the nature of the de- photo-z estimates by comparing them with previous results tected population and derive its photometric redshift (photo-z) for this type of sources. Finally, Sect.5 discusses the im- viathespectralenergydistributions(SEDs).Thefluxesreached plications of our results and planned future analysis. A de- by the surveyhave allowed the study of the high-zQSO popu- tailed QSO catalog will be presented in a forthcoming pa- lation,thusovercomingtheproblemofQSOincompletenessin per. Throughoutour analysis, we assume a ΛCDM cosmology the redshiftinterval2.2 ≤ z ≤ 3.6 (Richardset al. 2002).This with H0 =70kms−1Mpc−3, ΩΛ =0.7, and ΩM = 0.3. Unless redshift range is important because it corresponds to the peak otherwisespecified,allmagnitudesaregivenintheABsystem. andthe turnoverofthe observedQSO spacedensity (e.g.Wolf etal.2004). Over the past decade, a clearer understanding of the QSO 2. Dataset evolution has been achieved thanks to a more accurate charac- 2.1.Photometricdata:theALHAMBRAsurvey terizationoftheirdifferentSEDs,toamoreprecisetreatmentof theirvariability,andtoasignificantimprovementintheirphoto-z The ALHAMBRA1 (Advanced, Large, Homogeneous Area, determination.Thisadvancehasbeenencouragedbytheconcep- Medium-Band Redshift Astronomical) survey provides a tionofmoderncosmologicalsurveysandnewlyavailablespace- photometric dataset over 20 contiguous, equal-width, non- based observing facilities (e.g. HST, XMM-Newton, Chandra, overlapping, medium-band optical filters (3500−9700 Å) plus Spitzer,andHerschelamongothers)thathavebeenabletodetect 3 standard broad-band NIR filters J, H, and Ks over 8 dif- alargeamountofsources(≥106).Inparticular,whenagivensci- ferent regions of the northern hemisphere (Moles et al. 2008). entificgoaldoesnotrequiredetailedknowledgeof thespectral The survey aims to understand the evolution of the structures propertiesofindividualobjects,properlydesignedphotometric and the different families of extragalactic sources throughout surveyscanprovideahighlyreliablephoto-zandspectralclassi- cosmic time by samplinga largeenoughcosmologicalfraction ficationforeachsource.Thesephoto-z’sareanessentialcomple- of the universe. This requires precise photometric redshifts for menttotheusuallysmallfractionofsourceswithspectroscopic redshifts in major extragalactic surveys and to more reliably 1 http://alhambra.iaa.es:8080 A20,page2of17 I.Matuteetal.:Quasi-stellarobjectsintheALHAMBRAsurvey.I. Table1.ALHAMBRAfields. Field Alpha(J2000) Delta(J2000) Area(deg2) Obs.period Surveys E(B−V) Spectro-QSO Source (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) ALH-2 022832.0 +004700 0.50 Sep.05–Nov.09 DEEP2 0.030 30/29 1,2 ALH-3 091620.0 +460220 0.25 Dec.04–May09 SDSS 0.015 2/2 1 ALH-4 100028.6 +021221 0.25 Dec.04–May09 COSMOS 0.018 81/77 3 ALH-5 123500.0 +615700 0.25 May05–Jun.09 HDF-N 0.011 18/15 1,4,5 ALH-6 141638.0 +522505 0.19 Aug.04–Aug.09 EGS-AEGIS 0.011 35/33 1,2,6 ALH-7 161210.0 +543000 0.50 Aug.04–Jul.09 SWIRE/ELAIS-N1 0.007 11/11 1,4,7 ALH-8 234550.0 +153450 0.50 Aug.04–Aug.09 SDSS 0.024 3/3 1 TOTALQSOs(a) 2.44 180/170 Notes. (i) = ALHAMBRA field name; (ii, iii) = central coordinates of the field; (iv) = area covered by each field; (v) = period between the beginning and the end of the observations in a given field; (vi) = name of the cosmological survey for which a particular ALHAMBRA field overlaps;(vii)=meanGalacticreddeningalongthelineofsightderivedbySchlegeletal.(1998)fromtheIRAS 100μmdata;(viii)=totalnumber ofspectroscopicallyidentifiedQSOsinthefieldandthosewithinourselectioncriteria;(ix)=sourceoftheQSOclassificationandspectroscopic redshift:(1)=Schneideretal.(2010);(2)=DEEPwebpage,Davisetal.(2003);(3)=Brusaetal.(2010);(4)=Veron-Cetty&Veron(2010); (5) = Barger et al. (2008); (6) =Willmer (priv. comm.); (7) = Rowan-Robinson et al. (2008); (a) Sum over all theALHAMBRA fieldsof the total/selectedspectroscopicQSOs. several hundreds of thousands objects and, therefore, a survey withhighphotometricaccuracyaswellasdeepandwidespec- tralcoverageoveralargearea.ThesimulationsofBenítezetal. (2009), relating the image depth and photo-z accuracy to the number of filters, have demonstrated that the filter–set chosen for ALHAMBRA can achieve a photo-z precision, for normal andstar-forminggalaxies,thatisthreetimesbetterthana clas- sical 4–5 optical broad-bandfilter set. The final survey param- eters and scientific goals, as well as the technicalpropertiesof the filter set were described by Moles et al. (2008). The sur- vey has collected its data for the 20+3 optical-NIR filters in the 3.5m telescope, at the Calar Alto observatory2, using the wide-fieldcameraLAICAintheopticalandtheOMEGA–2000 camera in the NIR. The full characterization, description, and performance of the ALHAMBRA optical photometric system was presented by Aparicio-Villegas et al. (2010). The strategy