ebook img

Quasi-Dimensional Simulation of Spark Ignition Engines: From Thermodynamic Optimization to Cyclic Variability PDF

201 Pages·2014·11.918 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quasi-Dimensional Simulation of Spark Ignition Engines: From Thermodynamic Optimization to Cyclic Variability

Alejandro Medina · Pedro Luis Curto-Risso Antonio Calvo Hernández · Lev Guzmán-Vargas Fernando Angulo-Brown · Asok K. Sen Quasi-Dimensional Simulation of Spark Ignition Engines From Thermodynamic Optimization to Cyclic Variability Quasi-Dimensional Simulation of Spark Ignition Engines Alejandro Medina Pedro Luis Curto-Risso • Antonio Calvo Hernández Lev Guzmán-Vargas Fernando Angulo-Brown • Asok K. Sen Quasi-Dimensional Simulation of Spark Ignition Engines From Thermodynamic Optimization to Cyclic Variability 123 Alejandro Medina Fernando Angulo-Brown Antonio CalvoHernández InstitutoPolitécnico Nacional de Físicay Departamento de FísicaAplicada Matemáticas Universidad deSalamanca México D.F. Salamanca Mexico Spain AsokK.Sen Pedro LuisCurto-Risso Department of Mathematical Sciences Institutode Ingeniería Mecánica y Indiana University ProducciónIndustrial Indianapolis Universidad delaRepública USA Montevideo Uruguay Lev Guzmán-Vargas InstitutoPolitécnico Nacional Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías México D.F. Mexico ISBN 978-1-4471-5288-0 ISBN 978-1-4471-5289-7 (eBook) DOI 10.1007/978-1-4471-5289-7 SpringerLondonHeidelbergNewYorkDordrecht LibraryofCongressControlNumber:2013940296 (cid:2)Springer-VerlagLondon2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) The work devoted to this book is dedicated with the warmest affection to my family, Begoña, Miguel, and Macarena A. Medina I dedicate this book to my family, especially Christine for all her support in all my projects and Matías just for being a definite part of our life P. L. Curto-Risso In memory of my parents, Rosa and Antonio A. Calvo-Hernández Foreword Theroadtothisbookbeganaround7yearsagoafterreadingapaperbyA.Fischer and K.-H. Hoffmann, Can a Quantitative Simulation of an Otto Engine be AccuratelyRenderedbyaSimpleNovikovModelwithHeatLeak?,J.Non-Equilib. Thermodyn., 2004, 29, 9–28. We were by then interested in models from the ClassicalEquilibriumThermodynamicsthatstartingfromanidealOttocyclewere capable to lead to efficiencies closer to that of real spark ignition engines. This paper gave us a lot of ideas in order to use different kinds of models for these engines. We tried to develop realistic models beyond the Otto reversible cycle in whichthemainphysicalingredientsofrealenginescouldbethoroughlyanalyzed. This aim leads us to quasi-dimensional simulations. We found a lot of research papersandworks,andsomesectionsininternalcombustionenginestextbooks,but we thought that there was not a monographic book explaining in detail which shouldbethemain structure ofaquasi-dimensionalsimulation modelandhowto arrange the basic submodels required to obtain numerical results. We had to deal withseveralpracticalpointsandalsotoelect,foreachsubmodel,whichonecould bethemostadequateforourpurposes.Thismadethedevelopmentofsimulations notsostraightforwardaswethoughtattheearlierstagesandreinforcedourfeeling about the eventual usefulness of a monograph on this kind of simulation models. This text is intended for students and researchers, that without an extensive knowledgeonsparkignitionengines,areinterestedonunderstandingthephysical, chemical, and engineering basis of these engines. And going further those are interestedtodeveloptheirownsimulationschemeortohaveadeepunderstanding of which is behind commercial simulation software. We have tried to write the bookforreaderswithmerelyabasicbackgroundonthermodynamics,mechanics, chemistry, and numerical methods. This text attempts to be an introductory guide, in such a way that the interested reader could deep in details about sub- models,othermodelsnotdirectlyconsidered,aboutvalidations,oraboutthekind of information that could eventually be extracted from computations by using the cited references. We have tried to be careful in presenting broad and updated bibliography resources to give the reader a starting point for going beyond depending on his own interests. vii viii Foreword Internalcombustionengines,andspecificallysparkignitionengines,areoneof themostimportantdevicesdesignedanddevelopedbyscientistsandengineersfor our current lifestyle. Associated to fossil fuels resources limitations and to the increasing environment concerns, these engines have shown during the last years an important potential for improvements, linked to their design and optimization. Different kind of simulations play a basic role in such work. Quasi-dimensional simulations, with some limitations (for instance when compared with fluid dynamicmodels),areattractivebecauseoftheirsimplicityandbecausetheydonot requireextensivecomputerfacilitiesormuchcomputingtime.Andmoreover,they allow to identify, in quite a direct way, the influence of the basic physical and chemical hypothesis on engine functioning. Probably because of the previous background and interests of some of the authors, we paid special attention to thermodynamic considerations, that are in the basis of most energy conversions. The optimal design ofsuch processes, asfor example the chemical tomechanical energyconversionoccurringininternalcombustionengines,isinthebasisofany energy-saving technology. Salamanca, April 2013 Alejandro Medina Acknowledgments More than once we, the authors of this book, during the writing process joked by commentingthatanybookoninternalcombustionengineswouldbeonlyakindof (bad) summary of the well-known reference book by J.B. Heywood, Internal CombustionEngineFundamentals.Asmostoftheresearchersonthisfield,weare indebted to him because of his outstanding contributions and writings. A. Medina and A. Calvo Hernández acknowledge Ministerio de Ciencia e Innovación,JuntadeCastillayLeón,andUniversidaddeSalamanca(Spain)from their financial support during the last years. We also would like to express our gratitude to all the members of the Research Group on Thermodynamics and StatisticalMechanics,UniversidaddeSalamanca,fortheircontinuoussupportand encouragement. P. L. Curto-Risso would like to thank Agencia Nacional de Investigación e Innovación(Uruguay)fortheSNIprogramthatsupportshisresearch.Alsothanks tohiscolleaguesintheDepartmentofAppliedThermodynamicsfromUniversidad delaRepúblicaandhisstudents,Bruno,Diego,andDaniel,whohavecontributed to deeply analyze different heat transfer models. Lev Guzmán-Vargas and F. Angulo-Brown thank the financial support from COFAA-IPN, EDI-IPN and Consejo Nacional de Ciencia y Tecnología (Project 49128–26020), México. ix Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Modeling Spark Ignition Engines . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Single-Zone (or Zero-Dimensional) Models . . . . . . . . . . 2 1.1.2 Multi-Zone Models. . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Multi-Dimensional Models. . . . . . . . . . . . . . . . . . . . . . 5 1.2 Thermodynamic Optimization. . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Cycle-to-Cycle Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 Physical Origin of Cycle-to-Cycle Variations. . . . . . . . . 9 1.3.2 Theoretical and Simulation Models. . . . . . . . . . . . . . . . 11 1.3.3 Non-Linear Dynamics Analyses . . . . . . . . . . . . . . . . . . 12 1.4 Organization of the Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Physical Laws and Model Structure of Simulations. . . . . . . . . . . . 19 2.1 Basic Mechanical Equations. . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Basic Thermodynamic Equations. . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 Intake and Exhaust . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Compression and Expansion. . . . . . . . . . . . . . . . . . . . . 25 2.2.3 Pressure and Temperature Evolution During Combustion. . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Additional Submodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Combustion Models . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 Heat Transfer Models . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.3 Friction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3.4 Working Fluid Properties and Chemical Reactions . . . . . 45 2.4 Assembly of Submodels and Basic Structure of the Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.5 Numerical Solution of Differential Equations and Submodels. . . 52 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 xi xii Contents 3 Validating and Comparing with Experiments and Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.1 What Can We Measure from Simulations?. . . . . . . . . . . . . . . . 57 3.1.1 Performance Parameters. . . . . . . . . . . . . . . . . . . . . . . . 57 3.1.2 Fuel Consumption and Emissions . . . . . . . . . . . . . . . . . 59 3.1.3 Additional Considerations . . . . . . . . . . . . . . . . . . . . . . 59 3.2 Numerical Results from Zero-Dimensional Models . . . . . . . . . . 60 3.3 Validating a Quasi-Dimensional Simulation Model . . . . . . . . . . 64 3.3.1 Quasi-Dimensional Model by Keck and Beretta . . . . . . . 64 3.3.2 Influence of Heat Transfer Models . . . . . . . . . . . . . . . . 70 3.3.3 Results with Alternative Fuels . . . . . . . . . . . . . . . . . . . 72 3.4 Finite-Time Thermodynamics Approach. . . . . . . . . . . . . . . . . . 74 3.4.1 Internal Irreversibilities . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4.2 Friction Losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4.3 Heat Transfer Losses. . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4.4 Numerical Application. . . . . . . . . . . . . . . . . . . . . . . . . 78 3.4.5 Refined FTT Approach with Speed Dependent Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4 Thermodynamic Engine Optimization. . . . . . . . . . . . . . . . . . . . . . 87 4.1 Design Parameter Optimization. . . . . . . . . . . . . . . . . . . . . . . . 87 4.1.1 Ignition Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.1.2 Stroke-to-Bore Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2 Working Parameters Optimization. . . . . . . . . . . . . . . . . . . . . . 95 4.2.1 Spark Advance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2.2 Fuel-Air Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.3 Wall Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.4 Simultaneous Optimization of Working Parameters. . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5 Cycle-to-Cycle Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.1 Models for Cyclic Variability . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2 Quasi-Dimensional Simulations and Cyclic Variability. . . . . . . . 108 5.3 Nonlinear Analysis of Heat Release Fluctuations. . . . . . . . . . . . 116 5.3.1 Correlation Dimension Analysis . . . . . . . . . . . . . . . . . . 116 5.3.2 Monofractal Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.3.3 Multifractal Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 124 5.3.4 Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.3.5 Wavelet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.