ebook img

Progress in Astronautics and Aeronautics, Volume 241 - Advances in Intelligent and Autonomous Aerospace Systems PDF

539 Pages·2012·16.37 MB·English
by  Valasek
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Progress in Astronautics and Aeronautics, Volume 241 - Advances in Intelligent and Autonomous Aerospace Systems

Advances in Intelligent and Autonomous Aerospace Systems EDITED BY John Valasek Texas A&M University College Station, Texas Volume 241 Progress in Astronautics and Aeronautics Timothy C. Lieuwen, Interim Editor-in-Chief Georgia Institute of Technology Atlanta, Georgia Publishedby AmericanInstituteofAeronauticsandAstronautics,Inc. 1801AlexanderBellDrive,Reston,VA20191-4344 AmericanInstituteofAeronauticsandAstronautics,Inc.,Reston,Virginia 1 2 3 4 5 Copyright # 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.ReproductionortranslationofanypartofthisworkbeyondthatpermittedbySections 107and108oftheU.S.CopyrightLawwithoutthepermissionofthecopyrightownerisunlawful. Thecodefollowingthisstatementindicatesthecopyrightowner’sconsentthatcopiesofarticlesin thisvolumemaybemadeforpersonalorinternaluse,onconditionthatthecopierpaytheper- copyfee($2.50)plustheper-pagefee($0.50)throughtheCopyrightClearanceCenter,Inc.,222 RosewoodDrive,Danvers,Massachusetts01923.Thisconsentdoesnotextendtootherkindsof copying, for which permission requests should be addressed to the publisher. Users should employthefollowingcodewhenreportingcopyingfromthevolumetotheCopyrightClearance Center: 978-1-60086-897-9/12$2.50þ.50 Data and information appearing in this book are for informational purposes only. AIAA is not responsibleforanyinjuryordamageresultingfromuseorreliance,nordoesAIAAwarrantthat useorreliancewillbefreefromprivatelyownedrights. ISBN978-1-60086-897-9 PREFACE Intelligentsystemsareentitiesthatinteractwiththeirenvironmentinsuchaway astoachievetheirgoals.Intelligentandautonomousagentsorentitiesthathandle decisionandcontrolfunctionsareresponsibleforensuringthatsystemsperform properly and meet prescribed performance objectives. Consequently, the safe, reliable, and efficient operation of these agents or entities is essential in the domainofaerospacesystems.Althoughnoformalandwidelyaccepteddefinition exists of what exactly makes an aerospace system intelligent and autonomous, some combination ofthe following characteristics is likely to be inherent: 1. Learning: having goals and sensing its environment it learns, for each system stateor situation, which action permits it to achieve its goals 2. Reasoning:introspection/havingamodelofself/managinginternalstates 3. Deliberating/planning rather than simply reacting: continually acting, mentally and externally, and by acting reaches its objectives more often than pure chance indicates (normally much more often) 4. Adaptability: altering the state of the system such as its location in the environment or itsinternal state 5. Robustness toenvironment: generalizingappropriatelytonewsituations and improving behavior given experience, including when the environ- ment is nondeterministic, incompletely observable, and changing over time 6. Improving efficiency (over time and/or space): producing sequences of jointly optimized actions 7. Information compression: processing data to generate knowledge 8. Metabolization: consuming energy or resources and using it for its internal processes and inorder toact Researchadvancesholdthepromisetotransformaerospacewithsystemsthat respond more quickly (e.g., autonomous collision avoidance, online path plan- ning); work in dangerous or inaccessible environments (e.g., autonomous systems for space exploration); provide large-scale, distributed coordination (e.g.,automatedairtrafficcontrol,cooperativesearchandrescue);arehighlyeffi- cient(e.g.,morphingairvehicles,morphingspaceantennas);andaugmenthuman capabilities (e.g., next-generation glass cockpits, automated crew advisory systems). All of these capabilities will be realized by embedding computational intelligence,communication,control,andnewmechanismsforsensing,actuation, and adaptation into air and space vehicles, propulsion systems, exploration systems, and vehicle management systems toname but a few. This book seeks to provide both the aerospace researcher and the practicing aerospace engineer with an exposition on the latest innovative methods and approaches that focuses on intelligent and autonomous aerospace systems. The chapters are written by leading researchers in this field and include ideas, xv xvi PREFACE directions,andrecentresultsoncurrentintelligentaerospaceresearchissueswith afocusondynamicsandcontrol,systemsengineering,andaerospacedesign.The content on uncertainties, modeling of large and highly nonlinear complex systems, robustness, and adaptivity are intended to be useful in the subsystem and the overall system level design and analysis of various aerospace vehicles. A broad spectrum of methods and approaches is presented, including bio- inspiration; fuzzy logic; genetic algorithms; Q-learning; Markov decision processes; approximate dynamic programming; artificial neural networks; prob- abilisticmaps;multi-agentsystems;andKalman,particle,andconfidencefiltering. Althoughanoriginalwork,thisbookhasitsrootsinasimilarbookwrittenby EwaldHeerandHenryLumfrom1989titledMachineIntelligenceandAutonomy forAerospaceSystemsandpublishedbyAIAAintheProgressinAeronauticsand AstronauticsSeries.Itisenlighteningtoreviewthescopeandcontentofthatwork toseehowthefieldhasprogressedinthelastquarter-century.Thisworkfocused exclusively on spacecraft that were currently anticipated from contemporary requirements and applications on future space missions. It was envisioned that these would present building blocks for further development and advances. Machine intelligence and human–machine interaction aspects were emphasized asameanstoincreasethetechnicalfeasibilityandeconomicfeasibilityofspace- craftsystems.Asdefinedinthatwork,theseaspectsdescribedsystemsthataccept human commands, reason, and perform manipulativetasks. It is interesting that expert systems and knowledge-based systems were fea- turedsoprominentlyinthisearlierworkbecausetheydidnotseenearlythewide- spread use that was envisioned for them. On the other hand, information acquisition for single and multisensor systems was identified as an important emerging area, and this is certainly true today andfor theforeseeablefuture. A rough indicator of the level of maturation of the intelligent systems of a quarter-centuryagocanbeinferredfromthefactthatonlyoneofthe12chapters of the book featured a system or application that used closed-loop intelligent or autonomouscontrol.Theapplication was thecontrolofadeformablespacecraft system.Bycontrast,sevenofthe12chaptersofthisbookfeatureclosed-loopintel- ligent or autonomous control. It is clear that the field has matured to a level in which closed-loop control is increasingly pervasive. Whether or not this trend continues remains to be seen. Thisbookisorganizedbroadlyintothreeparts.Althoughmanydifferentcri- teriacouldhavebeenusedtogroupthechapters,applyingageneralformofthe technique of classifiers eventually produced the good but by no means unique organization used. In spite of this, many of the chapters have distinct technical elements that could have easily justified their inclusion in a different part. This serves to remind one of the interdisciplinary nature of intelligent systems. Part I is titled Intelligent Flight Control and presents work on various control techniques applied to flapping micro air vehicles, unmanned helicopters, and generictransportaircraft.PartIIistitledIntelligentPropulsionandHealthMan- agementandfeaturesarchitecturesforintegratedhealthmanagementandhealth PREFACE xvii monitoring,aswellastwochaptersonpropulsioncontrol.PartIIIistitledIntel- ligent Planning and Multi-Agent Systems and addresses a variety of methods to support and conduct missions ranging from autonomous soaring to cooperative teams of UAVs to space exploration missions to air vehicle search and target tracking. Itismysincerehopethatthereaderfindsthebookasusefulandrewardingas it has been writing it. John Valasek CollegeStation,Texas June2012 TABLE OF CONTENTS Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv PART I INTELLIGENT FLIGHT CONTROL Chapter 1 Towards Bio-Inspired Robotic Aircraft: Control Experimentson Flappingand Gliding Flight . . . . . . . . . . . 1 MichaelDorothy,AdityaA.Paranjape,P.DanielKuangandSoon-JoChung, UniversityofIllinoisatUrbana–Champaign,Urbana,Illinois I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Biologically Inspired CPG Control Basics . . . . . . . . . . . . . . . . . . . . . . . 4 III. Kinematics and Unsteady Aerodynamics. . . . . . . . . . . . . . . . . . . . . . . 7 IV. CPG-Based Control Results of RoboBat . . . . . . . . . . . . . . . . . . . . . . . 11 V. Flight Mechanics of MAV with Articulated Wings . . . . . . . . . . . . . . . 14 VI. Control Law Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 VII. Experiments on theElements of Perching . . . . . . . . . . . . . . . . . . . . 21 VIII. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Chapter 2 Neural Network-Based Optimal Control of an Unmanned Helicopter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DavidNodlandandH.Zargarzadeh,MissouriUniversityofScienceandTechnology,Rolla, Missouri;ArpitaGhosh,NationalMetallurgicalLaboratory,Jamshedpur,India; andS.Jagannathan,MissouriUniversityofScienceandTechnology,Rolla,Missouri I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 II. Helicopter Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 III. Nonlinear Optimal Regulation and Tracking of theHelicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 IV. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 V. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 vii viii TABLEOFCONTENTS Chapter 3 Intelligent ConstrainedOptimal Control of Aerospace Vehicles with Model Uncertainties . . . . . . . . . . . . . . . . . . 59 JieDingandS.N.Balakrishnan,MissouriUniversityofScienceandTechnology, Rolla,Missouri Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 II. Approximate Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . 63 III. J-SNAC Synthesis with Nonquadratic Cost . . . . . . . . . . . . . . . . . . . . 65 IV. Dynamic Reoptimization of J-SNAC Controller . . . . . . . . . . . . . . . . . 67 V. Tracking Problem withInput Constraint . . . . . . . . . . . . . . . . . . . . . . 69 VI. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 VII. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Chapter 4 Modified Reference Model MRAC (M-MRAC): AnApplication to a Generic Transport Aircraft . . . . . . . . . . . . . . . . . 91 VahramStepanyanandKalmanjeKrishnakumar,NASAAmesResearchCenter, MoffettField,California I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 II. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 III. Reference Model Modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 IV. Asymptotic Properties of M-MRAC . . . . . . . . . . . . . . . . . . . . . . . . . 100 V. Transient Properties of M-MRAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 VI. Disturbance Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 VII. Scalar Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 VIII. Aerospace Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 IX. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Chapter 5 L Adaptive Control inFlight. . . . . . . . . . . . . . . . . . . . 129 1 EnricXargayandNairaHovakimyan,UniversityofIllinoisatUrbana–Champaign, Urbana,Illinois;VladimirDobrokhodovandIsaacKaminer,Naval PostgraduateSchool,Monterey,California;ChengyuCao,Universityof Connecticut,Storrs,Connecticut;andIreneM.Gregory,NASALangley ResearchCenter,Hampton,Virginia I. Fast Adaptation: The Keyto Safe Flight. . . . . . . . . . . . . . . . . . . . . . 129 II. L Adaptive Control for the NPS Autonomous UAV . . . . . . . . . . . . 132 1 III. L Adaptive Control for the NASA AirSTAR Flight-TestVehicle. . . . 140 1 TABLEOFCONTENTS ix IV. Concluding Remarks and Future Research Directions . . . . . . . . . . . 168 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 PART II INTELLIGENT PROPULSION AND HEALTH MANAGEMENT Chapter 6 Integrated Systems Health Management for Intelligent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 FernandoFigueroa,NASAStennisSpaceCenter,MississippiandKevinMelcher, NASAJohnH.GlennResearchCenteratLewisField,Cleveland,Ohio Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 II. iISHMCapability Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 III. iISHMin Systems Design, Integration, and Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 IV. Intelligent Control for iISHM-Enabled Systems . . . . . . . . . . . . . . . . 191 V. Opportunities and Needfor Advances in Verification and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 VI. Implementation Example:Rocket-Engine Test Facility and Test Article. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 VII. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Chapter 7 Intelligent Propulsion Control and Health Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 SanjayGarg,NASAJohnH.GlennResearchCenteratLewisField,Cleveland,Ohio I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 II. Turbofan Engine Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 III. State of the Art of EngineControl. . . . . . . . . . . . . . . . . . . . . . . . . . 204 IV. Some Retrofit Intelligent EngineControl Concepts . . . . . . . . . . . . . 209 V. Model-Based Control and Diagnostics. . . . . . . . . . . . . . . . . . . . . . . 216 VI. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Chapter 8 Genetic Fuzzy Controller for a Gas-Turbine Fuel System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 AndrewVickandKellyCohen,UniversityofCincinnati,Cincinnati,Ohio I. Introduction toGenetic Fuzzy Systems . . . . . . . . . . . . . . . . . . . . . . 229 x TABLEOFCONTENTS II. Gas-Turbine Fuel System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 III. Genetic Fuzzy Gas-Turbine Fuel System . . . . . . . . . . . . . . . . . . . . . 248 IV. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 PART III INTELLIGENT PLANNING AND MULTI-AGENT SYSTEMS Chapter 9 Multiresolution State-Space Discretization Method for Q-Learning for One or More Regions ofInterest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 AmandaLamptonandJohnValasek,TexasA&MUniversity,CollegeStation,Texas I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 II. Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 III. Learning on a Two- and N-Dimensional Continuous Domain . . . . . 281 IV. Multiresolution State-SpaceDiscretization (AAG) for NDimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 V. Multiple Goal Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 VI. Policy Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 VII. Benchmark Dynamic System Example —Inverted Pendulum . . . . 288 VIII. Autonomous Soaring Updraft/Thermal Example . . . . . . . . . . . . . . 298 IX. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 Chapter 10 Motion Planning Under Uncertainty . . . . . . . . . . . . . . 309 Ali-AkbarAgha-Mohammadi,TexasA&MUniversity,CollegeStation,Texas; SandipKumar,Mathworks,Natick,Massachusetts;andSumanChakravorty, TexasA&MUniversity,CollegeStation,Texas I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 II. Mathematical Formulation forDecision Making Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 III. Generic Framework for Sampling-Based Feedback Motion Planners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 IV. Sampling-Based Feedback Motion Planners with Process Uncertainty and Stochastic Maps . . . . . . . . . . . . . . . . . . . . 330 V. Sampling-Based Feedback Motion Planners with Motion Uncertainty and Imperfect State Information . . . . . . . . . . . . . . . . . 345 Appendix A: Proof of Lemma4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 Appendix B: Proof of Corollary 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 Appendix C: Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 TABLEOFCONTENTS xi Appendix D: Proof of Theorem 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 Chapter 11 Protocol Utilization in Intelligent Systems to Facilitate Exploration Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 M.LyellandW.Drozd,IntelligentAutomation,Inc.,Rockville,Maryland; A.GrinbergWebb,MontgomeryCollege,Rockville,Maryland;and J.NandaandW.Chen,IntelligentAutomation,Inc.,Rockville,Maryland I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 II. Mission Criteria and Behavior Norms: The Impact on Framework Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 III. Technology Fundamentals: Software AgentParadigm and Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 IV. Multi-Agent-Based Subsystems and Astronaut Interactions and Oversight: Behavior and Protocol Development . . . . . . . . . . . 395 V. Robot Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 VI. Autonomous Robot Teams and Astronaut Oversight: Protocol Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 VII. Protocol Utilization by theDeployedRobot Team . . . . . . . . . . . . . 428 VIII. Discussion and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 Acknowledgment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 Chapter 12 Frameworkfor User–Guided Search and Adaptive Target Trackingvia Cooperative UAVs . . . . . . . . . . . . . . . 445 R.A.Cortez,D.TolicandI.Palunko,UniversityofNewMexico,Albuquerque, NewMexico;N.Eskandari,UniversityofBritishColumbia,Vancouver,British Columbia,Canada;andM.Oishi,R.FierroandI.Wood,UniversityofNewMexico, Albuquerque,NewMexico I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 II. Problem Formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 III. UAV Coordination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 IV. Quadrotor Baseline Controller Design . . . . . . . . . . . . . . . . . . . . . . . 456 V. Simulations and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 VI. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 Supporting Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Description:
Research advances in embedded computational intelligence, communication, control, and new mechanisms for sensing, actuation, and adaptation hold the promise to transform aerospace. The result will be air and space vehicles, propulsion systems, exploration systems, and vehicle management systems that
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.