of ALHAMBRA for each run has been to observe the fields with the lowest airmasses trying to complete the requested in- tegrationtimeforeachfilterinordertoreachtheplanneddepth Fig.1. Wavelength coverage of the ALHAMBRA filter set for the (ABmag∼25).Inconsequence,anddependingalsoonthetele- LAICAcameraCCD1(thincontinuouslines).Thepositionofthemost scope/instrument downtime and weather, the time to complete prominentQSOandBLAGNemissionlines,plustheLymanlimit,are eachfilterineachfieldcanvaryfrommonthstoseveralyears3. shownevolvingwithredshiftasthicklines.Allfiltershavebeennormal- Therefore,althoughALHAMBRAphotometryallowsustode- izedtounity(seeAparicio-Villegasetal.2010,fortheirtrueefficiency). tect variability, the lack of a common band(s) taken during all Dottedlinestraceeachfiltercentralwavelength(Table2). theobservingrunsdoesnotallowustocorrectforitseffect.The deep NIR counts in one of the ALHAMBRA fields (ALH-8), over ∼0.5 deg2, which has a 50% detection efficiency depth of J ∼ 22.4,H ∼ 21.3,andK ∼ 20.0(Vega),havebeenanalyzed s byCristóbal-Hornillosetal.(2009).Theirresultshelpedtocon- The photometricdata pointsused in thiswork are givenby straindifferenttype-dependentgalaxyevolutionarymodels. theMAG_AUTOmeasurebySExtractor(Bertin&Arnouts1996). In this work, we used the seven ALHAMBRA fields for Toavoidtheexcessiveweightofsomepointsinthecomputation whichdatahavebeencurrentlyobservedandreduced.Thecen- ofaphoto-z,weadoptedaminimumphotometricerrorofδm = tral coordinatesof these 7 fields, the area coveredby each, the 0.05 (i.e. if a photometric error is smaller than 0.05, it is set observingepoch,theircoincidencewithothercosmologicalsur- to 0.05)forthe methoddescribedin Sect.3. In agreementwith veys,andtheirmeanGalacticextinctionaredetailedinTable1. the results of other authors (e.g. Bolzonella et al. 2000), we Thetotalnumberof spectroscopicallyidentifiedQSOs, aswell found that there is no gain, or even that we obtain poorer re- as the fraction selected for our analysis, are given in Col. 7 of sultsforsomeobjects,whenweconsiderδm<0.05.Thephoto- Table1.Figure1andTable2detailthegeneralcharacteristicsof metricdatapointsofeachobjectwerecorrectedforinterstellar theALHAMBRA23filterset. extinctionusingthevaluesofE(B−V)providedbythemapsof Schlegeletal.(1998),whicharebasedonIRAS100μmdata4. 2 http://www.caha.es 3 Furtherdetailsoftheobservationswillbeprovidedinacompanion paper. 4 http://irsa.ipac.caltech.edu/applications/DUST/ A20,page3of17 A&A542,A20(2012) Table2.ALHAMBRAfiltercharacteristics. surveys shows that source detections with percent-weight ≥0.70 are highly reliable and that a negligible fraction of Name λ FWHM AB Offset (cid:6)m(cid:7) (cid:6)σ(m)(cid:7) themarespurious. mean (μm) (μm) corr. (AB) – Thesourcemustbewithintheveryhighconfidencemagni- (1) (2) (3) (4) (5) (6) (7) tude intervalof the survey.The chosen magnitudeof refer- A366M 0.3661 0.0279 0.96 –0.033 21.81 0.08 enceis A678M filter centeredon6789Å andthe intervalis A394M 0.3941 0.0330 0.02 –0.210 21.60 0.05 definedby17.0≤ A678M ≤23.5.Thebrightmagnitudecut A425M 0.4249 0.0342 –0.13 –0.081 21.65 0.05 ensuresthatnosourcesaturatesanyfilter,whilethefaintcut A457M 0.4575 0.0332 –0.18 –0.011 21.62 0.07 A491M 0.4913 0.0356 –0.05 –0.065 21.54 0.06 avoidssourceswithphotometricerrorslargerthan(cid:9)0.2mag. A522M 0.5224 0.0326 –0.04 –0.054 21.48 0.06 A551M 0.5510 0.0297 0.01 0.003 21.48 0.07 We decided against the inclusion of a stellarity criteria, as A581M 0.5809 0.0324 0.07 –0.001 21.39 0.05 the precision of the one derived by the SExtractor (Bertin & A613M 0.6134 0.0320 0.13 0.009 21.35 0.06 Arnouts 1996) package was valid only for the brighter part of A646M 0.6461 0.0357 0.23 0.006 21.33 0.08 theQSOsample(m ≤22). A678M 0.6781 0.0314 0.24 –0.046 21.20 0.06 678 A708M 0.7078 0.0332 0.29 –0.055 21.14 0.05 A739M 0.7392 0.0304 0.34 0.007 21.16 0.06 2.3.Spectroscopicdata A770M 0.7699 0.0354 0.39 0.000 21.11 0.06 A802M 0.8020 0.0312 0.44 0.002 21.06 0.07 To assess the quality and accuracy of the photo-z determi- A829M 0.8294 0.0296 0.48 0.007 21.00 0.08 nation for the ALHAMBRA database, we compiled all the A861M 0.8614 0.0369 0.54 –0.023 20.91 0.05 published or publicly available spectroscopic information for A892M 0.8918 0.0303 0.50 0.022 20.93 0.08 BLAGNs/QSOs. The online services and public spectroscopic A921M 0.9208 0.0308 0.48 0.028 20.83 0.10 catalogs included the Sloan Digital Sky Survey (SDSS5) DR7 A948M 0.9482 0.0319 0.52 0.077 20.65 0.15 (Schneider et al. 2010), the Deep Extragalactic Evolutionary J 1.2094 0.2471 0.87 0.104 20.65 0.06 Probe (DEEP/DEEP26; Davis et al. 2003), the All-wavelength H 1.6482 0.2665 1.38 0.186 20.41 0.08 Ks 2.1409 0.3040 1.83 0.155 20.20 0.09 ExtendedGrothstripInternationalSurvey(AEGIS7;Davisetal. 2007),theCOSMOS8 XMMsourcecatalog(Brusaetal.2010), Notes. Columns: (1) filter name; (2) filter mean wavelength; (3) fil- theGOODS-NorthredshiftcompilationbyBargeretal.