ebook img

Powers of Euler's q-Series PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Powers of Euler's q-Series

Powers of Euler’s q-Series Steven Finch 7 0 January 19, 2007 0 2 Abstract. What are the asymptotic moments of coefficients obtained n Ja awshaenneewxpmanudltinipglica∞mtiv=e1(r1ep−reqsmen)ℓtaitniosnerfioers?coAeffifecwienetxsawmhpelnesℓa=re1g0ivaennd, ℓas=w1e4ll. 8 Q 1 Starting with Euler’s result: ] T ∞ ∞ (1 qm) = ( 1)kqk(3k+1)/2 N − − h. mY=1 kX=−∞ t and Jacobi’s cubic analog: a m ∞ ∞ [ (1 qm)3 = ( 1)k(2k+1)qk(k+1)/2, − − 2 m=1 k=0 v Y X 1 it is natural to wonder about the corresponding square and ℓth powers for ℓ 4. We 5 ≥ will consider thecoefficients a oftheq-series expansion (ontheright-handside) 2 { n}∞n=0 1 for fixed ℓ. Estimates of the magnitude of a finite subsequence a of coefficients n n N 0 { } ≤ include 7 0 a , a2, max a / | n| n n N | n| h n N n N ≤ X≤ X≤ t a and we will analyze the asymptotics (when possible) of these as N . Much of m → ∞ the material presented here is perhaps not new. Our contribution (as in [1, 2]) is only : v to collect results in one place. i X 1. First Power r a Let the coefficients a satisfy [3, 4, 5] { n}∞n=0 ∞ ∞ a qn = (1 qm). n − n=0 m=1 X Y Euler’s pentagonal-number theorem gives that ( 1)k if 24n+1 = (6k +1)2 for some < k < , a = − −∞ ∞ n 0 otherwise (cid:26) 0 Copyright c 2007 by Steven R. Finch. All rights reserved. (cid:13) 1 Powers of Euler’s q-Series 2 and hence, by elementary considerations, 1 a (24N)1/2 n | | ∼ 3 n N X≤ as N . Also a = f(24n+1), where f is multiplicative and n → ∞ 1 if p 1,11mod12 and r is even, ≡ f(pr) = ( 1)r/2 if p 5,7mod12 and r is even,  − ≡ 0 otherwise  for p prime and r ≥ 0. Of course, n N an oscillates between −1,0,1 and never converges. ≤ P 2. Second Power Let the coefficients a satisfy [6, 7, 8] { n}∞n=0 ∞ ∞ a qn = (1 qm)2. n − n=0 m=1 X Y No simple formula for a is known, but a = f(12n+ 1), where f is multiplicative n n and 1 if p 7,11mod12 and r is even, ≡ ( 1)r/2 if p 5mod12 and r is even,  − ≡ f(pr) = r +1 if p 1mod12 and ( 3)(p 1)/4 1modp,  −  ( 1)r(r +1) if p ≡ 1mod12 and (−3)(p 1)/4 ≡ 1modp,  − − ≡ − ≡ − 0 otherwise.    We examine  ∞ f(n) ∞ 1 ∞ r +1 | | = 1+ 1+ ns p2rs · prs ! ! n=1 p 5,7,11 r=1 p 1 r=1 X m≡Yod12 X mYo≡d12 X 1 1 1 1 − 1 1 − = 1 1 1+ 1 − ps +1 − ps · ps 1 − ps p 5,7,11(cid:18) (cid:19)(cid:18) (cid:19) p 1 (cid:18) − (cid:19)(cid:18) (cid:19) m≡Yod12 mYo≡d12 1/2 1/2 1 1/2 1 1 1 − 1 − = 1 1 1+ 1 − 2s − 3s ps − ps (cid:18) (cid:19) (cid:18) (cid:19) p 5,7,11(cid:18) (cid:19) (cid:18) (cid:19) m≡Yod12 