ebook img

Putting M theory on a computer PDF

0.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Putting M theory on a computer

Putting M theory on a computer 8 0 0 2 Jun Nishimura∗ HighEnergyAcceleratorResearchOrganization(KEK),Tsukuba305-0801,Japan, n a andGraduateUniversityforAdvancedStudies(SOKENDAI),Tsukuba305-0801,Japan J E-mail: [email protected] 8 2 KonstantinosN. Anagnostopoulos NationalTechnicalUniversityofAthens,ZografouCampus,GR-15780Athens,Greece ] t E-mail: [email protected] a l - MasanoriHanada p e TheoreticalPhysicsLaboratory,RIKENNishinaCenter, h 2-1Hirosawa,Wako,Saitama351-0198,Japan [ E-mail: [email protected] 1 v ShingoTakeuchi 5 GraduateUniversityforAdvancedStudies(SOKENDAI),Tsukuba305-0801,Japan 0 2 E-mail: [email protected] 4 . 1 We proposeanon-latticesimulationforstudyingsupersymmetricmatrixquantummechanicsin 0 a non-perturbativemanner. Inparticular,ourmethodenablesustoputM theoryona computer 8 0 based on its matrix formulation proposed by Banks, Fischler, Shenker and Susskind. Here we : v presentMonteCarloresultsofthesamematrixmodelbutinadifferentparameterregion,which i X correspondsto the ’t Hooftlarge-N limit at finite temperature. In the strong couplinglimit the r modelhasadualdescriptionintermsoftheND0-branesolutionin10dtypeIIAsupergravity.Our a results providehighlynontrivialevidencesfor the conjecturedduality. Inparticular, the energy (andhencetheentropy)ofthenon-extremalblackholehasbeenreproducedbysolvingdirectly thestronglycoupleddynamicsoftheD0-braneeffectivetheory. TheXXVInternationalSymposiumonLatticeFieldTheory July30-August42007 Regensburg,Germany ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ PuttingMtheoryonacomputer JunNishimura 1. Introduction Large-N gauge theories are playing more and more important roles in theoretical particle physics. In particular, they are considered to beuseful informulating superstring/M theories non- perturbatively extending the idea of matrix models, which was successful for string theories in sub-critical dimensions. Forinstance, ithasbeenconjectured thatcritical string/M theories canbe formulated in terms of matrix models, which can be formally obtained by dimensionally reduc- ing U(N) super Yang-Mills theory in ten dimensions to D=0,1,2 dimensions. The D=1 case corresponds totheMatrixtheory[1],whichisconjectured todescribe MTheorymicroscopically. Another important conjecture, which has been studied intensively over the decade, concerns the duality between the strongly coupled large-N gauge theory and the weakly coupled super- gravity. The best understood example is the AdS/CFT correspondence, but there are numerous extensions tonon-conformal fieldtheories aswell. Inparticular, large-N gauge theories inlowdi- mensionshavebeenstudiedintensivelyatfinitetemperature,whichrevealedintriguingconnections totheblack-hole thermodynamics [2,3,4,5]. MonteCarlosimulationoflarge-N gaugetheoriesisexpectedtobeveryusefulinordertocon- firm these conjectures or to make use of them. Indeed, the totally reduced models [6] (the gauge theory reduced toD=0dimension) havebeenstudied inrefs.