(2008), ter FWHM; (4) AB-Vega magnitude correction: mAB = mVega + the SWIRE9 spectroscopic catalog by Rowan-Robinson et al. AB_correction;(5)offsetsappliedtoeachfilterasmfinal =mfilter+offset (2008) and the 13th edition of the Veron-Cetty& Veron QSOs duringthephotometricredshiftdetermination(seeSect.3.3fordetails); catalog (2010; VERONCAT10 hereafter).We verified the qual- (6) mean magnitude in each filter band for the spectroscopic sample ityoftheidentificationsaccordingtothefollowingcriteria:i)all (Sect.2.3);(7)meanmagnitudeerrorsineachfilterbandforthespec- spectrafromthe DR7 SDSS catalogwere visuallyinspectedto troscopicsample. determinewhethertheycontainedbroad-lineemission;ii)spec- tra with a high-quality classification flag (flag ≥ 3) were se- 2.2.Sampleselection lected from the DEEP/DEEP2 and the AEGIS database and visually inspected to confirm that they displayed broad-line Broad-line AGNs (BLAGN) and QSOs are powerful emitters emission; iii) as neither a spectral classification nor a redshift over the entire electromagnetic spectrum. They show signifi- quality were given by Barger et al. in the GOODS-N field, cantspectralfeaturesintheformofintenseemissionlines(with validBLAGN/QSOcandidateswereselectedbasedontheirhard EWrangingfromseveraltenstoseveralthousandsofÅ)inthe X-rayluminosity(L [2–8kev])beingbrighterthat1043ergs−1; X rest-frameUV,optical,andNIRregime.Thesepropertiesmake iv) in the COSMOS field, we selected the high-quality public QSOs easily detectable out to very high redshifts (z ∼ 6) and spectraofBLAGN(flags1113,14,18,213,214,218;Lillyetal. perfectcandidatestohelpimproveourunderstandingoftheac- 2007), while we considered as bona fide BLAGN/QSO the re- cretionmechanismswithinSMBHs(MBH >106M(cid:8)).Theyalso mainingofXMMsourceswithoutpublicdatareportedbyBrusa probethe distributionof large-scalestructuresandthe physical etal.(2010)as“bl” basedonMMTandIMACSspectroscopy; conditions of the intergalactic medium (IGM). The strong fea- v)allSWIREsourceshavehighqualityspectra(Pérez-Fournón, turesthatcharacterizetheQSOopticalemissionspectrumallow priv.comm.);andvi)allthesourcesfromtheVERONCATwere us to test the ALHAMBRA photometry and its ability to pro- consideredasbonefideBLAGN/QSOs.Nolowerredshiftorab- ducevery low resolutionspectra. Thiswould providea correct solutemagnitudecutoffwasincludedinthesourceselectionas spectralclassificationandahigh-precisionredshiftestimatefor our goal is to test the efficiency of our method and photome- theexpectedpopulationofseveralthousandsofQSOs. try as good redshift estimators not only for the most powerful WeselectedourinitialQSOcandidatesfromasubsampleof BLAGNs and QSOs but also for the low redshiftSeyfert1 nu- thecurrentALHAMBRAcatalog(v3),whichwascreatedusing clei, which may provide an important contribution to the total thefollowingphotometriccriteria: lightof their host galaxies.In all cases, the match between the – A surveyqualityflag ≥0.7.EachALHAMBRA sourcewas 5 http://www.sdss.org/ flagged with a parameter (“percent-weight” in the catalog) 6 http://deep.ucolick.org that takes into account the total exposure time of a given 7 http://aegis.ucolick.org/ sourcerelativetothemaximumforagivenfield.Alowvalue 8 http://cosmos.astro.caltech.edu/ ofthisflag(<0.70)indicatesthatthesourceiseitherwithin 9 http://swire.ipac.caltech.edu/swire/swire.html aregionstronglyaffectedbytheditheringprocessduringthe 10 http://heasarc.gsfc.nasa.gov/W3Browse/all/veroncat. observation,containsbad pixels/artifacts,or is locatednear html a bright (masked) source. A detailed comparison with the 11 Flags18and218refertoaspectroscopicredshiftcomputedwitha deeperphotometrydataavailableforsomefieldsfromother singleline. A20,page4of17 I.Matuteetal.:Quasi-stellarobjectsintheALHAMBRAsurvey.I. ALHAMBRA photometry and the spectroscopic catalogs was performedusingaonearcsecsearchradiusandalwaysidentified auniquecounterpart.ThesourcesoftheBLAGN/QSOspectro- scopicredshiftsforeachoftheALHAMBRAfieldsare: – ALH-2: This ∼0.5 deg2 field partially overlaps the deep strip of SDSS whose DR7 version provides redshifts for 23QSOs.Thecommonregionofthisareawithfield-4ofthe DEEP/DEEP2surveyyields7additionalsourcesfromtheir dataproductrelease3(DR312)oftheDEEP2spectroscopic catalog.Ofthe30spectroscopicredshiftsforBLAGN/QSO availableinthefield,29(6fromDEEP2and23fromSDSS) complywithourphotometriccriteria. – ALH-3:This consists of a ∼0.25deg2 field area which par- tially overlaps with that of the SDSS. The matching be- tween ALHAMBRA and SDSS DR7 spectroscopy yields 2 QSO redshifts, for which both sources verify our photo- metriccriteria. – ALH-4:Thisisa∼0.25deg2fieldincludedintheCOSMOS Fig.2. Magnitude-redshift distribution of the selected spectroscopic survey area. The common area contains a total of sample. 