Poxvirus Membrane- bound G Protein-coupled Receptor Homologs Grant McFadden1,* and Richard Moyer2 1The John P. Robarts Research Institute and Department of Microbiology and Immunology, The University of Western Ontario, 1400 Western Road, London, Ontario, N6G 2V4, Canada 2Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, PO Box 100266, Gainesville, FL 32610-0266, USA *corresponding author tel: (519) 663-3184, fax: (519) 663-3847, e-mail: [email protected] DOI: 10.1006/rwcy.2000.14017. SUMMARY to the number of intervening amino acids between the first two cysteines. Both the classification of chemokines and their receptors have been reviewed To date, virus-encoded homologs of G protein- (Oppenheim et al., 1991; Schall and Bacon, 1994; coupled receptors (GPCRs) have been discovered Murphy, 1994; Barker and Monk, 1997). Chemokine only in members of the poxvirus and herpesvirus action is most frequently mediated through inter- families. The herpesvirus members have been more action with appropriate G protein-coupled receptors extensively characterized than the poxvirus members, (GPCRs). While GPCRs have not been detected but all were initially discovered by database searches to date in the commonly studied members of the of predicted open reading frame sequences deduced Orthopoxvirus genus such as vaccinia, ectromelia, or during DNA sequencing studies of the various viral cowpox virus, sequence analysis has revealed poten- DNAgenomes.Unlike theherpesvirus examples(e.g. tial chemokine GPCRs within the genomes of swine- Kaposi’s sarcoma-associated GPCR), the poxvirus pox virus (the prototypic member of the Suipoxvirus GPRC homologs have not yet been analyzed for genus) (Massung et al., 1993) and sheep pox virus, a biological activity. memberoftheCapripoxvirusgenus(Caoetal.,1995). Poxvirusgenomesarelinearterminatingwithregions comprising inverted terminal repetitions (ITRs). BACKGROUND Genes within the terminal repetitions are diploid. Swinepox virus and sheep pox ORF designations are Discovery based on genomic HindIII restriction patterns where the largest fragment is designated as ‘A’. An analysis Chemokines are major regulatory components of the of swinepox virus sequence reported two related immune system, being involved in trafficking, local- ORFs, one being a truncated ORF (C3L) at the ization, and activation of various leukocyte popula- junction of the left inverted ITR and the left-most tions. Collectively, chemokines can be classified unique region of the genome. A full-length version of according to the relative positions of the first pair the same open reading frame (ORF K2R) was found of a conserved motif of cysteine residues. The desig- at the junction of the right ITR and the right-most nationsareC,CC,CXC,andCX3C,where‘X’refers unique region of the genome. Most likely, the 2110 Grant McFadden and Richard Moyer incomplete C3L ORF represents an artifact derived virus-encoded chemokine receptors is the US28 gene from a variant virus, grown in cell culture, where in of human cytomegalovirus. This protein both binds the absence of any selection, a partial deletion of the chemokines (Neote et al., 1993) and induces a rise in gene, mirrored in both copies of the ORF has intracellular calcium after binding of the appropriate occurred. chemokines (Gao and Murphy, 1994). The sheep pox ORF (Cao et al., 1995) is located In the absence of data demonstrating functionality within the HindIII Q2 fragment of the KC-1 strain for the poxvirus proteins, one can only speculate as and corresponds to ORF 3L (Gershon and Black, to function based on the relatively high homology 1987).LiketheswinepoxvirusORF,theQ2fragment exhibitedtocertainCCchemokinereceptors(Table1). of the KC-1 strain is located near the right-most That prediction would be that both poxvirus GPCRs terminal extreme of the sheep pox virus genome, a do indeed bind to chemoattractants, most likely che- locationtypical ofnonessential genesdevotedtocon- mokines of the CC class. Although superficially, all trolling the host response to the infection. While the structural features required for signaling follow- structuralfeaturesofthetwoORFsdiscussedhereare ing receptor–ligand engagement appear to be present consistent with these two encoded proteins func- in the poxvirus GPCRs, an equally likely scenario, tioning as GPCRs, functionality has not yet been basedonotherpoxvirusexamplesisfortheseproteins demonstrated. to function as nonsignaling, ligand sinks. Structure GENE The poxvirus GPCR homologs share all the features Accession numbers typical of both cellular and viral GPCRs which are depicted graphically in Figure 1. These features Sheep pox virus ORF3L: S78201 include: (1) an extracellular N-terminus, (2) an intra- Swinepox ORF K2R (complete ORF): L21031 cellular C-terminus, (3) seven (cid:11)-helical transmem- Swinepox C3L (truncated ORF): L22013 branedomains,whichareorientedperpendicularlyto the plasma membrane, (4) three intracellular and threeextracellularhydrophilicconnectingloops,(5)a PROTEIN disulfide bond linking cysteine residues in the first and second extracellular loops, and (6) the presence Accession numbers of proline residues in transmembranedomains II, IV, V, VI, and VII. GenBank: Capripox virus: Q86917 Main activities and Swinepox virus: Q08520 pathophysiological roles Human CC (CCR8): P51685 Rhesus monkey CC: AAC72403 Equine herpesvirus 2 receptor: S55594 Clearly, the encoding of both chemokines and Human CXC chemokine receptor (CXCR2): P25025 chemokine receptors by viruses indicates the impor- Herpesvirus saimiri GPCR: Q01035 tanceofmodulatingchemokineactivityduringcertain HHV8: AAB51506 viral infections. Indeed, in the case of Epstein–Barr EBV: P32249 virus, which does not encode a GPCR, the virus CMV (US28): P09704 inducessynthesisofacellularGPCRduringinfection (Birkenbach et al., 1993; Schweickart et al., 1994), presumably to accomplish a similar purpose. Sequence Viral-encoded GPCRs are relatively prevalent amongst the herpesvirus, examples being found in The complete protein sequence of the sheep pox and human herpesvirus 8 (HHV8) (Guo et al., 1997), swinepox virus ORFs is shown in Figure 1. herpesvirus saimiri (Nicholas et al., 1992; Ahuja and Murphy,1993),humancytomegalovirus(US28)(Chee Description of protein et al., 1990), and equine herpesvirus 2 (Telford et al., 1995)(ORFE1,whichispresentintwocopiesdueto its location within the terminal repeat region of the The poxvirus-encoded proteins are slightly larger in viral chromosome). A useful functional paradigm for size than the typical GPCR, but are nevertheless, Poxvirus Membrane-bound G Protein-coupled Receptor Homologs 2111 Figure1 Alignmentofputativepoxvirus-encodedGprotein-coupledreceptors(GPCRs)withthoseofviralandcellular origin.Eachproteincontainsatypicalseventransmembranemotifsignature,indicatedabovethesequencesinwhichthey occur. EachGPCRalso containsaconservedproline