[7,8]. IntheD≥1case, somesort of “discretization” is needed in order to put the theory on a computer. However, lattice simula- tion of supersymmetric gauge theories is not straightforward. In some cases the lack of manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or Majorana nature offermions makesitdifficult toevenformulate anappropriate lattice theory. We propose tocircumventalltheseproblemsinherentinthelatticeapproachbyadopting anon-lattice approach [9] for one-dimensional supersymmetric gauge theories. This approach, in particular, enablesustoputMtheoryonacomputerusingtheMatrixtheory[1],whichtakestheformofa1d U(N)gaugetheorywith16supercharges. Here we demonstrate our approach by studying the same model but in a different parameter region, which corresponds to the ’t Hooft large-N limit at finite temperature [10]. In the strong coupling limit the model has a dual description [2] in terms of the N D0-brane solution in type IIA supergravity. Our results provide highly nontrivial evidences for the conjectured duality. In particular, theenergy (andhencetheentropy) ofthenon-extremal blackholehasbeenreproduced bysolving directlythestrongly coupleddynamicsoftheD0-braneeffectivetheory. 2. SUSY matrixquantum mechanics with16 supercharges Themodelcanbeobtainedformallybydimensionally reducing10dN =1superYang-Mills theoryto1d. Theactionisgivenby 1 b 1 1 1 1 S= g2 dttr 2(DtXi)2−4[Xi,Xj]2+2y a Dty a −2y a (gi)ab [Xi,y b ] , (2.1) 0 Z (cid:26) (cid:27) where D =¶ −i[A(t), · ] represents the covariant derivative with the gauge field A(t) being an t t N×N Hermitianmatrix. Thismodelcanbeviewedasaone-dimensional U(N)gaugetheory with adjoint matters. The bosonic matrices X(t) (i= 1,···,9) come from spatial components of the i 2 PuttingMtheoryonacomputer JunNishimura 10d gauge field, while the fermionic matrices y a (t) (a =1,···,16) come from aMajorana-Weyl spinor in 10d. The 16×16 matrices g in (2.1) act on spinor indices and satisfy the Euclidean i Clifford algebra {g ,g }=2d . Weimpose periodic and anti-periodic boundary conditions onthe i j ij bosons and fermions, respectively. The extent b in the Euclidean time direction then corresponds to the inverse temperature b ≡1/T. The’t Hooft coupling constant isgiven by l ≡g2N,and the dimensionless effectivecouplingconstantisgivenbyl˜ =l /T3. Withoutlossofgeneralityweset l =1,hencelow(high)T corresponds tostrong(weak)coupling strength, respectively. 3. Non-latticesimulationforSUSY matrix quantum mechanics Wefixthegaugebythestaticdiagonal gauge 1 A(t)= diag(a ,···a ), (3.1) b 1 N wherea canbechosentosatisfytheconstraint max (a )−min (a )≤2p usingthelargegauge a a a a a transformation. We have to add to the action a term S =−(cid:229) 2ln sina a−a b , which appears FP a<b 2 fromtheFaddeev-Popovprocedure. (cid:12) (cid:12) WemakeaFourierexpansion (cid:12) (cid:12) L L ′ Xiab(t)= (cid:229) X˜ianbeiw nt ; y aab(t)= (cid:229) y˜aabreiw rt , (3.2) n=−L r=−L ′ wherew = 2p and L ′≡L −1/2. Theindices nandr takeinteger andhalf-integer values, respec- b tively,corresponding totheimposedboundary conditions. Introducing ashorthand notation f(1)···f(p) ≡ (cid:229) f(1)···f(p) , (3.3) n k1 kp (cid:16) (cid:17) k1+···+kp=n wecanwritetheaction(2.1)asS=S +S ,where b f S = Nb 1 (cid:229)L nw −a a−a b 2X˜ba X˜ab−1tr [X˜,X˜ ]2 b "2n=−L (cid:18) b (cid:19) i,−n in 4 i j 0# (cid:16) (cid:17) Sf = 12Nb r=(cid:229)L−′L ′"i(cid:18)rw −a a−b a b(cid:19)y˜aba,−ry˜aabr−(gi)ab tr y˜a ,−r [X˜i,y˜b ] r #. (3.4) n (cid:16) (cid:17) o Itisimportantthatwehaveintroduced thecutoffL afterfixingthegaugenon-perturbatively. This ispossibleonlyin1d. Inhigherdimensions,themomentumcutoffregularization inevitablybreaks the gauge invariance. In the bosonic case, we have checked explicitly [9] that the results of the non-lattice simulation agreewiththeresults ofthelatticesimulationinthecontinuum limit. Note that our action is nothing but the gauge-fixed action in the continuum except for having a Fourier mode cutoff. This leads to various advantages over the lattice approach proposed in ref. [11]. Supersymmetry, whichismildlybroken bythecutoff, isshown(in1dWess-Zumino model) toberestoredmuchfasterthanthecontinuum limitisachieved. Infact,thecontinuum limitisalso approachedfasterthanonewouldnaivelyexpectfromthenumberofdegreesoffreedom. Theseare understandablefromthefactthatthemodesabovethecutoffarenaturallysuppressedbythekinetic 3 PuttingMtheoryonacomputer JunNishimura term. A further (albeit technical) advantage of our formulation is that the Fourier acceleration, which eliminates the critical slowing down completely [12], can be implemented without extra cost since we are dealing with Fourier modes directly. We consider that all these merits of the present approach compensate the superficial increase in the computational effort by the factor of O(L )comparedtothelatticeapproach [11]withthesamenumberofdegreesoffreedom. The fermionic action Sf may be written in the form Sf = 12MAa r;Bb sy˜aAry˜bBs, where we have expandedy˜a r=(cid:229) NA=21y˜aArtAintermsofU(N)generatorstA. Integratingoutthefermions,weobtain thePfaffianPfM,whichiscomplexforgenericconfigurations oftheremainingbosonicvariables. However,itturnsouttoberealpositivewithhighaccuracyinthetemperatureregionstudiedinthe present work. Hence wecan replace it by |PfM|=det(D1/4), where D =M†M. One can then applytheRationalHybridMonteCarloalgorithm [13]tostudythesystem inanefficientway. 4. Results 30 11..22 25 11..00 20 2N 15 00..88 E/ 00..4455 00..5500 10 N=12, L =4 5 N=14, L =4 black hole HTE 0 0.0 1.0 2.0 3.0 4.0 5.0 T Figure1:Theenergy(normalizedbyN2)isplottedagainstT.Thedashedlinerepresentstheresultobtained by HTEup to thenextleadingorderfor N =12 [14]. Thesolid line representstheasymptoticpower-law behavioratsmallT predictedbythegauge/gravityduality.Theupperleftpanelzoomsuptheregion,where thepower-lawbehaviorsetsin. In fig. 1 we plot the internal energy defined by E = ¶ (b F), where F is the free energy ¶b ofthesystem. Ourresults interpolate nicely theweakcoupling behavior —calculated bythehigh temperatureexpansion(HTE)uptothenextleadingorder[14]—andthestrongcouplingbehavior E =7.4·T2.8 predicted by the gauge/gravity duality [2] from the dual black-hole geometry [15]. N2 Thepower-lawbehaviorsetsinatT ≃0.5,whichisreasonablesincetheeffectivecouplingconstant isgivenbyl˜ =1/T3 inourconvention. In ref. [4] the Gaussian expansion method was applied to the present model, and the energy obtainedattheleadingorderwasfittednicelytothepowerlawE/N2=3.4·T2.7within0.25.T . 1. ThisresultisinreasonableagreementwithourdataatT ∼1,butdisagreesatlowertemperature. In fig. 2 we plot the absolute value of the Polyakov line P= 1 (cid:229) N eia a, which is the order N a=1 parameter fortheSSBoftheU(1)symmetry. Itchanges smoothly fortherange ofT investigated, 4 PuttingMtheoryonacomputer JunNishimura 1.00 0.90 æP| | Æ 0.80 N=12, L =4 N=14, L =4 HTE 0.70 0.0 1.0 2.0 3.0 4.0 5.0 T Figure 2: The Polyakovline is plotted againstT. The dashed line representsthe result of HTE up to the nextleadingorderforN=12[14]. Thedottedlinerepresentsafittoeq.(4.1)witha=0.15andb=0.072. 