81 BLAGN/QSO redshifts of which 77 (7 from SDSS and 70fromCOSMOS)complywithourphotometriccriteria. 1.56±0.88(DEEP2),1.56±0.63(AEGIS),1.42±0.69(SWIRE), – ALH-5:Thisfieldcoversa∼0.25deg2areaoverlappingthat and1.24±0.78(VeronCat). of the GOODS-N. There are a total of 18 BLAGN/QSOs with spectroscopic redshifts (9 from SDSS, 6 from Barger 3. QSOphoto-zdetermination et al. 2008, and 3 from the VERONCAT). Of these, 15 (7 from SDSS, 6 from GOODS-N, and 2 from the We used the publiclyavailable templatefitting codeLePhare13 VERONCAT)complywithourphotometriccriteria. (Arnoutsetal.1999;Ilbertetal.2006)toestimateredshiftsfor – ALH-6: This ∼0.19deg2 field is centered on the GROTH our selected QSOs. The code matches the photometric data of strip and therefore overlaps with the DEEP2, AEGIS, and each ALHAMBRA QSO source to a library of available tem- SDSSsurveys.Intotal,thereare35spectroscopicallyiden- plates providing the best-fit, spectral classification, and photo- tified BLAGN/QSO in this field, of which 33 sources metricredshiftbymeansofaχ2minimizationprocess.Themin- (6 SDSS, 6 DEEP2 and 21 AEGIS) comply with our pho- imizationprocessaccepts the inclusionof user-suppliedpriors, tometriccriteria. different extinction laws, and the possibility to apply system- – ALH-7: A ∼0.5deg−2 field centered on the ELAIS-N1 of aticoffsetstothedifferentphotometricbandsinordertoachieve the SWIRE survey. Sources with spectroscopic redshifts thebestmatchbetweenthecolorsofthesampleandthosepro- and classifications are provided by the catalog of Rowan- videdbythetemplatelibrary.Thefullcapabilitiesandpossibili- Robinson et al. (2008), the SDSS spectroscopy and the tiesoftheLePhareminimizationcodewasextensivelydiscussed VERONCAT. All 11 BLAGN/QSO found in this field by Ilbert et al. (2006, 2009). Our final selection of templates, (1 from SDSS, 8 from SWIRE, and 2 from VERONCAT) adopted reddening laws, priors, and systematic offsets are dis- complywithourphotometriccriteria. cussedinthefollowingsections. – ALHAMBRA-8: The 3 QSO spectroscopic identifications in this ∼0.5deg2 field are provided exclusively by the QSO DR7 catalogofthe SDSS. All3 sourcescomplywith 3.1.Templateselection ourphotometriccriteria. Thelistofextragalactictemplatesusedinthisworkaredetailed in Table3 and Fig.3. The selection includes SEDs for QSOs, The final spectroscopic catalog of the ALHAMBRA fields includes 94% (170/180) of the total numbers of sources Seyferts, starburst, normal galaxies, and stars. To include low spectroscopically identified in the different fields. The ALH4- luminosity BLAGN that are partially or completely dominated COSMOS field contains∼44%of the sources, followedby the bytheirhostgalaxylight,weadoptedthehybridtemplates(con- ALH2andALH6fields(DEEP2/AEGIS)whichcorrespondsto sisting of a mixtureof QSO andhostgalaxySEDs) introduced ∼17%and19%oftheIDs,respectively.Table1detailsthenum- bySalvatoetal.(2009).Thevarietyoftemplatesisjustifiedby theneedtotesttheabilityoftheALHAMBRAsurveytodiffer- ber of identified sources in each field, while Fig.2 shows the entiatebroad-lineAGNemissionfromthatofotherextragalac- redshiftdistributionoftheselectedspectroscopicsample. ticsourcesorstars,andenableustodoablindsearchforthese Althoughthe surveysfromwhichthe spectroscopicsample sources(Matuteetal.,inprep.). isextractedencompassawiderangeofselectioncriteria(color InTable3andFig.3,thetemplatesareorganizedas: selectionintheSDSS,opticalflux-limitedinzCOSMOS_bright, X-rayselectedforIMACSandMMTspectroscopy,etc.),wefind – Non-active and starburst galaxies:this includes3 elliptical theirredshiftdistributioncompatiblewithintheerrors.Themean templatesofdifferentages(2,5,and13Gyr;#1–3),thestar- redshift and 1σ dispersion for the sources extracted from the burst galaxiesArp220, M82, NGC6240,IRAS20551,and differentspectroscopiccatalogsare:1.61±0.63(SDSS),1.99± IRAS2249114 (#4–8)and7spirals(S0throughSd;#9–15). 0.68(zCOSMOS_faint),1.92±0.64(zCOSMOS_bright),1.24± 0.45 (MMT), 1.55±0.66 (IMACS), 1.81±0.81 (GOODS-N), 13 http://www.oamp.fr/people/arnouts/LE_PHARE.html 14 MaycontainanAGNresponsiblefor20%ofthebolometricflux(e.g. 12 http://deep.berkeley.edu/DR3/dr3.primer.html Veilleuxetal.2009). A20,page5of17 A&A542,A20(2012) Table3.Extragalactictemplatelibrary. Index SEDname Class 1 Ell2 Elliptical(5Gyrold)a 2 Ell5 Elliptical(2Gyrold)a 3 Ell13 Elliptical(13Gyrold)a 4 Arp220 Starbursta 5 M82 ”a 6 IRAS20551–4250 ”a 7 IRAS22491–1808 ”a 8 NGC6240 ”a 9 S0 S0a 10 Sa Saa 11 Sb Sba 12 Sc Sca 13 Sdm Sdma 14 Sd Sda 15 Spi4 Spirala 16 Sey18 Seyfert1.8a 17 Sey2 Seyfert2a 18 IRAS19254-7245 Seyfert2a 19 QSO2 QSO2a 20 hyb1_gal10_agn90 Hybrid10%S0+90%QS02b 21 hyb1_gal20_agn80 ... 22 hyb1_gal30_agn70 ... 23 hyb1_gal40_agn60 ... 24 hyb1_gal50_agn50 ... 25 hyb1_gal60_agn40 ... 26 hyb1_gal70_agn30 ... 27 hyb1_gal80_agn20 ... 28 hyb1_gal90_agn10 Hybrid90%S0+10%QS02 29 hyb2_gal10_agn90 Hybryd10%I22491+90%TQSO1b 30 hyb2_gal20_agn80 ... 