ebook img

Quantum Physics of Light and Matter: A Modern Introduction to Photons, Atoms and Many-Body Systems PDF

198 Pages·2014·1.98 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Quantum Physics of Light and Matter: A Modern Introduction to Photons, Atoms and Many-Body Systems

UNITEXT for Physics Luca Salasnich Quantum Physics of Light and Matter A Modern Introduction to Photons, Atoms and Many-Body Systems UNITEXT for Physics Series editors Michele Cini, Roma, Italy A. Ferrari, Torino, Italy Stefano Forte, Milano, Italy Inguscio Massimo, Firenze, Italy G. Montagna, Pavia, Italy Oreste Nicrosini, Pavia, Italy Luca Peliti, Napoli, Italy Alberto Rotondi, Pavia, Italy For further volumes: http://www.springer.com/series/13351 Luca Salasnich Quantum Physics of Light and Matter A Modern Introduction to Photons, Atoms and Many-Body Systems 123 Luca Salasnich Fisica e Astronomia ‘‘Galileo Galilei’’ Università di Padova Padova Italy ISSN 2198-7882 ISSN 2198-7890 (electronic) ISBN 978-3-319-05178-9 ISBN 978-3-319-05179-6 (eBook) DOI 10.1007/978-3-319-05179-6 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014935224 Ó Springer International Publishing Switzerland 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface This book contains lecture notes prepared for the one-semester course ‘‘Structure of Matter’’ belonging to the Master of Science in Physics at the University of Padova. The course gives an introduction to the field quantization (second quan- tization) of light and matter with applications to atomic physics. Chapter 1 briefly reviews the origins of special relativity and quantum mechanics and the basic notions of quantum information theory and quantum statistical mechanics. Chapter 2 is devoted to the second quantization of the elec- tromagnetic field, while Chap. 3 shows the consequences of the light field quan- tization in the description of electromagnetic transitions. In Chap. 4, it is analyzed the spin of the electron, and in particular its derivation from the Dirac equation, while Chap. 5 investigates the effects of external electric and magnetic fields on the atomic spectra (Stark and Zeeman effects). Chapter 6 describes the properties of systems composed by many interacting identical particles. It is also discussed the Fermi degeneracy and the Bose–Einstein condensation introducing the Har- tree–Fock variational method, the density functional theory, and the Born–Oppenheimer approximation. Finally, in Chap. 7, it is explained the second quantization of the nonrelativistic matter field, i.e., the Schrödinger field, which gives a powerful tool for the investigation of finite-temperature many-body prob- lems and also atomic quantum optics. Moreover, in this last chapter, fermionic Fock states and coherent states are presented and the Hamiltonians of Jaynes–Cummings and Bose–Hubbard are introduced and investigated. Three appendices on the Dirac delta function, the Fourier transform, and the Laplace transform complete the book. It is important to stress that at the end of each chapter there are solved problems which help the students to put into practice the things they learned. Padova, January 2014 Luca Salasnich v Contents 1 The Origins of Modern Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Axioms of Quantum Mechanics . . . . . . . . . . . . . . . . . . 8 1.2.2 Quantum Information . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Quantum Statistical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 Microcanonical Ensemble . . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.3 Grand Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . 15 1.4 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 Second Quantization of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Electromagnetic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.1 First Quantization of Light . . . . . . . . . . . . . . . . . . . . . . 23 2.1.2 Electromagnetic Potentials and Coulomb Gauge . . . . . . . 24 2.2 Second Quantization of Light . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.1 Fock Versus Coherent States for the Light Field. . . . . . . 30 2.2.2 Linear and Angular Momentum of the Radiation Field . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.3 Zero-Point Energy and the Casimir Effect . . . . . . . . . . . 34 2.3 Quantum Radiation Field at Finite Temperature . . . . . . . . . . . . 36 2.4 Phase Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.5 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 Electromagnetic Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1 Classical Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Quantum Electrodynamics in the Dipole Approximation . . . . . . 53 3.2.1 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.2 Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.3 Stimulated Emission . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3 Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4 Einstein Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 vii viii Contents 3.4.1 Rate Equations for Two-Level and Three-Level Systems . . . . . . . . . . . . . . . . . . . . . . . 64 3.5 Life-Time and Natural Line-Width . . . . . . . . . . . . . . . . . . . . . 66 3.5.1 Collisional Broadening . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5.2 Doppler Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.6 Minimal Coupling and Center of Mass. . . . . . . . . . . . . . . . . . . 69 3.7 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4 The Spin of the Electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.1 The Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2 The Pauli Equation and the Spin . . . . . . . . . . . . . . . . . . . . . . . 85 4.3 Dirac Equation with a Central Potential . . . . . . . . . . . . . . . . . . 87 4.3.1 Relativistic Hydrogen Atom and Fine Splitting. . . . . . . . 