1.0 0.8 0.6 æP| | Æ 0.4 0.2 N=16 N=32 HTE 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 T Figure3: ThePolyakovlineforthebosonicmodel[16]. ThedashedlinerepresentstheresultofHTEupto thenextleadingorderforN=16[14]. whichimpliestheabsenceofaphasetransition aspredicted bythegauge/gravity duality[3,5]. At lowT itcanbefittednicelytotheasymptoticbehavior characteristic toadeconfined theory: a h|P|i=exp − +b . (4.1) T (cid:16) (cid:17) Thisisinstrikingcontrast tothebosonic case[16]showninfig.3forcomparison1. 1Inref.[16]itwasfoundthatthereareactuallythreephasesinthebosonicmodel. Theintermediatephaseappears inaverynarrowrangeoftemperatureTc2<T <Tc1,whereTc1=0.905(2)andTc2=0.8761(3),anditischaracterized bythenon-uniformeigenvaluedistributionoftheholonomymatrix. Theorderofphasetransitionsaresecondorderat T =Tc1,andthirdorderatT =Tc2. 5 PuttingMtheoryonacomputer JunNishimura 5. Summary andfuture prospects We have presented the first Monte Carlo results for the maximally supersymmetric matrix quantum mechanics. Thenon-lattice simulation enabled ustostudythelowtemperature behavior, whichwasnotaccessiblebyHTE.Thisprovidedhighlynon-trivialevidencesforthegauge/gravity duality. Inparticular, weobserved thattheinternalenergyasymptotes nicelyatlowtemperatureto theresultobtained fromthedualblack-hole geometry. Ourresultssuggestthatnotonlythepowerbutalsothecoefficientofthepower-lawbehavioris reproducedcorrectlybythegaugetheoryintheN→¥ andl˜ →¥ limits. Thisimpliesthatwewere able to identify the microscopic degrees of freedom, which accounts for the Bekenstein-Hawking entropy forthe10dnon-extremal blackhole. Theyarenothing buttheopenstrings attached tothe D0-branes,whicharedescribedbythegaugetheory. Thisshouldbecomparedwithref.[17],which studied extremalblackholesandreliedonthesupersymmetric non-renormalization theorem. Assumingthedualitytoholdinthestrongersense,onemaygoonandinvestigatethequantum and stringy corrections to the black-hole thermodynamics from the gauge theory side as finite-N andfinite-l˜ effects. Inparticular itwouldbeinteresting tounderstand thephysicalmeaningofthe infrared instability observed inoursimulation [10]fromthatperspective. When we simulate M theory, we should impose periodic boundary conditions on fermions, and then the system withfiniteN corresponds toasector ofM theory compactified on alight-like circle[18]. However,thePfaffianwillnotbeclosetorealpositiveduetothefermioniczeromodes unlike the situation in the present work. That may cause a technical problem known as the sign problem when one tries to investigate the large-N behavior. The same problem occurs in Monte Carlo studies of the totally reduced models, in which the phase of the Pfaffian is speculated [19] to induce the spontaneous breaking of SO(10) symmetry down to SO(4). This pattern of SSB is indeed suggested by the Gaussian expansion method [20], and it provides a natural scenario for the dynamical generation of 4d space-time [21]. In ref. [22] it was conjectured, based on the Eguchi-Kawai equivalence, that a similar phenomenon occurs also in the supersymmetric matrix quantummechanics. Wehopetoaddresssuchanissuefromfirstprinciplesbyusingthenon-lattice simulation methodtogetherwiththeideaproposed inref.