31 hyb2_gal30_agn70 ... Fig.3.Thecompleteextragalactic(galaxy+AGN)templatedatabase 32 hyb2_gal40_agn60 ... usedinthiswork.Thesourceandspectralclassforeachtemplategiven 33 hyb2_gal50_agn50 ... inTable3anddescribedinSect.3.1. 34 hyb2_gal60_agn40 ... 35 hyb2_gal70_agn30 ... 36 hyb2_gal80_agn20 ... obscuredsourcesare representedbya type-2QSO (QSO2) 37 hyb2_gal90_agn10 Hybryd90%I22491+10%TQSO1 and the BALQSO Mrk231 templates (Polletta et al. 2007; 38 QSOL QSO(low-luminosity)b #19 & #50). We also added the hybrid template library of 39 QSOH QSO(high-luminosity)b Salvatoetal. (2009)definedby9 differentcombinationsof 40 TQSO1 QSOcompositea aS0andaQSO2template(#20–28). 41 QSO1 ”a – QSO and hybrid-QSO templates: here we considered both 42 syth_qso–0.25 QSOsyntheticc thehighandlowluminositySDSScomposites(indices#38, 43 syth_qso–0.50 ” #39), two templates from Polletta et al. (2007; QSO1 and 44 syth_qso–0.75 “ TQSO1 with indices #40 and #41), the Cristiani & Vio 45 syth_qso–1.00 ” QSO SED (#47), the VVDS mean QSO SED (Gavignaud 46 syth_qso–1.25 “ et al. 2006; #48), and the mean QSO from Vanden Berk 47 QSO_Cristiani QSOd et al. (2001; #49) also based on SDSS data. Hybrid 48 QSO_VVDS QSOcompositee templates include 9 different combinations of the star- 49 QSO_vandenBerk QSOcomposite f burst/ULIRG IRAS22491 template and a QSO1 template 50 Mrk231 BALQSOa (Salvatoetal.2009; #29–#37).As the quality and accuracy of the fit improved in several cases, we completed the list References.(a)Pollettaetal.(2007).(b)Salvatoetal.(2009).(c)LePhare withasetof5syntheticQSOtemplates(#42–46),covering template database. (d) Cristiani & Vio (1990). (e) Gavignaud et al. continuum slopes (να) from α = −0.25 to α = −1.25 (in (2006).(f)VandenBerketal.(2001). stepsof0.25)below1μmandfixedatα=−0.7above1μm (LePharetemplatedatabaseandreferencestherein). Finally,the stellartemplatedatabaseincludes131spectrafrom They are all part of the SED library published by Polletta thePickels(1998)stellarlibraryplus4spectraofwhitedwarfs etal.(2007). fromBohlin et al. (1995) and 19 additionaltemplatesfromthe – Obscured BLAGN: includes the Polletta et al. (2007) com- LePharestellarlibrary.Stellartemplateswerealsoincludedbe- posite templates of a Seyfert1.8 and a Seyfert2 and cause white dwarfs and F/G stars QSOs have similar colors the Seyfert-2 IRAS19254 (#16–18). The high-luminosity to F/G stars in the z = [2–3] redshift interval. Thus, our final A20,page6of17 I.Matuteetal.:Quasi-stellarobjectsintheALHAMBRAsurvey.I. database contains 204 templates (50 extragalactic + 154 stel- “adapt” the templates to provide a better fit the observed pho- lar).Duringtheminimizationprocess,Galacticandextragalactic tometry.Therefore,alternativetemplatesorobjectselectioncan templateswereusedseparately. (and will) lead to different offsets (e.g. Table 1 by Ilbert et al. 2006). We used the spectroscopic sample described in Sect.2 and 3.2.Extinction the colors in the filters A457M, A646M, and A829M to com- putethesesystematicoffsetsusinganiterativeapproachoffind Thephotometryforseveralofthesourcesanalyzedinthiswork the best-fit SED for each source, deriving the mean deviations defines a continuum that strongly deviates from single or even foreachfilter,applyingoffsets,re-computingbest-fitSEDs,etc. doublepower-laws,mostprobablybecauseofdustobscuration. The iteration process was halted when the variation in χ2 be- For manyof these typesof sources, thereis an ongoingdebate tweeniterationsdropsbelow2%.In general,theproceduredid about whether (some of) these red QSOs are obscured by ei- notrequiremorethan4iterationstoconverge.Wefoundthatthe therdustoranintrinsicallyredcontinuum(Richardsetal.2003; offsets to be applied are small and agree with the typical pho- Younget al. 2008). Thus, our multibandtemplate fit takes into tometric error for each band in the sample. Table 2 reports the account the possibility of intrinsic dust obscuration within the valuesofthesecorrectionsaswellasthetypicalphotometricer- source.WeadoptedtheSmallMagellanicCloud(SMC)extinc- rorforeachbandinCols.5and7,respectively. tionlaw(Prevotetal.1994),whichhasbeenshowntoreproduce theobservedreddeningformildlyobscuredQSOsatz<2.2,for whichtherearenoindicationsoftheGalacticfeatureat2175Å 3.4.Priors (Hopkins et al. 2004; Richards et al. 2003; York et al. 2006). Galleranietal.