ebook img

quartz crystal microbalance adsorption apparatus for - SMARTech PDF

72 Pages·2011·5.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview quartz crystal microbalance adsorption apparatus for - SMARTech

QUARTZ CRYSTAL MICROBALANCE ADSORPTION APPARATUS FOR HIGH PRESSURE GAS ADSORPTION MEASUREMENTS IN NANOMATERIALS A Thesis Presented to The Academic Faculty by Milad Navaei In Partial Fulfillment of the Requirements for the Degree Master of Science in the G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Aug 2011 QUARTZ CRYSTAL MICROBALANCE ADSORPTION APPARATUS FOR HIGH PRESSURE GAS ADSORPTION MEASUREMENTS IN NANOMATERIALS Approved by: Dr. Peter Hesketh, Advisor School of Mechanical Engineering Georgia Institute of Technology Dr. Sankar Nair School of Chemical & bimolecular engineering Georgia Institute of Technology Dr. Todd Sulchek School of Mechanical Engineering Georgia Institute of Technology Date Approved: April 6th 2011 To my parents for their love, endless support and encouragement. ACKNOWLEDGEMENTS I would like to express my sincere appreciation to my advisor, Dr. Peter Hesketh for his endless support and guidance during my studies. I am grateful for having him as my advisor for his insight and career advice. I would like to thank the committee members Dr. Sankar Nair and Dr. Todd Sulchek for their suggestions and willingness to help. Measurements I am also grateful to all my colleagues in Hesketh and Nair research group for their valuable discussions and suggestions. I like to thank Mr. Dun-Yen Kang for providing the nanotubes, and Mr. Casey Timmerman and Matthew Arinez for their assistance in assembling the experimental facility and data acquisition. I acknowledge ConocoPhillips for supporting this research, and Dr. Ken McCarley research group for providing the Polyimide samples. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS _______________________________________ IV LIST OF TABLES _____________________________________________ VII LIST OF FIGURES ____________________________________________ VIII SUMMARY _____________________________________________________ X CHAPTER 1 INTRODUCTION ____________________________________ 1 1.1 Theory of quartz crystal microbalance ____________________________ 1 1.1.1 Sauerbrey equation __________________________________________________ 6 1.1.2 Factors affecting the frequency of QCM _________________________________ 6 1.2 Use of QCM for gas adsorption measurement in thin films. ___________ 9 1.3 Gas adsorption in single-walled aluminosilicate nanotubes __________ 10 1.4 Concluding summary and problem formulation ___________________ 11 CHAPTER 2 EXPERIMENTAL APPARATUS AND TECHNIQUE ____ 13 2.1 Design considerations:_________________________________________ 13 2.1.1 High pressure cell __________________________________________________ 13 2.1.2 Temperature monitoring _____________________________________________ 15 2.1.3 Gases ___________________________________________________________ 16 2.1.4 QCM resonant frequency measurement _________________________________ 17 2.2 System description ____________________________________________ 19 2.3 Experimental procedures ______________________________________ 24 v CHAPTER 3 ___________________________________________________ 26 SYSTEM CALIBRATION: _______________________________________ 26 3.1 Calibration of the apparatus using CO gas adsorption in polyimide __ 26 2 3.2 Dual model Langmuir adsorption model for Matrimid ______________ 31 3.3 Experimental data comparison with literature data ________________ 34 CHAPTER 4 GAS ADSORPTION IN ALUMINOSILICATE NANOTUBES _____________________________________________________________________ 35 4.1 Sample deposition ____________________________________________ 35 4.2 Sample characterization _______________________________________ 35 4.2.1 SEM characterization _______________________________________________ 35 4.2.2 XRD characterization: ______________________________________________ 37 4.3 Adsorption measurement ______________________________________ 38 4.4 Simple Langmuir adsorption model for aluminosilicate nanotubes ____ 45 4.4.1 CO gas adsorption in aluminosilicate nanotubes _________________________ 46 2 4.4.2 CH gas adsorption in aluminosilicate nanotubes _________________________ 51 4 4.4.3 N gas adsorption in aluminosilicate nanotubes ___________________________ 52 2 4.5 Henry’s fit __________________________________________________ 55 CHAPTER 5 CONCLUDING REMARKS __________________________ 56 5.1 Conclusions _________________________________________________ 56 5.2 Recommended future work ____________________________________ 57 APPENDIX A: GLOBAL FITTING CODE _________________________ 59 REFERENCES _________________________________________________ 61 vi LIST OF TABLES Table 3.1. Dual-Mode parameters of CO sorption in polyimide film .......................................................... 31 2 Table 3.2 Thermodynamic parameters of CO sorption for polyimide film .................................................. 32 2 Table 3.3 Henry’s constant of CO sorption in polyimide film ..................................................................... 33 2 Table 4.1. Samples used for gas adsorption isotherm measurement ............................................................. 38 Table 4.2. Affinity constant of aluminosilicate nanotubes for CO gas ......................................................... 47 2 Table 4.3. Thermodynamic properties of aluminosilicate nanotubes for CO ............................................... 48 2 Table 4.4. Thermodynamic properties of aluminosilicate nanotubes for CO gas using the global fit method 2 ....................................................................................................................................................................... 49 Table 4.5. Standard deviation of experimental data using global fit model .................................................. 49 Table 4.6. Sorption parameters of aluminosilicate nanotubes for CH gas ................................................... 51 4 Table 4.7. Thermodynamic properties of aluminosilicate nanotubes for N gas ........................................... 54 2 Table 4.8. Henry’s constant at low pressure. ................................................................................................. 55 vii LIST OF FIGURES Figure 1.1. Photograph of quartz crystal microbalance ................................................................................... 2 Figure 1.2.Piezoelectric phenomenon [1] ....................................................................................................... 3 Figure 1.3.The QCM electrical circuit model .................................................................................................. 4 Figure 1.4. Frequency change vs. temperature at º25 C cut ............................................................................ 5 Figure 1.5. Frequency change vs. temperature at º90 C cut ............................................................................ 5 Figure 1.6.Cross-Section view of single-walled aluminosilicate nanotubes ................................................. 10 Figure 2.1. High pressure cell overall view ................................................................................................... 14 Figure 2.2. Sectional view of the chamber .................................................................................................... 14 Figure 2.3. Photograph of QCM holder ......................................................................................................... 15 Figure 2.4. Gas cylinders connection to the QCM setup. .............................................................................. 16 Figure 2.5. Phase locked oscillator utilized in the setup ................................................................................ 18 Figure 2.6. Schematic of the experimental setup ........................................................................................... 19 Figure 2.7. Close up view of the high pressure cell and electrical connections ............................................ 21 Figure 2.8.Photograph of Experimental setup ............................................................................................... 22 Figure 2.9.Lab View© program recording the raw data for CO gas adsorption in polyimide ..................... 23 2 Figure 3.1. Chemical structure of Matrimid 5218 ......................................................................................... 26 Figure 3.2. SEM Images of Matrimid film coated on QCM.......................................................................... 28 Figure 3.3. CO sorption isotherm within Matrimid at different temperatures. ............................................. 30 2 Figure 3.4. Experimental data fitted into global dual mode Langmuir .......................................................... 33 Figure 3.5. Comparison between the experimental CO sorption isotherms and literature data isotherms 2 within Matrimid............................................................................................................................................. 34 Figure 4.1. SEM Images of Sample NT012 .................................................................................................. 36 Figure 4.2. XRD characterization of Sample NT034 .................................................................................... 37 Figure 4.3. CO gas adsorption in aluminosilicate nanotubes sample NT005 ............................................... 39 2 Figure 4.4. Gas adsorption of different samples at the same temperature. .................................................... 40 Figure 4.5. CO gas adsorption in aluminosilicate nanotubes ....................................................................... 41 2 viii Figure 4.6. CH gas isotherms for aluminosilicate nanotubes Samples NT034, NT041 and NT042 ............ 42 4 Figure 4.7. N gas isotherms for aluminosilicate nanotubes NT034, NT041 and NT042 ............................. 43 2 Figure 4.8. Gas cycling for Sample NT034 at 30ºC ...................................................................................... 44 Figure 4.9. Linear fit of CO gas data into Equation 4.2 ............................................................................... 47 2 Figure 4.10. CO gas adsorption in aluminosilicate nanotubes...................................................................... 50 2 Figure 4.11. CH gas adsorption in aluminosilicate nanotubes for Sample NT034, NT041, and NT042. ..... 52 4 Figure 4.12. N gas adsorption in aluminosilicate nanotubes for Sample NT034, NT041, and NT042 with 2 individual Langmuir fit ................................................................................................................................. 53 Figure 4.13. N gas adsorption in aluminosilicate nanotubes for Sample NT034, NT041, and NT042 with 2 global Langmuir fit ........................................................................................................................................ 54 ix SUMMARY The primary objective of this study was to develop a sensitive and cost-effective sorption system to analyze adsorption and diffusion of different gases on micro porous materials and nanotubes. A high pressure Quartz Crystal Microbalance (QCM) based adsorption apparatus for single-component gas was developed. A QCM is an acoustic- wave resonator in which the acoustic wave propagates through the crystal. Therefore, it is highly responsive to addition or removal of small amounts of mass adsorbed or deposited on the surface of the crystal. This mass sensitivity makes the QCM an ideal tool for the study of gas adsorption. The QCM-based adsorption apparatus is advantageous over the commercialized none-gravimetric and gravimetric equipment in a way that it is low-cost, highly sensitive and accurate for mass sorption applications, satisfactorily stable in a controlled environment, and can be used for thin films. The high pressure apparatus was calibrated using Matrimid 5218, whose thermodynamic properties and adsorption parameters are known. The Matrimid was spin- coated onto a 14 mm-diameter QCM, and sorption equilibrium data for were obtained for CO gas at 25, 30, 48, and 52 ºC and partial pressure range between 0 to 4 bar. In order to 2 compare the experimental data with available literature data, the experimental data was fitted into a dual-mode adsorption model. The model results from Henry’s law and a Langmuir mechanism. Comparison of the experimental adsorption isotherm of Matrimide for CO gas with literature data showed reasonable agreement between the experimental 2 and literature data. x

Description:
HIGH PRESSURE GAS ADSORPTION. MEASUREMENTS IN NANOMATERIALS Use of QCM for gas adsorption measurement in thin films. ______ 9. 1.3.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.