[8]toovercomethesignproblem. References [1] T.Banks,W.Fischler,S.H.ShenkerandL.Susskind,Mtheoryasamatrixmodel:Aconjecture, Phys.Rev.D55(1997)5112[hep-th/9610043]. [2] N.Itzhaki,J.M.Maldacena,J.SonnenscheinandS.Yankielowicz,SupergravityandthelargeNlimit oftheorieswithsixteensupercharges,Phys.Rev.D58(1998)046004[hep-th/9802042]. [3] J.L.F.Barbon,I.I.KoganandE.Rabinovici,OnstringythresholdsinSYM/AdSthermodynamics, Nucl.Phys.B544(1999)104[hep-th/9809033]. [4] D.Kabat,G.LifschytzandD.A.Lowe,Blackholethermodynamicsfromcalculationsinstrongly coupledgaugetheory,Phys.Rev.Lett.86(2001)1426[hep-th/0007051];Blackholeentropy fromnon-perturbativegaugetheory,Phys.Rev.D64(2001)124015[hep-th/0105171]. [5] O.Aharony,J.Marsano,S.Minwalla,K.Papadodimas,M.VanRaamsdonkandT.Wiseman,The phasestructureoflowdimensionallargeNgaugetheoriesontori,JHEP0601(2006)140 [hep-th/0508077]. 6 PuttingMtheoryonacomputer JunNishimura [6] N.Ishibashi,H.Kawai,Y.KitazawaandA.Tsuchiya,Alarge-Nreducedmodelassuperstring,Nucl. Phys.B498(1997)467[hep-th/9612115]. [7] W.Krauth,H.NicolaiandM.Staudacher,MonteCarloapproachtoM-theory,Phys.Lett.B431 (1998)31[hep-th/9803117];J.Ambjorn,K.N.Anagnostopoulos,W.Bietenholz,T.Hottaand J.Nishimura,MonteCarlostudiesoftheIIBmatrixmodelatlargeN,JHEP07(2000)011 [hep-th/0005147]. [8] K.N.AnagnostopoulosandJ.Nishimura,Newapproachtothecomplex-actionproblemandits applicationtoanonperturbativestudyofsuperstringtheory,Phys.Rev.D66(2002)106008 [hep-th/0108041]. [9] M.Hanada,J.NishimuraandS.Takeuchi,Non-latticesimulationforsupersymmetricgaugetheories inonedimension,Phys.Rev.Lett.99(2007)161602[arXiv:0706.1647[hep-lat]]. [10] K.N.Anagnostopoulos,M.Hanada,J.NishimuraandS.Takeuchi,MonteCarlostudiesof supersymmetricmatrixquantummechanicswithsixteensuperchargesatfinitetemperature,Phys.Rev. Lett.100(2008)021601[arXiv:0707.4454[hep-th]]. [11] S.CatterallandT.Wiseman,Towardslatticesimulationofthegaugetheorydualstoblackholesand hotstrings,JHEP12(2007)104[arXiv:0706.3518[hep-lat]]. [12] S.CatterallandS.Karamov,TestingaFourieracceleratedhybridMonteCarloalgorithm,Phys.Lett. B528(2002)301[hep-lat/0112025]. [13] M.A.Clark,A.D.KennedyandZ.Sroczynski,Exact2+1flavourRHMCsimulations,Nucl.Phys. Proc.Suppl.140(2005)835[hep-lat/0409133]. [14] N.Kawahara,J.NishimuraandS.Takeuchi,Hightemperatureexpansioninsupersymmetricmatrix quantummechanics,JHEP12(2007)103[arXiv:0710.2188[hep-th]]. [15] I.R.KlebanovandA.A.Tseytlin,Entropyofnear-extremalblackp-branes,Nucl.Phys.B475(1996) 164[hep-th/9604089]. [16] N.Kawahara,J.NishimuraandS.Takeuchi,Phasestructureofmatrixquantummechanicsatfinite temperature,JHEP10(2007)097[arXiv:0706.3517[hep-th]]. [17] A.StromingerandC.Vafa,MicroscopicoriginoftheBekenstein-Hawkingentropy,Phys.Lett.B379 (1996)99[hep-th/9601029]. [18] N.Seiberg,Whyisthematrixmodelcorrect?,Phys.Rev.Lett.79(1997)3577[hep-th/9710009]. [19] J.NishimuraandG.Vernizzi,SpontaneousbreakdownofLorentzinvarianceinIIBmatrixmodel, JHEP04(2000)015[hep-th/0003223];BraneworldgenerateddynamicallyfromstringtypeIIB matrices,Phys.Rev.Lett.85(2000)4664[hep-th/0007022]. [20] J.NishimuraandF.Sugino,Dynamicalgenerationoffour-dimensionalspace-timeintheIIBmatrix model,JHEP05(2002)001[hep-th/0111102];T.AoyamaandH.Kawai,Higherordertermsof improvedmeanfieldapproximationforIIBmatrixmodelandemergenceoffour-dimensional space-time,Prog.Theor.Phys.116(2006)405[hep-th/0603146]. [21] H.Aoki,S.Iso,H.Kawai,Y.KitazawaandT.Tada,Space-timestructuresfromIIBmatrixmodel, Prog.Theor.Phys.99(1999)713[hep-th/9802085]. [22] N.KawaharaandJ.Nishimura,ThelargeNreductioninmatrixquantummechanics:Abridge betweenBFSSandIKKT,JHEP09(2005)040[hep-th/0505178]. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.