(2010)appearedtomeasuresomedeviationfrom Theintroductionofimportantaprioriinformationintothered- theSMCextinctionlawforhigherredshiftsourceswhichisone shift probability distribution function (Pdz) based on Bayesian reasonforadoptingalternativeextinctionlaws(seebelow).The probability can in many cases improve the quality of the solu- attenuationdue to dust (A ) is givenas a functionof the color tionsbyfavoringaparticularredshiftbasedonknownredshifts excessE(B−V)asA =RV × E(B−V).WeassumedR =3.1 and/orcolordistributions(e.g.Benítez2000).Ouranalysisonly V V V andacolorexcessintherange[0,1]. makesuseofaparticularluminosityandredshiftrangepriorand doesnotincludeanyredshiftdistributionorcolorinformationof Furthermore, as our spectroscopic sample includes lower known BLAGN/QSO populations. We restricted the permitted redshiftSeyfert1 nuclei, which may have a stronghost-galaxy absolutemagnitudesintheA457M(λ4575Å)filterbetween−17 contribution, we considered alternative extinction laws as the dust present in different galaxy types follow extinction curves and −28. Absolute magnitudesin this filter are consistent with thecommonlyusedbroad-bandstandardfilter B.Thisincludes thatdeviatefromthatoftheSMC.Thesedeviationsincludevari- notonlythetypicalrangewheremostBLAGN/QSOsarefound ationsofthesteepnessintheattenuationcurveasinthestarburst extinctionlawderivedbyCalzettietal.(2000),orthepresenceof (−28 ≤ M457 ≤ −20) but also the range for host-dominated BLAGNandnormalgalaxies(Salvatoetal.2009;Pollettaetal. abroadbumparound2175Å asfoundfortheMilkyWay(MW; 2007;Rowan-Robinsonetal.2008). Seatonetal.1979;Cardellietal.1989)ortheLargeMagellanic Cloud(LMC;Fitzpatrick1986).Therefore,toreproducenormal galaxyandstarburstspectrawe alsoconsideredintheχ2 mini- 3.5.Photo-zdeterminationsummary mizationsolutionsbasedontheLMC, MW, Calzetti’slaw,and Calzetti’s law plus the absorption feature around 2175Å. In WeusedthecodeLePharetoestimatephotometricredshiftsfor thiscase,theminimizationprocesstakesintoaccountallpossi- 170 spectroscopically identified BLAGN and QSOs with high bleSEDsandextinctionlawssimultaneously,choosingthebest qualityALHAMBRAphotometry.Fortheχ2minimizationpro- suitedtoeachsource.Theseadditionalextinctionlawsallowus cess,weconsideredthefollowing: toprobetheirrelevancetotheaccuracyoftheresults. – Adatabaseof204templates:154stellarand50extragalactic. The light attenuation by the inter-galactic medium (IGM) – Several extinction laws: MW, LMC, SMC, and Calzetti’s was taken into account internally by LePhare following the starburst laws with a color-excess range of E(B − V) = opacitycurves,binnedinto redshiftintervalsof Δz = 0.1,pub- [0.0,1.0]. lishedbyMadau(1995). – Givenourtemplatelibrary,wemadeacorrectiontothezero- point of the filters that show a non-zero average deviation 3.3.Systematicoffsets betweentheobservedandbest-fitpredictedmagnitudes. – Asimpleluminositypriorof−17 ≤ M ≤−28. A457M Photometric redshifts depend strongly on the precision of the – A redshift space interval of 0 ≤ z ≤ 6 binned in redshifts photometryand the capabilities of the template database to re- intervalsofδz=0.04. produce the colors of the source population as a function of z. If we were to assume that the selected template database is Figure4showsanexampleoftheexcellentagreementbetween representative of our source population, then for a given filter thedataandthefittedtemplatefor6sourceswithawiderange the average deviation between the observed flux and the best- ofmagnitudes(20 ≤ mA678M ≤ 23.5),redshifts(0.7 ≤ z ≤ 2.3), fitpredictedfluxshouldbezerofornormallydistributeduncer- andintrinsicextinctions(0.0≤E[B−V]≤0.2). tainties. If this is not the case, a zero-point offset must be ap- pliedtothephotometryderivedfromthetemplatedatabasewhen thereisanon-zeroaveragedeviationbetweentheobservedand 4. Resultsanddiscussion predicted fluxes. The ALHAMBRA photometric calibration is 4.1.Photo-zaccuracy basedonaselectionofNGSLstarsfollowingthemethodology discussed in Aparicio-Villegaset al. (2010). We note here that The efficiency of the photo-z determination is quantified by wehavenotmodifiedthiscriteria.Thecomputedoffsetsinstead, comparing the spectroscopic redshifts (hereafter spectro-z) of A20,page7of17 A&A542,A20(2012) Fig.4.Examplesofbest-fitsolutionsassumingaSMCextinctionlawfor6sourcescoveringawiderangeofmagnitudes(∼20≤ m ≤∼ 23.5) 678 and spectroscopic redshifts (0.7 ≤ z ≤ 2.3). Each panel includes the observed photometry, associated errors, and FWHM for each of the 23 ALHAMBRAfilterset(blackdots,verticalandhorizontalerrorbarrespectively).Photometricupperlimitsareindicatedbyarrows.Thecontinuous lineshowsthebest-fitsolution,whiletheopencirclesgivetheexpectedmagnitudefromthemodelcorrectedfromsystematicoffsets.Additional infofor each source includes: model name, reduced χ2, amount of extinction, thenormalized probability distributionasa function ofz(Pdz), thespectro-z(anditssourcecatalog),andthebest-fitphoto-zsolution.ThetitleofeachpanelislabeledwiththesourceIDintheALHAMBRA catalogandthemeasuredmagnitudeinthem filter(greendot). 