88 4.3.2 Relativistic Corrections to the Schrödinger Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 Energy Splitting and Shift Due to External Fields . . . . . . . . . . . . . 99 5.1 Stark Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Zeeman Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.2.1 Strong-Field Zeeman Effect . . . . . . . . . . . . . . . . . . . . . 102 5.2.2 Weak-Field Zeeman Effect. . . . . . . . . . . . . . . . . . . . . . 103 5.3 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6 Many-Body Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.1 Identical Quantum Particles . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 Non-interacting Identical Particles . . . . . . . . . . . . . . . . . . . . . . 117 6.2.1 Uniform Gas of Non-interacting Fermions . . . . . . . . . . . 119 6.2.2 Atomic Shell Structure and the Periodic Table of the Elements . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.3 Interacting Identical Particles . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3.1 Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3.2 Hartree for Bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3.3 Hartree-Fock for Fermions . . . . . . . . . . . . . . . . . . . . . . 126 6.3.4 Mean-Field Approximation . . . . . . . . . . . . . . . . . . . . . 129 6.4 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.5 Molecules and the Born-Oppenheimer Approximation . . . . . . . . 137 6.6 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Contents ix 7 Second Quantization of Matter. . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.1 Schrödinger Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2 Second Quantization of the Schrödinger Field. . . . . . . . . . . . . . 147 7.2.1 Bosonic and Fermionic Matter Field . . . . . . . . . . . . . . . 150 7.3 Connection Between First and Second Quantization . . . . . . . . . 153 7.4 Coherent States for Bosonic and Fermionic Matter Fields . . . . . 156 7.5 Quantum Matter Field at Finite Temperature . . . . . . . . . . . . . . 160 7.6 Matter-Radiation Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.6.1 Cavity Quantum Electrodynamics . . . . . . . . . . . . . . . . . 163 7.7 Bosons in a Double-Well Potential . . . . . . . . . . . . . . . . . . . . . 167 7.7.1 Analytical Results with N ¼ 1 and N ¼ 2 . . . . . . . . . . . 170 7.8 Solved Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 Appendix A: Dirac Delta Function. . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Appendix B: Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Appendix C: Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Chapter 1 The Origins of Modern Physics In this chapter we review the main results of early modern physics (which we suppose the reader learned in previous introductory courses), namely the special relativity of Einstein and the old quantum mechanics due to Planck, Bohr, Schrödinger, and others. The chapter gives also a brief description of the relevant axioms of quan- tum mechanics, historically introduced by Dirac and Von Neumann, and elementary notions of quantum information. The chapter ends with elements of quantum statis- tical mechanics. 1.1 Special Relativity In 1887 Albert Michelson and Edward Morley made a break-thought experiment of optical interferometry showing that the speed of light in the vacuum is 8 c = 3 × 10 m/s, (1.1) independently on the relative motion of the observer (here we have reported an approximated value of c which is correct within three digits). Two years later, Henry Poincaré suggested that the speed of light is the maximum possible value for any kind of velocity. On the basis of previous ideas of George Francis FitzGerald, in 1904 Hendrik Lorentz found that the Maxwell equations of electromagnetism are invariant with respect to this kind of space-time transformations ∧ x − vt x = √ (1.2) v2 1 − c2 ∧ y = y (1.3) ∧ z = z (1.4) L. Salasnich, Quantum Physics of Light and Matter, UNITEXT for Physics, 1 DOI: 10.1007/978-3-319-05179-6_1, © Springer International Publishing Switzerland 2014 2 1 The Origins of Modern Physics 2 t − vx/c ∧ t = √ , (1.5) 2 v 1 − 2 c which are called Lorentz (or Lorentz-FitzGerald) transformations. This research activity on light and invariant transformations was summarized in 1905 by Albert Einstein, who decided to adopt two striking postulates: (i) the law of physics are the same for all inertial frames; (ii) the speed of light in the vacuum is the same in all inertial frames. From these two postulates Einstein deduced that the laws of physics are invariant with respect to Lorentz transformations but the law of Newtonian mechanics (which are not) must be modified. In this way Einstein developed a new mechanics, the special relativistic mechanics, which reduces to the Newtonian mechanics when the involved velocity v is much smaller than the speed of light c. One of the amazing results of relativistic kinematics is the length contraction: the length L of a rod measured by an observer which moves at velocity v with respect to the rod is given by √ 2 v L = L0 1 − , (1.6) 2 c where L0 is the proper length of the rod. Another astonishing result is the time dilatation: the time interval T of a clock measured by an observer which moves at velocity v with respect to the clock is given by T0 T = √ , (1.7) 2 v 1 − 2 c where T0 is the proper time interval of the clock. We conclude this section by observing that, according to the relativistic mechanics of Einstein, the energy E of a particle of rest mass m and linear momentum p = |p| is given by √ 2 2 2 4 E = p c + m c . (1.8) If the particle has zero linear momentum p, i.e. p = 0, then 2 E = mc , (1.9) which is the rest energy of the particle. Instead, if the linear momentum p is finite 2 but the condition pc/(mc ) ≪ 1 holds one can expand the square root finding 2 p 2 4 E = mc + + O(p ), (1.10) 2m

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.