residuewithin transmembranedomainsII,IV,V, VI,andVIIand two conserved cysteine residues, one in the extracellular region between transmembrane domain II and III, the second within the extracellular region between transmembrane regions IV and V. Typically, these two cysteines are linked in a disulfide bridge. Both the proline and cysteine residues are indicated as shaded residues within the consensus sequence. EachproteinalsocontainsthehighlyconservedmotifDRYLAIVHAattheendofthethirdtransmembranedomain.The DRYLAIVHAmotifisnotuniversallypresent,beingabsentintheCMVUS28protein.AnotherfeatureofGPCRsisthe presenceofphosphorylationsites,typicallyserineresiduesintheC-terminalportionofthemoleculeandglycosylationsites withintheextracellularN-terminalmostregionofthemolecule.TheproteinsdepictedarethoseofCPV(capripoxvirus), SPV(swinepoxvirus),HuCC(humanCCchemokinereceptor),MnCC(rhesusmonkeyCCchemokinereceptor),EQHV (equineherpesvirus2GPCR).Thenumberofaminoacidsintheproteinisgiven.Thealignmentsandconsensussequence were derived using the PRETTY program of the Genetics Computer Group Package, Madison, Wisconsin. 1 70 CAPRI MNYTLSTVSS ATMYNSSSNI TTIATTIIST ILSTISTNQN NVTTPSTYEN TTTISNYTTA YNTTYYSDDY SPV ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~MTSPT NSTMLTYTTN NYYDDDYYEY STITDYYNTI EQHV ~~~~~~~~~~ ~~~~~~~~~~ ~~MATTSATS TVNTSSLATT MTTNFTSLLT SVVTTIASLV PSTNSSEDYY MOUSE ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~MDYTME PNV.TMTD.Y MONKEY ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~MDYTLD PSMTTMTDYY HUMAN ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~ ~~~~MDYTLD LSVTTVTDYY CONSEN ---------- ---------- ---------- ---------- ---------- ---------- ---------- I II 71 140 CAPRI DDYEVS...I VDIPHCDDGV DTTSFGLITL YSTIFFLGLF GN.IIVLTVL RKYKIKTIQD MFLLNLTLSD SPV NNDITSSSVI KAFDNNCTFL EDTKYHIIVI HIILFLLGSI GNIFVV.SLI AFKRNKSITD IYILNLSMSD EQHV DDLDDVDYEE SAPCYKSDTT RLAAQVVPAL YLLVFLFGLL GNILVVIIVI RYMKIKNLTN MLLLNLAISD MOUSE ..YPDF...F TAPCDAEFLL RGSMLYLAIL YCVLFVLGLL GNSLVILVLV GCKKLRSITD IYLLNLAASD MONKEY ..YPDS...L SSPCDGELIQ RNDKLLLAVF YCLLFVFSLL GNSLVILVLV VCKKLRNITD IYLLNLALSD HUMAN ..YPDI...F SSPCDAELIQ TNGKLLLAVF YCLLFVFSLL GNSLVILVLV VCKKLRSITD VYLLNLALSD CONSEN ---------- ---------- ---------- ----F----- GN-------- ---------- ---LNL--SD III 141 210 CAPRI LIFVLVFPFN LYDS.IAKQW SLGDCLCKFK AMFYFVGFYN SMSFITLMSI DRYLAVVHPV KSMPIRTKRY SPV CIFVFQIPFI VY..SKLDQW IFGNILCKIM SVLYYVGFFS NMFIITLMSI DRYFAIVHPI KRQPYRTKRI EQHV LLFLLTLPFW MHYIGMYHDW TFGISLCKLL RGVCYMSLYS QVFCIILLTV DRYLAVVYAV TALRFRTVTC MOUSE LLFVLSIPFQ THNL.L.DQW VFGTAMCKVV SGLYYIGFFS SMFFITLMSV DRYLAIVHAV YAIKVRTASV MONKEY LLFVFSFPFQ TYYQ.L.DQW VFGTVMCKVV SGFYYIGFYS SMFFITLMSV DRYLAVVHAV YAIKVRTIRM HUMAN LLFVFSFPFQ TYYL.L.DQW VFGTVMCKVV SGFYYIGFYS SMFFITLMSV DRYLAVVHAV YALKVRTIRM CONSEN --F----PF- ---------W --G---CK-- ---------- ----I-L--- DRY-A-V--- -----RT--- IV V 211 280 CAPRI GI.VLSMVVW IVSTIESFPI MLFYET..KK VYGITYCHVF YND.NAKIW. KLFINFEINI FGMIIPLTIL SPV GIL.MCCSAW LLSLILSSPV SKLYENIPHM SKDIYQCTLT NENDSIIAFI KRLMQIEITI LGFLIPIIIF EQHV GIVT.CVCTW FLAGLLSLPE FFFHGH..QD DNGRVQCDPY YPEMSTNVW. RRAHVAKVIM LSLILPLLIM MOUSE G.TALSLTVW LAAVTATIPL MVFYQV..AS EDGMLQCFQF YEE.QSLRW. KLFTHFEINA LGLLLPFAIL MONKEY GTTTLSLLVW LTAIMATIPL LVFYQV..AS EDGVLQCYSF YNQ.QTLKW. KIFTNFEMNI LGLLIPFTIF HUMAN G.TTLCLAVW LTAIMATIPL LVFYQV..AS EDGVLQCYSF YNQ.QTLKW. KIFTNFKMNI LGLLIPFTIF CONSEN G--------W --------P- ---------- ------C--- ---------- ---------- -----P--I- VI 281 350 CAPRI LYCYYKILNT LKTSQTKNK. KAIKMVFLIV ICSVLFLLPF SVTVFVS... SLYLLNVFSG CMALRFVNLA SPV VYCYYRIFTT VVRLRNRRKY KSIKIVLMIV VCSLICWIPL YIVLMIATIV SLYTSNIFRH LCLYLNLAYA EQHV AVCYYVIIRR LLRRPSKKKY KAIRLIFVIM VAYFVFWRPY NVALFLT... TFHATLLNLQ CALSSNLDMA MOUSE LFCYVRILQQ LRGCLNHNRT RAIKLVLTVV IVSLLFWVPF NVALFLT... SLHDLHILDG CATRQRLALA MONKEY MFCYIKILHQ LKRCQNHNKT KAIRLVLIVV IASLLFWVPF NVVLFLT... SLHSMHILDG CSISQQLNYA HUMAN MFCYILILHQ LKRCQNHNKT KAIRLVLIVV IASLLFWVPF NVVLFLT... SLHSMHILDG CSISQQLTYA CONSEN --CY--I--- ---------- --I------- --------P- ---------- ---------- ---------A 2112 Grant McFadden and Richard Moyer Figure 1 (Continued) VII 351 420 CAPRI VHVAEIVSLC HCFINPLIYA FCSREFTKKL LRLRTTSSAG SISIG*~~~~ ~~~~~~~~~~ ~~~~~~~~~~ SPV ITFSETISLA RCCINPIIYT LIGEHVRSRI SSICSCIYRD NRIRKKLFSR KSSSSSNII* ~~~~~~~~~~ EQHV LLITKTVAYT HCCINPVIYA FVGEKFRRHL YHFFHTYVAI YLCKYIPFLS GDGEGKEGPT RI*~~~~~~~ MOUSE IHVTEVISFT HCCVNPVIYA FIGEKFKKHL MDVFQKSCSH IFLYLGRQMP VGALERQLSS BQRSSHSSTL MONKEY THVTEIISFT HCCVNPVIYA FVGEKFKKHL SEIFQKSCSH IFIYLGRQMP RESCEKSSSC QQHSFRSSSI HUMAN THVTEIISFT HCCVNPVIYA FVGEKFKKHL SEIFQKSCSQ IFNYLGRQMP RESCEKSSSC QQHSSRSSSV CONSEN ---------- -C--NP-IY- ---------- ---------- ------~~~~ ~~~~~~~~~~ ~~~~~~~~~~ 421 CAPRI ~~~~~ SPV ~~~~~ EQHV ~~~~~ MOUSE DDIL* MONKEY DYIL* HUMAN DYIL* CONSEN ~~~~~ Table 1 Percent identity between poxvirus, various herpesvirus, and cellular-encoded GPCRs Source % Identity CPV SPV Hu Mn EQHV Hu IL-8 HSV HHV8 EBV CMV CC CC CXC CPV – 37.6 44.8 45.9 31.3 29.4 21.2 17.4 27.6 29.5 SPV 37.6 – 38.7 38.7 30.9 32.1 20.2 17.8 24.4 27.4 Hu CC 44.8 38.7 – 94.3 39.1 37.4 19.1 21.9 25.1 29.8 Mn CC 45.9 38.7 94.3 – 38.7 36.4 18.7 22.9 25.1 30.8 EQHV 31.3 31.0 39.1 38.7 – 34.5 22.8 22.6 27.5 31.8 Hu IL-8 29.4 32.1 37.4 36.4 34.5 – 30.8 29.6 27.6 32.9 HSV 21.2 20.3 19.1 18.7 22.8 30.8 – 35.0 31.2 32.8 HHV8 17.4 17.8 22.0 23.0 22.6 29.6 35.0 – 19.6 21.6 EBV 27.7 24.4 25.1 25.1 27.5 27.6 31.2 19.6 – 27.4 CMV 29.5 27.4 29.8 30.8 31.8 32.9 23.5 21.6 27.4 – CPV,capripoxvirus(381aa);SPV,swinepoxvirus(370aa);HuCC,humanCCchemokinereceptor(CCR8)(355aa); MnCC,rhesusmonkeyCCchemokinereceptor(356aa);EQHV,equineherpesvirus2receptor(383aa);HuIL-8,humanCXC chemokinereceptor(CXCR2)(360aa);HSV,herpesvirussaimiriGPCR(331aa);HHV8,humanherpesvirus8GPCR(352aa); EBV,cellularGPCRinducedbyEpstein–Barrvirusinfection(361aa);CMV,cytomegalovirusGPCR(US28)(345aa).Identities werecalculatedusingtheBESTFITprogram(GeneticsComputerGroupPackage,Madison,Wisconsin). structurally typical of GPCRs (see Figure 1). Begin- extracellular(E1–E3)domains.Extensionofsequence ning with a glycosylated extracellular N-terminal beyond the seventh transmembrane domain defines domain,theserpentineseventransmembranedomains an intracellular cytoplasmic tail of the protein definethreealternatingintracellular(I1–I3)andthree (Murphy, 1994; Barker and Monk, 1997). Poxvirus Membrane-bound G Protein-coupled Receptor Homologs 2113 Relevant homologies and species Barker, M.D.,andMonk, P.N.(1997).Structure-functionrela- tionshipsofleukocytechemoattractantreceptors.Biochem.Soc. differences Trans.25,1027–1031. Birkenbach, M., Josefsen, K., Yalamanchili, R., Lenoir, G., and Kieff, E. (1993). Epstein–Barr virus-induced genes: First lym- Homologies to selected viral and cellular GPCRs are phocyte-specific G protein-coupled peptide receptors. J. Virol. shown in Table 1. Particularly noteworthy is the rela- 67,2209–2220. tivelyhighhomologyofthesheeppoxproteinforthe Cao, J. X., Gershon, P. D., and Black, D. N. (1995). Sequence putative CC cellular GPCRs. analysis of HindIII Q2 fragment of capripoxvirus reveals a putative gene encoding a G-protein-coupled chemokine recep- torhomologue.Virology209,207–212. Chee, M. S., Satchwell, S. C., Preddie, E., Weston, K. M., and Affinity for ligand(s) Barrell, B. G. (1990). Human cytomegalovirus encodes three Gprotein-coupledreceptorhomologues.Nature344,774–777. The ligands, if any, for the poxvirus proteins are not Gao, J. L., and Murphy, P. M. (1994). Human cytomegalovirus open reading frame US28 encodes a functional (cid:12) receptor. yet known. However, based on similar studies, one J.Biol.Chem.269,28539–28542. would predict ligand affinities in the nano- to pico- Gershon,P.D.,andBlack,D.N.(1987).Physicalcharacterization molar range. ofthegenomeofacattleisolateofcapripoxvirus.Virology160, 473–476. Guo, H.-G., Browning, P., Nicholas, J., Hayward, G. S., Regulation of receptor expression Tschachler, E., Jiang, Y.-W., Sadowska, M., Raffeld, M., Colombini, S., Gallo, R. C., and Reitz Jr., M. S. (1997). Characterization of a chemokine receptor-related gene in Based on genomic location and transcriptional ele- human herpesvirus 8 and its expression in Kaposi’s sarcoma. ments within the sequences, the poxvirus GPCRs are Virology228,371–378. expressed from early promoters, prior to DNA repli- Massung, R. F., Jayarama, V., and Moyer, R. W. (1993). DNA sequenceanalysisofconservedanduniqueregionsofswinepox cation, irrespective of the infected cell type. virus: Identification of genetic elements supporting phenotypic observations including a novel G protein-coupled receptor homologue.Virology197,511–528. Murphy, P. M. (1994). The molecular biology of leukocyte che- BIOLOGICAL CONSEQUENCES moattractantreceptors.Annu.Rev.Immunol.12,593–633. Neote,K.,DiGregorio,D.,Mak,J.Y.,Horuk,R.,andSchall,T.J. OF ACTIVATING OR (1993).Molecularcloning,functionalexpression,andsignaling INHIBITING RECEPTOR AND characteristicsofaC-C-chemokinereceptor.Cell72,415–425. Nicholas, J., Cameron, K. R., and Honess, R. W. (1992). PATHOPHYSIOLOGY Herpesvirus saimiri encodes homologues of G-protein coupled receptorsandcyclins.Nature355,362–365. Oppenheim, J. J., Zacharier, M. N., Mukaida, N., and Phenotypes of receptor knockouts Matsushima, K. (1991). Properties of the novel proinflamma- and receptor overexpression mice torysupergene‘intercrine’cytokinefamily.Annu.Rev.Immunol. 9,617–648. Schall, T. J., and Bacon, K. B. (1994). Chemokines, leukocyte No data on GPCR knockout viruses are available. trafficking,andinflammation.Curr.Opin.Immunol.6,865–873. The most relevant questions for future study are to Schweickart, V. L., Raport, C. J., Godiska, R., Byers, M. G., Eddy Jr., R. L., Shows, T. B., and Gray, P. W. (1994). first identify the appropriate ligand(s) and whether Cloning of human and mouse EBI1, a lymphoid-specific G- receptor–ligand engagement results in an appropriate protein-coupled-receptor encoded on human chromosome intracellular signal or whether the poxvirus proteins 17q12-q21.2.Genomics23,643–650. serve instead as a membrane-bound chemokine sink. Telford, E. A., Watson, M. S., Aird, H. C., Perry, J., and Davison, A. J. (1995). The DNA sequence of equine herpes- virus2.J.Mol.Biol.249,520–528. References Ahuja, S. K., and Murphy, P. M. (1993). Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus sai- miri.J.Biol.Chem.268,20691–20694.