678 170sourcesinourBLAGN/QSOsample.Photometricredshifts whiletheoutlierfraction(η)isdefinedasthefractionofsources are generally characterized by both their accuracy and outlier with catastrophic solutions (i.e. solutions that are inconsistent fraction. The accuracy is defined as the standard deviation of with the measuredspectro-z).In ouranalysis, we assumed that Δz/(1 + zspec), denoted σΔz/(1+zspec), where Δz = zspec − zphot, a source is an outlier if |Δz|/(1 + z) ≥ 0.15. This value was A20,page8of17 I.Matuteetal.:Quasi-stellarobjectsintheALHAMBRAsurvey.I. selected a priori to be compatible with the cutoff of similar studies (e.g. Luo et al. 2010; Salvato et al. 2009; Ilbert et al. 2009;Rowan-Robinsonetal.2008).Analternativeaccuracyes- timate that has been used by several authors (e.g. Ilbert et al. 2006; Brammer et al. 2008) is the normalizedmedian absolute deviation(NMAD)definedas (cid:2) (cid:2) (cid:2) (cid:2) σ =1.48×median(cid:2)(cid:2)(cid:2)Δz−median(Δz)(cid:2)(cid:2)(cid:2)· NMAD (cid:2) 1+z (cid:2) spec Thisparametercanbedirectlycomparedtothestandarddevia- tionofΔz/(1+z )inthecaseofnormaldistributionsandhas spec the advantageof being less sensitive to outliers. From now on, weuseσ asourestimateofthephoto-zaccuracy. NMAD We nowdiscuss ourresultsbased on the numberof extinc- tionlawsconsideredinthecomputation,namelyeitherasingle (SMC) extinction law (SEL) or multiple (SMC, LMC, Milky- Way,andCalzetti)extinctionlaws(MEL).Table4describesthe solutions found for the two sets of extinction laws considered. In the case of a SMC extinction law, we obtained an accuracy of σ = 0.009 with a fraction of outliers of η ∼ 12% (21 NMAD outof170sources).Acomparisonbetweenthederivedphoto-z andthespectro-zisshowninthetoppanelofFig.5.Thenarrow scatterpresentforthegoodfits(greendots)ishighlightedbythe distributionofthesourceredshiftaccuracythatliesintherange |Δz|/(1+z )≤0.15(i.e.nooutlierregion)andshowninFig.6. spec Thisdistributioniswell-representedbyaGaussianwithnomea- surable bias (centered at −0.001) and a σ of ∼0.006. Identical resultswerefoundwhenwe consideredseveralextinctionlaws during the minimization process (σ = 0.009, η ∼ 12%) NMAD but, as we see in the following paragraphs, the MEL approach isabletomoreaccuratelyreproducetheSEDdistributionofthe BLAGN/QSOpopulation. Besidestheabilitytoprovideprecisephoto-z’s,ouranalysis allows us to recover the correct SED for most of the sources. Figure7 presentsthe distributionof the templates for the MEL best-fitsolutions.Wedidnotfindsourceswithstellartemplates that have best-fit solutions (i.e. χ2 < χ2 ) and the ma- stellar gal−QSO jority of the sources are best-fitted by pure type-1 QSO tem- plates or QSO hybrid templates (ULIRG/QSO1 template in- dices #29 and above; Sect.3.1). When we did not take into accounttheoutlierfractionofthesources,wefoundthat95.3% of them (142/149) have either a QSO or hybrid-QSO best-fit template, 1.3% (2/149) are fitted by a QSO2 or hybrid-QSO2 template,and3.4%(5/149)arefittedwithanormalorstarburst template.Five sourceshave best-fit solutiontemplatescompat- iblewith anon-activeSED.A closerlookattheALHAMBRA Fig.5. Photo-z efficiency using several extinction laws (the MEL so- photometry,thebestfitsolution,andtheobservedspectra(when lution).Top:comparison betweenthebestfitphoto-zsolutionandthe available)revealedthat:i)onesourcemightbeincorrectlyclas- measuredspectro-zshowsagoodagreementbetweentheboth.Thecon- sified as BLAGN since both the spectra and the ALHAMBRA tinuous line gives the z = z relation while the dashed line rep- photometry point to an early-type galaxy; ii) one source be- phot spec resent the boundary between good solutions (green dots) and outliers laonndgsthetoasthsoecifaatiendteerrrpoarrst(oΔfmth>e p0o.2p)ulhaatvioend(ilmu6te78d a=ny2p3o.s3s3i-) t(rriebdu,tiinodneoxfeΔdzd/o(1ts)+azndd)eafisnaedfuansct|Δiozn|/o(1ft+hezsApeLc)H>AM0.1B5R.ACemntarganl:itduidse- spec bleBLAGNsignatureintheALHAMBRAphotometry;iii)the m .Themeanmagnitudeerror,permagnitudeintervalofΔm=1,of 678 other3sourceshaveopticalspectracompatiblewithgalaxytem- thefilterA678Misindicatedbythecontinuouslines.Theaccuracyper plateswithdifferentdegreesofstarformingandpost-starforming magnitudeinterval(Δm=1)ishighlightedbyagreyshadedarea.This activities,i.e.nosignsofbroademissionandacontinuumwitha accuracyshowsasmallcorrelationwithapparent magnitude. Bottom: thispanel showsthecontribution ofeach magnitude bin(Δm = 1) to well-defined4000Å break,butwithALHAMBRAphotometry the outlier population as filled diamonds connected by a dashed line. showingsomedegreeofAGNactivity(bluecontinuumandindi- Themagnitudeintervalsconsideredandtheassociatederrorsareindi- cationsoffaint,typicalBLAGNline-emissionnamelyofMgII, catedbythelargediamonds.Thefractionofoutlierswithrespecttothe CIII] or CIV at the spectroscopic redshift of the source). The numberofsourcesinthesamemagnitudeintervalsaregivenbyaster- incorrectsolutionsfoundforthese3sourcesareprobablyacon- isksconnected by a continuous line.The magnitude intervals and the sequenceoftheuncertaintiesexpectedfromthemethod,partic- associatederrorsareindicatedbythelargeverticalandhorizontallines. ularly regardingthe chosen