ebook img

Preferential prey sharing among kin not found in the social huntsman spider, Delena cancerides (Araneae: Sparassidae) PDF

2011·5.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Preferential prey sharing among kin not found in the social huntsman spider, Delena cancerides (Araneae: Sparassidae)

2011.TheJournalofArachnology39:258-262 Preferential prey sharing among kin not found in the social huntsman spider, Delena cancerides (Araneae: Sparassidae) AnthonyAuletta: DepartmentofEntomology, Cornell University, Ithaca, NewYork 14853; DepartmentofBiological Sciences, WesternCarolina University, Cullowhee, North Carolina 28723, USA LindaS.Rayor': DepartmentofEntomology,CornellUniversity,Ithaca,NewYork 14853USA;Evolution,Ecologyand Genetics, AustralianNational University, Canberra, Australian CapitalTerritory0200, Australia Abstract. Although the benefitsofgroupforagingareimportantforevolutionofsocialityinspiders, thefactorsthat intluencegroup-levelbenefitsofpreysharinginsocialspidersarestillpoorlyunderstood.Intheunusualtransitionalsocial spiderDelenacanceridesWaickenaer1837(Sparassidae),preysharingalmostcertainlyoccursoccasionallyamongnon-kin inthewild,andsowetestedtheeffectsofkinrelationshipsandfamiliarityontheamountofpreyconsumedinthisspecies. Todeterminewhethertheamountofpreysharingincreasedwithrelatednessorwithfamiliarity,wefedtreatmentgroups containingspiderlingsofvaryingrelatednessandfamiliarityasinglepreyitemandmeasuredtheamountofweightgained by sharinggroups. Wefound noeffectofrelatednessorfamiliarityonthe amountofpreyconsumed by prey-sharing groupsofD.cancerides.Increaseddurationofsharing,numberandageofthespidersinvolved,andsizeofthepreyitemall increasedtheamountofpreyconsumed.Thebenefitsofpreysharinginthisspecieslikelyoverwhelmanypossibleinclusive fitnessbenefitsderivedfromkindiscriminationinthishighlyoutbredsocialspider. Hence,werejectthehypothesisthat groupsofkinconsumedproportionatelylargeramountsofpreybiomassthangroupsofnon-kin,asproposedbySchneider andBildein2008withStegodyphuslineatusLatreille 1817(Eresidae). Keywords: Cooperativeforaging,kinrecognition,socialspiders,group-living,nutrition Benefits ofcooperative foraginghavebeen proposed to be siblings during the first 30 days following hatching, after thedrivingforcebehindtheevolutionofsocialbehaviorina which the spiders disperse during the fifth instar and diverse array of animals, from wild canids to predatory apparently do not forage communally again (Schneider hemipterans (Travers 1993; Creel & Creel 1995; Krause & 1995; Schneider& Lubin 1997). When dispersing, S. lineatus Ruxton2002).Cooperativehuntingallowsthecaptureofprey display a high level of philopatry, and individuals from too largeforsolitary individualsto handle, and preysharing differentnatalgroupstendtodisperseinoppositedirectionsin leads to increased foraging success and higher fitness for a given microhabitat (Lubin et al. 1998). Therefore, it is group-livingindividuals,althoughtheaverageamountoffood unlikelythatS. lineatusjuvenileswouldeverbeinasituation that an individual consumes during each predation event wheretheywouldpotentiallysharepreyitemswithunrelated mightbesmaller(Clark& Mangel 1986; Caracoetal. 1995). or unfamiliar conspecifics. Similarly, prey sharing among Similargroup foraging benefits are thought to be one ofthe unrelatedconspecifics is unlikelyin highly social cooperative majoradvantages ofgrouplivingin social spiders (Araneae) spidersexhibitinglowratesofimmigrationandhighlevelsof (Buskirk 1981; Rypstra & Tirey 1991; Whitehouse & Lubin inbreeding(Aviles 1997; Lubin&Bilde2007). 2005; Lubin& Bilde2007). However, manyquestionsremain Like S. lineatus, the social spider Delena cancerides about theeffects ofgroupcomposition on theextentofprey Waickenaer 1837 (Sparassidae) is known to be capable of sharingwithingroups. kinrecognition(Beavisetal.2007;Yipetal.2009). However, Schneider and Bilde (2008) found that in the subsocial in contrast to S. lineatus, it is probable that immature D. spider Stegodyphus lineatus Latreille 1817 (Eresidae), groups cancerides occasionally share prey items with non-kin in the ofclose kin share more prey biomass with each other than field. Thus, in the present study, we set out to determine groupsofnon-kin,regardlessofthefamiliarityofindividuals whether different amounts of prey biomass are shared by inthegroup.Theauthorshypothesizedthatindividualspiders groups of D. cancerides depending on the relatedness and couldpreferentiallydecreasetheamountofdigestiveenzymes familiarityofalloftheindividualsinthegroup. they would inject into a prey item when sharing with non- Delena cancerides is an unusual transitional social spider relatives,whichwouldexplaintheobservedpatterns.Previous from Australia that shares subsocial and cooperative spider work had shownthatS. lineatusresponddifferentiallyto kin traits(L.S.Rayorunpubl.data).Individualsofthisspecieslive by increasedcannibalism ofnon-kin underfoodstress (Bilde in kin-based groups of up to 300 individuals under the &Lubin2001),butSchneiderandBilde(2008)werethefirstto exfoliating bark of dead trees, and these groups typically indicate that the quantity of prey shared in groups was consist of one adult female and one to four cohorts of influenced bykin recognition. immature offspring (Rowell & Aviles 1995; L.S. Rayor However,unrelatedS. lineatusspiderlingsdonotshareprey unpubl. data). naturally. This species is only known to share prey with Delena canceridespopulations are patchily distributed and inhabitatswheretherearemultiplesuitabletreesforretreats, ‘Correspondingauthor. E-mail: [email protected] such that D. cancerides colonies are frequently found on 258 AULETTA&RAYOR—PREYSHARINGNOTPREFERENTIALAMONGKIN 259 neighboring trees (L.S. Rayor iinpubl. data). As the spiders Spiders digest their food externally by secreting digestive forage for prey outside their retreat, sometimes traveling as enzymesintothebodyofthepreyitemandthenimbibingthe muchas5-10mbeforereturningtotheretreatinthemorning liquefiedremains(Foelix2011).Sincethespidersleavebehind (Yip&Rayor2011),youngspidersoccasionallyreturntothe the indigestible parts ofprey items, the amount ofbiomass incorrect retreat (Yip and Rayor 2011). Although initial that spiders ingest from their prey can be measured by studiesonthespeciesindicatedthatD. cancerideswerehighly recordingtheweightofthepreyitembeforeandafteritisfed aggressivetowardsconspecificsfromothercolonies(Rowell& onbyagroupofspiders(Tso&Severinghaus 1998). Aviles 1995),morerecentstudies(Beavisetal.2007;Yipetal. Toassessthepossibledifferential benefitsforprey-sharing 2009) demonstrated that youngerindividuals below a certain groups ofdifferent relationships and levels offamiliarity, we sizethreshold(<seventhinstar)werereadilyacceptedintoalien randomly assigned individuals from 19 laboratory source colonieswithoutovertaggression.Thesefindingssuggestthat coloniestofourexperimentaltreatments: einndciovuindtuearlisnignajunvyenoinleescoflroonmyhoatvheera,ruenarseolnaatbeldepcroolboanbiielsityanodf • fRerloamteadsiFnagmlieliclaurtc(hRFa)nd=thastpihdeardsbteheantrweearreedfutlolgestihbelringisn pmiYuonanotdptAueiuenmvnbltiolgyid.anu3lasgld0lpyais%tdjsafeuho)rova,fserr,naaiaiglnlellegsetfpahepeswoecrpuidaeiagiyydlnhelgwrfyisi,ret,tvohbeimspentrntthleesheefyesmiist.nrsefht(trhaireerneqialunttaeghbn(eotYorifcaipconturo&rmtrshyReo(aifLnfy.ioiSean.lrpdcpRr2rwe0aoa1hyx1seoi)enr.-d • stffiRihserrboeloollammiastntaegitmtsdohheneefUunrcnnaaeotftggmiaalegmlaitschlsisoeainilcycaneorgwnl(ebyae(irtrReictUmlhtr.um)heteeicdnh=istaerbtcousedoptliunydcdteehardafsittntesohtrthaaeatrdath)cehbywaeeonehrtdnahedesrraeealpdimsiaseorerredacgfttueelilddynl growth)frompreysharingattheretreatduetothepresenceof beforetheexperimentsbeganasfourthinstarspiderlings. oldersiblings,whichcancapturelargerpreyitems(E.C. Yip • Unrelated Familiar (UF) = spiders that were 100% unpIunbtlh.isdsattuad)y.,wetestedwhetherSchneiderandBilde’s(2008) uhnardelbaeteendtsoepaallraottehderfrsopimdetrhseiirnntahtealsacmoelognireosupi,mbmuetdiwahtieclhy finding that both groups of familiar and unfamiliar kin after they had emerged from the egg sac and reared consumemorebiomasswhilesharingpreythangroupsofnon- together. kin could be extended to a spider species in which this • UnrelatedUnfamiliar(UU) = spidersthatwerealso 100% atbhenehdatvuointorarlelaiacnttgeuedasltilenyddiobvciicdouurmasal.ss.sToTooftepesrtxeatyhmiiisntheeymptsohteihneesfgfiresoc,tuspwseofoeffxaarmmeililaintaeerdd- mounnerlneytlsaitnbetedrgoatdnou.caelldottoheeracshpidoetrhserinditrheectlgyrobuepfoarendthtehaetxpweerrie- ity independent ofrelatedness, we repeated the experiments with groups of unfamiliar-related and familiar-unrelated Each groupconsisted ofsix individual spiders, which were spiders. We predicted that if Schneider and Bilde’s (2008) housedin 10 X 10 X 13cmplasticcages. Duetoinstancesof results would also apply to D. cancerides, the spiders would individual mortality, some groups were reduced to five sharemorepreybiomassingroupsofrelatedindividualsthan individuals. Priortogroupformationweweighedeachspider theywouldingroupsofunrelatedindividuals. and minimized initial size differences between the spiders in METHODS each group by purposefully forming groups ofspiders with Study organisms.—We reared the specimens of Delena msiemnitlsarwhboednythweeisgphitdse.rsWreeacpheerdfothremefdoutrhtehipnrsetya-rsahanrdicngonetxipneureid- cancerides used in this experiment in the laboratory from untilthespidersreachedtheseventhinstar,atwhichpointwe July-December2009.Theyweredescendantsofwildindivid- determinedthemtobetoolargefortheexperiment. uals originally collected in 2006 and 2008 from sites in Several minutes prior to each experimental trial, we s(oRuotwheelalst&erAnviAluesstr1a9l9i5a;.GBreuceatuzsneertheitsals.pe2c0i0e6s),iswheigkhelpytodeuttabirleedd amneeasstuhreteidzetdhetthoetalspmiadesrssofintheeacehntirgerogurpoupwitohfpCreO-f2e,edainndg long-termrecordsoftheoriginsandallcross-breedingevents spiderstothenearest0.0001 gusingaMettlerToledoAG285 foreachcolonyinordertomaintainoutbreeding.Thespiders electronicscale.Afterseveralminutes,whenthespidersbegan livefor~2.5yranddonotreachsexualmaturityuntil~ 1yr, to recover from anesthesia, we weighed a single prey item so the spiderlings used from 2008 wild-caught spiders were (eitheraflyorcricket)andplaceditintoeachgroup.Preytype only the Fi generation in the laboratory, while spiderlings wasdeterminedbyspidersize, assmallerspiders(fourthand from parents collected in 2006 were ~ F3 generation. We fifthinstars)captured housefliesmostreadily. Largerinstars housedlaboratorycoloniesofspidersin9.5 and 19-1terraria (fifth-seventhinstars)weregivensarcophagidfliesorcrickets, withsheetsofclearplexiglass“bark”affixed~2cmfromthe dependingonavailability. glass to emulate their natural retreat structure. Prey items Oncethespidershadsuccessfullycapturedthepreyitem,we included adult flesh flies {Neobellieria bullata Diptera; recordedthenumberofspiderssharingitevery 10minfor2h. Sarcophagidae), common house crickets {Acheta domesticus During each observation, we also noted the behavior ofthe Orthoptera:Gryllidae)andlargehouseflies(Muscadomestica spiders and recorded any solicitations for prey sharing or Diptera: Muscidae). attempts to pull away from a sharing group. We recorded Group benefi—ts of prey sharing relative to relatedness groupsasnothavingeatenduringatrialifthespidersdidnot and familiarity. Our methodology closely follows that used successfullycapture the prey item within two hours, and we by Schneider and Bilde (2008) in examining the effects of discarded these trials. After the 2-h observation period relatednessandfamiliarityonsharinginStegodyphuslineatus. following successful prey capture, we separated any spiders 260 THEJOURNALOFARACHNOLOGY — that were still feeding from the prey, and recorded both the Table 1. Resultsofthelinearmixedmodelthatincorporatesall combined post-feeding weight of the entire group and the trialsinwhichpreysharingoccurred.Themeasuredchangeinspider remainsofthepreyitem. weightwasusedastheresponsevariable,andtreatmenttype,mean Werepeatedthesetrialseveryseveraldaysover20wk,fora spider instar, initial prey item weight, and the calculated “sharing nftroeirtpnoalelmicdoasiftefevfs1ee3nrf8ergnrotremopgultriphcosrauetipeenssgtrfihonreuoUptmhsFe1i8ntUrgtUehraeotutRmpreUsenatittnmareetnnahdtte.m3Re7TnFtor,etpi4rlne4icacrartetemaepeslsnietfc,arotou1em1rs tmsoierfgtenraiwitfecmii”ecgnanhwtttetrRye-pgveaua,islneuweededsr.aesbffyoiuxnesddpietdfoeferhctasvg.reoAsulilpgsnf.iafcitAcoasrntst,erewifisftekchststh(oe*n*e*tx)hceepiatnmidoiocnuantotef samplesizes,weusedindividualgroupswithineachtreatment Factor df F P N tfRoiUrmemsgulratoniudpplseUaUtrimagelsra:onuRpoFsfga3r.mo6ue7patsnimweoesfr,e4.Uu2Fs7edtgiramoeums.pesaAnfatoemfre2at.hn8e8oeftnid8m.e8so,0f TIMnreietaiaantlmspeprnietdyerweiingsthatr 11221322 29672...855560 <<000...1000005103*1***** 111333666 theexperiment,wecalculatedthepercentageoftrialsineach Sharingmetric 122 17.64 <0.0001*** 136 treatment during which prey sharing occurred. In between wafeemeTeodkouinnigdtnettoroierfadrlpsem,rrienwtyeeocfwkoehedneestptuhheaemlrelgdrskopiiuinnpdsesphrriwspeiyptrohsorshpmaefarralilmlniylghinoaeoruvuiesrtneiytssfh,laeifdewfs.eeoctnuecsdeedptehaer TfsahacabTtrlhoeeerdrs1e)ip.nrwcealysudoenrdoiwsnhigtenhniefi“scshahanartriindngifgfemevreeetnnrtcisec”lbae(ststhweaedreinlnognwgemeeirtg,rhittchgeeafiftencwetod. tpsf(eherRreeeFisdy,eeisnwRmogeoUfido,gmenhiltUsxtF,eah,dengdrolciorhnmueaUepanUargIn)emDosadiwpnneaidldsmseoarctstohosidenearsondtfpaaaralesryaoazacfmeherattlahlegenrrssdoep,fouifpmdeiecnretocsfflofuefisdcnpttivinrovdgeelaarvritsienm.iadtebinlIiatnenl wwc0b.eeoy1iim8gggp,hhra«ttorua=lpbgosals1tie3on6fbe,sdyisFzietxb=h{yesF0p1.ipg26drr47eeo3ry6us=)pw.asa1nN.sdof33erdg7ei1rdwr,ioeanucs«gtplsty=hoeoncrf3oe4rfc,rairevidPleciakftsef=eptedisrd0eew.nori2crst5e9h{b0fF)elwi.iteew4siT5egheho=entf agsinprmioooduuerprdnse,trinoastfntoadsrhaactwrcreioenruagentmttechnfoatotdreotdrcyecppaeu,serarteifenididxteiidnamleeeaapfsfcruehecrytetsr.mwieaelTnigtowhset,qocufaaalnntcthudielfaymtseeadtamhneae g=11a336i60))n..e92td)h,banywitwthhaespsrpgeiaydienlroessdi(nPbg/y.m/tojshree=swp1ei5id6ge3hr,stn((mm=eeaa1nn36=,=P-00.<.003053.69090g0g,1,,««== “sharing metric” foreach successful trial that reflected both Preysharingonlyoccurredin50.2%ofalltrials,andinthe the number of spiders that shared the prey item and the trials for which prey sharing occurred, in 26.8% the sharing durationofpreysharingthatoccurredbytotalingthenumber was forrelatively briefperiods (< 20 min). To minimize the of spiders sharing during each ten-minute interval. For effect oftrials in which minimal prey sharing occurred, we example, ifthree spiders shared prey for 50 min and then a reanalyzed the data including only those trials in which the fourthjoinedtosharefor20min,thesharingmetricwouldbe prey item was shared for > 20 min. The new model {R~ = (3 X 5)-t-(4 X 2) = 23. Thissharingmetricweencodedasa 0.75) shows that spiders still did not share morewith kin or fixed effect in the model for groups in which therewas prey familiarindividuals(treatmenteffect.Table2);rather,spiders sharing. Theresponseinallmodelswasthechangeinweight consumed more prey when the prey item was larger (initial otrfantshfeorsmpaitdieorngirnouopr,dertotowhhiocmhogweenizaepplviaerdianacess.quaWree-raolosto pprreeyyw(emiegahntsefpfiedcetr.Tinasbtlaer2e)f,feactn.dToalbdleers2)p.idHeorwsecvoenrs,umtheedremowraes incorporated prey type (flies or crickets) into the original no difference in the prey biomass consumed associated with model inordertoconfirmthatithadnosignificanteffecton duration or the number of spiders sharing (sharing metric theweightchangeofthespiders.Weexaminedthecorrelation effect.Table2)inthisanalysis. between the change in weight of the spider group and the Giventhatspiderinstarhadaneffectontheamountofprey changeinweightofthepreyitemusingalinearregression.All consumed by sharing groups, we also examined whether the statisticalanalyseswereperformedinJMP8.0. amountofsharing(measuredbymeansharingmetric)differed RESULTS relative to treatmentgroup byinstar. Whenthemean ageof individuals in a group was fifth instar, we found that RF Group benefit—s of prey sharing relative to relatedness groups sharedprey forlongerand in largergroups than UF and familiarity, The levels of relatedness and familiarity groups,whiletherewerenosignificantdifferencesbetweenany among spiders in a prey-sharing group did not significantly other treatments (Tukey Kramer HSD test, n = 34, all P > influencetheamountofpreybiomassingestedbymembersof 0.07). Bythetimethemeanageofthespidersinagroupwas the group. Although the linear mixed model applied to the sixthinstar,relatedspidersdidnotsharemorethanunrelated dataforgroupsinwhichpreysharingoccurredwasagoodfit spiders, nor did familiar spiders share more than unfamiliar forthesedata(i?“ =0.7314,P<0.001),thismodelshowedno spiders (Tukey-Kramer HSD test, n = 100, all P > 0.22; significanteffectoftreatmentontheweightgainedbysharing Figure lA). groups (treatment effect. Table 1). Groups of older spiders Although there was no significant effect oftreatment type consumed more prey than groups of younger individuals ontheamountofbiomassconsumedinanyoftheanalyses,we (mean spider instar effect. Table 1), groups consumed more calculated the frequency of sharing separately to determine preywhenthepreyitemwaslarger(initialpreyweighteffect. whetherkingroupssharedmoreoftenandfoundnoconsistent TGarebalteer1)parenydboilodmearssspwidaesrsalcsooucldonhsaunmdeldewlharegnermoprreeyspiitdeemsr.s eRffUecta:ndprUeyFsghraroiunpgsotchcaunrriendRnFeaarnldy 2U0U%gmrooruepsf(rFeiqguuernetlyIB)i.n AULETTA&RAYOR PREYSHARINGNOTPREFERENTIALAMONGKIN 261 — Table 2. Results of the linear mixed model that excludes all However, ourresultsdo notsupportthishypothesis. Rather, instancesoflow-duration prey sharing(defined as < 20 min). The ourdata indicate that the overall benefits ofprey sharing to measuredchangeinspiderweightwasusedastheresponsevariable, youngD.canceridesaresosubstantialthatthebenefitsderived andtreatmenttype,meanspiderinstar,initialpreyitemweight,and from discriminating preferentially against non-kin in a prey tmheeacnalicnusltaarteodf“ssphiadreirnsgwimtehtirnict”hewegrreouupseadndasthfeixienditeifalfecwtesi.ghOtnloyftthhee sharingeventtoincreasepotentialinclusivefitnessbenefits is prey itemwere found to have significant effects on the amount of notproductive. weightgained by spider groups. Asterisks(***) indicate significant The general benefits ofprey sharing include an increased P-values. frequencyoffeedingandaccesstolargerpreyitems(Buskirk 1981;Rypstra&Tirey1991;Whitehouse&Lubin2005;Yipet Factor df F P n al. 2008). Recent field studies have shown that younger D. Treatment 10 1.57 0.2567 87 cancerides are in better condition when they have older Meanspiderinstar 78 18.27 <0.0001*** 87 siblings that capture and share larger prey items (E.C. Yip, Initialpreyweight 77 87.70 <0.0001*** 87 unpubl.data).Additionally,D.cancerideshasanexceptionally Sharingmetric 78 1.31 0.2560 87 low metabolic rate, resulting in low foraging requirements (Gilbert et al. unpubl. data): prey sharing with any partners When we excluded spiders in the RU treatment from the may provide a substantial contribution to their overall dcoaltlaecatneadlyfsoirs(tohnisthterebaatsmiesntthawtatshetroeolatsimvaelllystmoaldlrsaawmprleeliasbilzee nutAritmioanj.or difference between the two species that might conclusions)andranthemodelagain,treatmenttypealsohad influence prey-sharing patterns is the extent of their social asignificanteffect 4.78,« = 127,P= 0.0247,overall behavior: Delena cancerides is a significantly more social model =0.72),withUFgroupsconsumingmorepreythan species than S. lineatus. Delena cancerides colonies have RForUUgroups(t = 3.03,df= 13,P = 0.0103). multiplecohortsofsiblingslivingtogetherforapproximately 10-12 mo until individuals reach sexually maturity, after DISCUSSION which individual females establish their own colonies (L.S. Spidersthatsharepreywithunrelatedindividualswouldbe Rayor et al, unpubl. data). In contrast, S. lineatus siblings expectedtoexperiencethesamedirectbenefitsofpreysharing onlylivetogetherfor~30daysbeforedispersing,afterwhich asthoseindividualsthatsharepreywithgeneticrelativesinthe theylivesolitarily,andindividualfemaleshavesingleclutches formofdirectconsumptionoffood.However,individualsthat prior to matriphagy (Schneider 1995; Schneider and Lubin share prey with kin might additionally gain inclusive fitness 1997). Furthermore, although the majority of prey-sharing benefitssuchastheincreasedproductionofdigestiveenzymes behaviors observed in D. cancerides are between younger inkingroupssuggestedbySchneiderandBilde(2008).Given individuals(fourth-sixthinstars),individualscontinuetoshare thatthebiologyofD. canceridesissuchthatthereissomelevel prey throughout their lifetimes (L.S. Rayor unpubl. data), of interaction between non-kin young in the wild, we whereasS. lineatusfeedcommunallyonlyasjuvenilespriorto hypothesized that there would be more prey consumed in dispersal (Schneider 1995). There may be greater inclusive kin-only groups due to greater indirect fitness benefits. fitness pay-offsforsubsocial speciesto discriminate kin than 30 RF RU UF UU RF RU UF UU 5th gth MeanSpiderInstar Treatment — Figure 1. A.Thevariationamongtreatmentgroupsinthemeansharingmetric(=compositemeasureofnumberofindividualssharingand durationofsharing)observedintrialswherepreywasshared,asafunctionofthemeaninstarofallspidersinthegroup.Whenthespiderswere younger(fifthinstar),theRFandRUtreatmentgroupssharedmorepreythantheothergroups.Bythesixthinstar,whenindividualsweremore familiarwitheachotherinalltreatments,sharingdidnotdiffer.B.Thepercentageoftrialsinwhichpreysharingoccurredineachofthefour treatments.Sharingpatternsareunrelatedtokinorfamiliarity.In50.2%ofalltrials,thepreyitemwasconsumedentirelybyasingleindividual withoutanysharing. 262 THEJOURNALOFARACHNOLOGY formoresocial speciesthatlikelyexperiencemorelong-term of inbreeding tolerance in a subsocial predecessor. Evolution payoffs from tolerant behaviors, including thewillingness to 59:160-174. shareprey. Buskirk,R.E.1981.SocialityintheArachnida.Pp.281-367.InSocial Differencesinoutbreedingmayalsoinfluencetheabilityof Insects, Volume II. (H.R. Hermann, ed.). Academic Press, Sthteegtowdoypshpuecsielsinteoatiudsendtiisfpylanyosn-akisnigdnuifriicnagntprdeeygrsehearoifnginebvreenetds.- CarLRaeocsnood,uornTc..e,cGo.nWs.umpUteitzo,nvRa.rGi.ancGeilwlietshpiinea&ndLa.mA.onGgirianlddiveiaduu.als1:99o5n. ingtoleranceinthelaboratory,asfemalesdidnotdiscriminate colonialityinspiders.Ecology76:19^205. against related males in breeding experiments and offspring Clark, C.W. & M. Mangel. 1986. The evolutionary advantages of produced from such pairings did not differ from outbred groupforaging.TheoreticalPopulationBiology30:45-75. oSfofmsperidneggrieneofefciunnbdrieteydianngdliskuelryviovcocrusrhsipin(tBhieldfeieledt,aals.~205050)%. CreAelf,riSc.an&wiNl.dMd.ogCsr,eeLly.ca1o9n95p.icCtuos.mmAuninmaallhBuenhtaivnigouarnd50p:a13c2k5-s1iz3e39i.n ofadult males recovered in field observations mated within Foelix,R.F.2011.BiologyofSpiders.OxfordUniversityPress,New their natal patches (Bilde et al. 2005). Because related York. individuals in these populations may share a relatively large Gruetzner,F.,T.Ashley,D.Rowell&J.Graves.2006.Howdidthe amountofgeneticmaterial, S. lineatusmaybebetterableto platypusgetitssexchromosomechain?Acomparisonofmeiotic detectkinthroughself-phenotypematching. multiplesandsexchromosomesinplantsandanimals. Chromo- ltehviTselhsteyophfeigghoefnleekvtieinlc-sro(efcaonogduntitbthrieeorneedfihoanrrgediepnrh,De.naosctaytnphcieecrr)eidaeprsoelmyiomgftohetrnpmhhaiiksgemh LKurbasUiunonsim,ev,aeYr.s1Ji1.t5&y:&7P5Tr-.e8Gs8B.s.i,Dl.dOex.fRo2ur0xd0t,7o.nU.KT.he200e2v.oluLtiivoinngofinsociGarloiutypsi.n sOpxifdeorrsd. within populations (Rowell 1990; Gruetzner et al. 2006). AdvancesintheStudyofBehavior37:83-144. Although it has been shown thatD. canceridescan differen- Lubin, Y., J. Hennicke & J. Schneider. 1998. Settlingdecisions of tiatebetweennestmatesandnon-nestmates(Beavisetal.2007; dispersingStegodyphuslineatus(Eresidae)young.IsraelJournalof Yipetal. 2009), possiblybased onchemicalsignalsfromthe Zoology44:217-225. nestitself,thisprocessmightrequirearelativelylargenumber Rowell,D.M. 1990.FixedfusionheterozygosityinDelenacancerides ofcomplexcues.Attheageofthespidersusedinthestudy,D. Walck. (Araneae: Sparassidae): an alternative to speciation by cancerides may not have produced sufficient markers for monobrachialfusion.Geoetica80:139-157. recognitioncues.Ouronlyindicationofkinpreferenceisthat Rowell, D.M. & L. Aviles. 1995. Sociality in a bark-dweliing there was a non-significant trend toward a higher sharing huntsman spider from Australia, Delena cancerides Walckenaer tmheetrsiicxtahmionnstgarkiwnhdeunritnhgetshpeidfeifrtshwiensrtearm,owrheicfhamdiilsiaaprpweiatrhedobnye Rypg(sArtrorauanp,eafAeo.:rLa.Sgpi&anrgaRsi.snSi.daaTesi)orc.eiyaIl.nsse1pc9it9de1es.r.SPoOrceeicyaoulsxiozge4i,2a:p2r88e67:y-235p0-e2r3.i0s.habilityand amneocthhaenr.ismFsutfuorrenreesstemaartceh rtehcaotgniitnicoonrpomraaytesheltpheseexplpaoisnsitbhlee Schsnpeiiddeerr,{SJt.eMg.od1y9p9h5u.sSluirnveaitvuasl).aInndsegcrteoswtShociinaugxro4u2p:s23o7f-2a48s.ubsocial patternsobservedinthepresentstudy. Schneider,J.M.&T.Bilde.2008.Benefitsofcooperationwithgenetic ACKNOWLEDGMENTS kininasubsocialspider.ProceedingsoftheNationalAcademyof SciencesUSA 105:10843-10846. Wethankmembersofthe Rayorlab(“TeamDefena”)for Schneider,J.M.&Y.Lubin. 1997.Doeshighadultmortalityexplain theirassistanceinthisproject,particularlyChristianHoward, semelparity in the spider Stegodyphus lineatus (Eresidae)? Oikos Maxine Ames, and Bert Barnes. Leifur Thorbergsson, Max 79:92-100. Chen, and Francoise Vermeylen of the Cornell Statistical Travers,S.E. 1993.Groupforagingfacilitatesfoodfindinginasemi- Consulting Unit provided invaluable statistical advice. Eric aquatic hemipteran, Microvelia austrina Bueno (Hemiptera: eYxipperiamnedntaMlicdheaseilgn.OrFrliesprwoevriedekdindhellypfpurlovifdeeeddbbayckDro.nCotlhee TsoV,elIi.iMda.e)&.PLa.nL-.PaSceivfeircinEgnhtaoumso.lo1g99i8s.tI6n9g:e1s1t7e-d12b!i.omassofpreyasa Gilbert, Dr. JeffScott, and Cheryl Leichter. The paper was JmoourrenaalccoufrAatreacehsntoilmoagtoyr2o6f:4f0o5rMa0g7in.gintake by spider predators. improvedbysuggestionsfromLindenHiggins,SimonPollard Whitehouse,M.E.A.&Y.Lubin.2005.Thefunctionsofsocietiesand andananonymousreviewer. the evolution of group living: spider societies as a test case. LITERATURECITED BiologicalReviews80:347-361. Yip,E.C.,S.Clarke&L.S.Rayor.2009.Aliensamongus:nestmate Aviles, L. 1997. Causes and consequences of cooperation and recognition in the social huntsman spider, Delena cancerides. SpoecrimaalnenBte-hsaovciioarlitiyniInnssepcitdsersa.ndPp.Ar4a7c6h-nAi9d8s..I(nJ.TCh.eCEhvooelut&ionB.oJ.f YipI,nsEe.cCt.e,sSKo.cSi.auPxow5e6r:s22&3-2L3.1.Aviles. 2008. Cooperativecapture of BeaCvriess,piA,.Se.d,s.)D..MC.ambRorwiedlgle&UniTv.erEsviatnys.Pre2s0s0,7.CaCmabnrniidbgael,isUmKa.nd kin lParrogceeedpirenygssoolfvetshescNaaltinigonaclhalAlcenagdeemfyaceodf bSyciesnpciedserUSsoAciet1i0e5s:. recognition in Delenacancerides(Araneae: Sparassidae), asocial 11818-11822. Bilhdeu,ntTs.m&anYs.pidLeurb.inJ.ou2r0n0a1l.oKfiZnoorleocgoygni2t7i1o:n23a3n-2d37c.annibalism in a Yipd,efEe.nCs.e&aLn.dS.fRoaryaogri.ng20w1i1t.hDouotsoaciva/lesbp?idBeerhsacvoiooprearlatEecionlporgeydaatnodr Bilsdeu,bsoT.c,iaYl.spLiudebri.n,JoDu.rnaSlmiotfh,EvJo.lMu.tiSocnhanreyidBeirol&ogyA.1A4.:95M9a-k9l6a6.kov. Sociobiologyinpress. 2005.Thetransitiontosocialinbredmatingsystemsinspiders:role ManuscriptreceivedI October2010, revised21 March2011.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.