3/2 1 − 1 ζ(s)1/2 · − ps · p 1 (cid:18) (cid:19) mYo≡d12 Powers of Euler’s q-Series 3 and deduce, via the Selberg-Delange method [9, 10, 11], that N a C | n| ∼ (lnN)1/2 n N X≤ as N , where [12] → ∞ 1 1/2 3/2 12 1 − 1 − 1 − C = 1+ 1 1 √3π p − p · − p p 5,7,11(cid:18) (cid:19) (cid:18) (cid:19) p 1 (cid:18) (cid:19) m≡Yod12 mYo≡d12 = 3.3215840614847482046694103.... Also, ∞ f(n)2 ∞ 1 ∞ (r +1)2 = 1+ 1+ ns p2rs · prs ! ! n=1 p 5,7,11 r=1 p 1 r=1 X m≡Yod12 X mYo≡d12 X 1 2 1 1 − 2 1 − = 1 1 1+ 1 − ps +1 − ps · ps 1 − ps p 5,7,11(cid:18) (cid:19)(cid:18) (cid:19) p 1 (cid:18) − (cid:19)(cid:18) (cid:19) m≡Yod12 mYo≡d12 1 2 1 1 1 − 1 1 − = 1 1 1+ 1+ 1 ζ(s) − 2s − 3s ps · ps − ps · (cid:18) (cid:19)(cid:18) (cid:19)p 5,7,11(cid:18) (cid:19) p 1 (cid:18) (cid:19)(cid:18) (cid:19) m≡Yod12 mYo≡d12 and hence a2 DN n ∼ n N X≤ where [12] 1 2 1 − 1 1 − D = 4 1+ 1+ 1 p · p − p p 5,7,11(cid:18) (cid:19) p 1 (cid:18) (cid:19)(cid:18) (cid:19) m≡Yod12 mYo≡d12 = 2.6339157938496334172500926.... Also, ln(N) ln max a ln(2) n n N | | ∼ ln(ln(N)) (cid:18) ≤ (cid:19) but a more precise asymptotic statement is evidently open [11]. Finally, a O N exp c(lnN)3/5(lnlnN) 1/5 n − ∼ − n N X≤ (cid:0) (cid:0) (cid:1)(cid:1) and a stronger conjectured bound a = O(Nd) with d < 1 is equivalent to a n N n weak form of the generalized Riemann≤hypothesis [13]. P Powers of Euler’s q-Series 4 2.1. Variation One. Let the coefficients b satisfy [14, 15] { n}∞n=0 ∞ ∞ b qn = (1 qm)(1 q2m). n − − n=0 m=1 X Y It can be shown that b = g(8n+1), where g is multiplicative and n 1 if p = 2 and r = 1, 1 if p 5,7mod8 and r is even,  ≡ ( 1)r/2 if p 3mod8 and r is even, g(pr) =  − ≡  r+1 if p 1mod8 and ( 4)(p 1)/8 1modp,  −  ( 1)r(r+1) if p ≡ 1mod8 and (−4)(p 1)/8 ≡ 1modp, − − ≡ − ≡ − 0 otherwise.      For reasons ofspace, we mention only the mean-square result: b2 EN n ∼ n N X≤ where [12] 1 2 1 − 1 1 − E = 4 1+ 1+ 1 p · p − p p 3,5,7(cid:18) (cid:19) p 1 (cid:18) (cid:19)(cid:18) (cid:19) m≡Yod8 mYo≡d8 = 1.7627471740390860504652186.... 2.2. Variation Two. Let the coefficients c satisfy [14, 16] { n}∞n=0 ∞ ∞ c qn = (1 qm)(1 q3m). n − − n=0 m=1 X Y It can be shown that c = h(6n+1), where h is multiplicative and n 1 if p 5mod6 and r is even, ≡ r +1 if p 1mod6 and 2(p 1)/3 1modp, −  ≡ ≡ h(pr) = 1 if p 1mod6, 2(p 1)/3 1modp and r 0mod3,  −  1 if p ≡ 1mod6, 2(p 1)/3 6≡ 1modp and r ≡ 1mod3,  − − ≡ 6≡ ≡ 0 otherwise.    Observe that h(p) assumes two distinct values over the set p 1mod6, which | | ≡ is more complicated than f(p) over p 1mod12 and g(p) over p 1mod8. | | ≡ | | ≡ Consequently, the asymptotics for c2 are more subtle than those for a2 n N n n N n and b2. ≤ ≤ n N n P P ≤ P Powers of Euler’s q-Series 5 3. Third Power Let the coefficients a satisfy [17, 18] { n}∞n=0 ∞ ∞ a qn = (1 qm)3. n − n=0 m=1 X Y Jacobi’s triple-product identity gives that ( 1)k(2k +1) if 8n+1 = (2k +1)2 for some 0 k < , a = − ≤ ∞ n 0 otherwise (cid:26) and hence, by elementary considerations, 1 a 2N, a2 (8N)3/2, max a (8N)1/2 | n| ∼ n ∼ 6 n N | n| ∼ n N n N ≤ X≤ X≤ as N . Also a = f(8n+1), where f is multiplicative and n → ∞ pr/2 if p 1mod4 and r is even, ≡ f(pr) = ( 1)r/2pr/2 if p 3mod4 and r is even,  − ≡ 0 otherwise.  Of course,  a = ( 1)k(k +1) if (2k +1)2 8N +1 < (2k +3)2 n − ≤ n N X≤ and thus a diverges because n N n ≤ P 1 1 limsup a = 1, liminf a = 1. n n N √2N N √2N − →∞ nX≤N →∞ nX≤N 4. Fourth Power Let the coefficients a satisfy [6, 19] { n}∞n=0 ∞ ∞ a qn = (1 qm)4. n − n=0 m=1 X Y No simple formula for a is known, but a = f(6n+1), where f is multiplicative and n n ( 1)r/2pr/2 if p 5mod6 and r is even, − ≡ (x +√3iy )r+1 (x √3iy )r+1 f(pr) =  δ p p − p − p if p 1mod6, p,r  2√3iy ≡  p  0 otherwise    Powers of Euler’s q-Series 6 where i is the imaginary unit and (x ,y ) is the unique pair of positive integers for p p which p = x2 + 3y2. Also, δ = 1 when r is odd and x 1mod3; otherwise p p p,r − p 6≡ δ = 1. p,r It turns out that ∞n=1f(n)n−s is the L-series for the elliptic curve 36A1: P y2 = x3 +1 and hence a theorem of Rankin [20] implies that a2 CN2. n ∼ n N X≤ We examine ∞ f(n)2 ∞ pr = 1+ ns+1 p2r(s+1) ! n=1 p 5 r=1 X mYo≡d6 X r+1 r+1 2 x +√3iy x √3iy 1 ∞ p p − p − p 1 ·  − 12y2 h(cid:0) (cid:1) pr(s+(cid:0)1) (cid:1) i  p 1 p r=1 mYo≡d6 X   1  1 − = 1 − p2s+1 p 5 (cid:18) (cid:19) mYo≡d6 p2(s+1) ps+1 +x2 +3y2 p p · 2 ps+1 x2 +3y2 x2 +(cid:0) 3y2 2ps+1 (cid:1)x2 3y2 +p2(s+1) mYpo≡d16 − p p p p − p − p h i (cid:2) (cid:0)1 (cid:1)(cid:3) (cid:0) (cid:1) (cid:0) (cid:1) 1 − = 1 − p2s+1 p 5 (cid:18) (cid:19) mYo≡d6 p2(s+1)(ps+1 +p) · [ps+1 p] p2 2ps+1 x2 3y2 +p2(s+1) p 1 − − p − p mYo≡d6 (cid:2) (cid:0) (cid:1) (cid:3) 1 1 1 1 1 − = 1 1 1 1 − 2s − 3s − ps − p2s+1 (cid:18) (cid:19)(cid:18) (cid:19) p 5 (cid:18) (cid:19)(cid:18) (cid:19) mYo≡d6 1 2ps 1 x2 3y2 1 1+ 1+ − p − p − ζ(s) · ps p2s 2ps 1 x2 3y2 +1 · p 1 (cid:18) (cid:19) − (cid:0)− p − (cid:1) p ! mYo≡d6 (cid:0) (cid:1) Powers of Euler’s q-Series 7 and thus it seems that C = 6 1 1 1 1 −1 1+ 1 1+ 2 x2p −3yp2 −1 . p 5 (cid:18) − p(cid:19)(cid:18) − p3(cid:19) · p 1 (cid:18) p(cid:19) p2 −(cid:0)2 x2p −3(cid:1)yp2 +1! mYo≡d6 mYo≡d6 (cid:0) (cid:1) The language of modular forms is now unavoidable: let ∞ η(t) = eπit/12 1 e2πkit , Im(t) > 0 − k=1 Y(cid:0) (cid:1) denote the Dedekind eta function. The unique cusp form of weight 3, level 12 and Nebentypus character ( 3/ ) is [21] − · ∞ ∞ η(2t)3η(6t)3 = q (1 q2m)3 (1 q6m)3, q = e2πit − − m=1 m=1 Y Y and possesses the expansion 1 L (s) = 1+ 1 −1 1 1 −1 1 2 x2p −3yp2 + 1 − ; xy 3s 1 − p2(s 1) · − ps p2(s 1) (cid:18) − (cid:19) p 5 (cid:18) − (cid:19) p 1 (cid:0) (cid:1) − ! mYo≡d6 mYo≡d6 hence L (2) = 3 1 1 −1 1+ 2 x2p −3yp2 −1 xy 4 − p2 · p2 2 x2 3y2 +1 p 5 (cid:18) (cid:19) p 1 −(cid:0) p − (cid:1)p ! mYo≡d6 mYo≡d6 (cid:0) (cid:1) = 0.7372929961855962401764261...; hence [12] 1 1 1 1 − 1 C = 8L (2) 1 1 1 1+ xy − p − p2 − p3 · p p 5 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) p 1 (cid:18) (cid:19) mYo≡d6 mYo≡d6 = 4.6417183001293981350615666.... Observe, however, that in the vicinity of s = 1, the series 2ps 1 x2 3y2 1 − p − p − p2s 2ps 1 x2 3y2 +1 p − (cid:0)− p − (cid:1) p X is not absolutely convergent since either x2(cid:0)or 3y2 is(cid:1)often of size p. The requirement p p that ( f(n)2n s 1)ζ(s) 1 is analytic consequently might not hold. Empirically, we − − − compute P 1 a2 4.877... N2 n ≈ n N X≤ which raises further doubt about the correctness of our value 4.641... for C. Powers of Euler’s q-Series 8 4.1. Variation One. Let the coefficients b satisfy [22, 23] { n}∞n=0 ∞ ∞ b qn = (1 qm)2(1 q2m)2. n − − n=0 m=1 X Y It can be shown that b = g(4n+1), where g is multiplicative and n ( 1)r/2pr/2 if p 3mod4 and r is even, − ≡ (u +iv )r+1 (u iv )r+1 g(pr) =  ε p p − p − p if p 1mod4, p,r  2ivp ≡  0 otherwise  where (up,vp) is the unique pair of positive integers for which p = u2p +vp2, up is odd and v is even. Also, ε = ( 1)(up+vp 1)/2 when r is odd and ε = 1 when r is even. p p,r − p,r − It turns out that ∞n=1g(n)n−s is the L-series for the elliptic curve 32A2: P y2 = x3 x − and hence Rankin’s theorem implies that b2 DN2 n ∼ n N X≤ where seemingly D = 4 1 1 1 1 −1 1+ 1 1+ 2 u2p −vp2 −1 . − p − p3 · p p2 2 u2 v2 +1 p 3 (cid:18) (cid:19)(cid:18) (cid:19) p 1 (cid:18) (cid:19) −(cid:0) p −(cid:1)p ! mYo≡d4 mYo≡d4 (cid:0) (cid:1) The unique cusp form of weight 3, level 16 and Nebentypus character ( 4/ ) is [21] − · η(4t)6 = q ∞ 1 q4m 6 − m=1 Y (cid:0) (cid:1) and possesses the expansion 1 L (s) = 1 1 −1 1 2 u2p −vp2 + 1 − ; uv − p2(s 1) · − ps p2(s 1) p 3 (cid:18) − (cid:19) p 1 (cid:0) (cid:1) − ! mYo≡d4 mYo≡d4 hence L (2) = 1 1 −1 1+ 2 u2p −vp2 −1 uv − p2 · p2 2 u2 v2 +1 p 3 (cid:18) (cid:19) p 1 −(cid:0) p −(cid:1)p ! mYo≡d4 mYo≡d4 (cid:0) (cid:1) = 0.8593982272525466034362619...; Powers of Euler’s q-Series 9 hence [12] 1 1 1 1 − 1 D = 4L (2) 1 1 1 1+ uv − p − p2 − p3 · p p 3 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) p 1 (cid:18) (cid:19) mYo≡d4 mYo≡d4 = 1.9533514553987911733090376.... Again, analyticity requirements might not hold and we empirically compute 1 b2 2.188... N2 n ≈ n N X≤ which raises doubt about our value 1.953... for D. 4.2. Variation Two. Let the coefficients c satisfy [24, 25] { n}∞n=0 ∞ ∞ c qn = (1 qm)2(1 q3m)2. n − − n=0 m=1 X Y It can be shown that c = h(3n+1), where h is multiplicative and n ( 1)r/2pr/2 if p 2mod3 and r is even, − ≡ r+1 r+1  zp +3√3iwp zp 3√3iwp − h(pr) =  2 − 2  ! !  δ˜ if p 1mod3,  p,r 3√3iw ≡ p 0 otherwise      where (z,w ) is the unique pair of positive integers for which 4p = z2 +27w2. Also, p p p p ˜ ˜ δ = 1 when r is odd and x 1mod3; otherwise δ = 1. p,r p p,r − ≡ It turns out that ∞n=1h(n)n−s is the L-series for the elliptic curve 27A3: P y2 +y = x3 and hence Rankin’s theorem implies that c2 EN2 n ∼ n N X≤ where seemingly E = 3 1 1 1 1 −1 1+ 1 1+ (zp2 −27wp2)/2−1 . − p − p3 · p p2 (z2 27w2)/2+1 p 2 (cid:18) (cid:19)(cid:18) (cid:19) p 1 (cid:18) (cid:19)(cid:18) − p − p (cid:19) mYo≡d3 mYo≡d3 Powers of Euler’s q-Series 10 The vector space of cusp forms of weight 3, level 27 and Nebentypus character ( 3/ ) − · is three-dimensional. A certain basis element is given by [21, 26] η(9t)η(3t)2 η(3t)3 +9η(27t)3 and possesses the expansion (cid:0) (cid:1) L (s) = 1 1 −1 1 zp2 −27wp2 + 1 −1; zw − p2(s 1) · − 2ps p2(s 1) p 2 (cid:18) − (cid:19) p 1 (cid:18) − (cid:19) mYo≡d3 mYo≡d3 hence L (2) = 1 1 −1 1+ (zp2 −27wp2)/2−1 zw − p2 · p2 (z2 27w2)/2+1 p 2 (cid:18) (cid:19) p 1 (cid:18) − p − p (cid:19) mYo≡d3 mYo≡d3 = 1.0403374913367121372113004...; hence [12] 1 1 1 1 − 1 E = 3L (2) 1 1 1 1+ zw − p − p2 − p3 · p p 2 (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) p 1 (cid:18) (cid:19) mYo≡d3 mYo≡d3 = 1.0526097875093498936749762.... Again, analyticity requirements might not hold and we empirically compute 1 c2 1.290... N2 n ≈ n N X≤ which raises doubt about our value 1.052... for E. 5. Sixth Power Let the coefficients a satisfy [6, 27] { n}∞n=0 ∞ ∞ a qn = (1 qm)6. n − n=0 m=1 X Y No simple formula for a is known, but a = f(4n+1), where f is multiplicative and n n if p 3mod4 pr ≡ and r is even,  f(pr) = (v2 u2 +2iu v )r+1 (v2 u2 2iu v )r+1  ( 1)r p − p p p − p − p − p p if p 1mod4,   − 4iupvp ≡ 0 otherwise     

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.