template database and the absence Inbothcases,errorsareassumedtobePoissonianandwerecalculated ofanyvariabilitycorrectionofthephotometry. followingGehrels(1986). A20,page9of17 A&A542,A20(2012) For this small fraction of sources (2%; 3/149), the incorrect spectralclassification,usingthemethoddescribedhere,willbe takenintoaccountinanystatisticalanalysisoftheBLAGN/QSO populationdetected in the ALHAMBRA fields to be presented inaforthcomingpaper(Matuteetal.,inprep.). Furthermore, we note that the photo-z determination de- scribedhereisabletorecovertheredshiftofthesourcesinthe interval 2.2 ≤ z ≤ 3.6, which has been traditionally biased against the selection of QSOs because of their similar colors to F/G stars. Hence, the photometry and the method described herecouldprovideanefficientwayofbothclassifingandderiv- ingareliablephotometricredshiftsforBLAGN/QSOcandidates pre-selected,for example,by their X-ray flux. The catalog and derived luminosity functions for BLAGN/QSO selected purely based on the ALHAMBRA photometry will be presented in a companionpaper(Matuteetal.,inprep.). The dependence of our results on redshift, apparent mag- Fig.6.Uncertaintydistribution,Δz/(1+z),forthe170BLAGN/QSOsin nitude of the source, and the systematic offsets applied during oursampleconsideringtheMELapproach.Non-outlierandoutliersare thephoto-zcomputationaredescribedinthefollowingsections. representedbyfilledandopenhistograms,respectively.Thecontinuous Thesedependencesaresimilarinthetwosetsofextinctionlaws linerepresentsthebestGaussianfittotheobserveddistributionofnon- unlessotherwisespecified. outliers.Thenumberofnon-outliers(#),thecenter,andσofthebest-fit Gaussiandistributionareindicated. 4.1.1. Dependenceonredshift Theaccuracyofthephoto-zresultsisratherindependentofthe redshift with the exception of the interval z = [0.9, 1.4] (light- grey square in Fig.5a for the SMC results). The presence of onlyoneprominentline(MgII)inthisintervalintroducessome aliasing that dependson the intensity of the line and how well is sampledbythe ALHAMBRA filters. Thissmall degradation of the solution occurs when the peak of the MgII line falls within two ALHAMBRA filters. The distributionofthe outlier fraction of the sources (Fig.5, red dots) follows a bimodalbe- havior around z ∼1.4. Below this redshift (z ≤1.4), the spec spec minimization process tends to overestimate the photo-z solu- tions, while it underestimates them at higher redshifts (z > spec 1.4). This effect can be explained by i) the QSO color/redshift degeneracy (i.e. the degree of similarity between the colors at different redshifts; e.g. Richards et al. 2001) and ii) a line misidentification(Croomet al. 2004). These degeneracies,still Fig.7.SpectralenergydistributionfortheMELbest-fitsolutions.Open present in the ALHAMBRA data but to a much lesser extent histogramtakesintoaccount allsources, whiletheshadedhistograms than for broadbandphotometry,are highlightedas grey shaded consider only the sources with good photo-z solutions. We find that areasanddot-dashedlinesinFig.5forthecolor–colorandline noneoftheALHAMBRABLAGN/QSOsiswell-representedbyastel- misidentification degeneracies. Further details of the origin of lartemplate.Ofalltheextragalactictemplatesconsidered,themajority these degeneraciesare given in Sect.4.3 where we explore the (95.3%; 142 out of 149) of the sources with good solutions (i.e. no natureoftheoutlierfractionofsources. outliers)havebest-fittemplatescompatiblewithapureQSOorhybrid QSO/ULIRGtemplate. 4.1.2. Dependencywithapparentmagnitude As a test of the degeneracy introduced by the chosen tem- plate database, we considered an alternative database of only AshighlightedinthecentralpanelofFig.5,wedonotfindany QSOs and hybrid QSO/ULIRG templates (see indices #29–39 dependence of the accuracy on the apparent magnitude of the inTable3andFig.3)forthe5sourceswithanormalgalaxyor source butonly a clear degradationof the solutionsis foundat starburstbest-fitsolution.Wefoundthat:i)for2sourceswewere faintermagnitudes(m ≥ 22.0)causedbytheslightlynoisier 678 unabletorecoverinthiscasethephoto-z,castingsomedoubtson photometry(Δm ∼ 0.2atm = 23asindicatedbythecon- 678 678 the spectral classification of the sources or an incomplete tem- tinuouslineinthecentralpanelofFig.5).Ontheotherhand,the plate database; ii) a correct photo-z was found for the other 3 outlierfractionshowsamoderatecorrelationwithapparentmag- sourceswherehybridtemplateswithaweakerBLAGNcompo- nitude(bottompanelofFig.5),where∼62%oftheoutliershave nent (10–20%) were selected by the best-fit solution. This last m ≥21.0.Nevertheless,althoughsomeoutliersmightbepro- 678 case highlightsthe degeneracyintroducedby the selected tem- ducedbynoisierphotometry,otherfactorsmightalsocontribute platedatabaseforcertainhostandBLAGNluminosityregimes. tothecatastrophicfailures(seeSect.4.3). A20,page10of17
Description: