ebook img

Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems PDF

355 Pages·2012·10.925 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems

Electrical Engineering S Power Electronics and p F a e “… very innovative … [a] rigorous analytical treatment starting from g m n i the modeling of the PV field and the power converter stages as well as the u a o • dynamics of the overall system, including MPPT control. This in-depth lo P Control Techniques for • e analytical description allows the design of power converters and DMPPT t V r algorithms improving the overall efficiency of the whole PV system operating i o t n e e under mismatching conditions.” l li Maximum Energy —Francesc Guinjoan, Polytechnic University of Catalonia M “… a concise but complete compendium of the required knowledge to understand, design and control photovoltaic systems. … also presents most of a Harvesting x the recent advances on photovoltaic optimization.” i P m o —Carlos Andres Ramos Paja, Universidad Nacional de Colombia w u m e in Photovoltaic Systems Filling a gap in the literature, Power Electronics and Control Techniques r for Maximum Energy Harvesting in Photovoltaic Systems brings together E E n l research on control circuits, systems, and techniques dedicated to the e e maximization of the electrical power produced by a photovoltaic (PV) source. r c g t The book reviews recent improvements in connecting PV systems to the grid y r o Nicola Femia • Giovanni Petrone and highlights solutions that can be used as a starting point for further research H n and development. a ic r Giovanni Spagnuolo • Massimo Vitelli s v Coverage includes methods for modeling a PV array working in uniform and e a s n mismatched conditions, achieving the best maximum power point tracking t d i (MPPT) performance, and designing the parameters that affect algorithm n C g performance. The book also addresses how to maximize the energy harvested o i n in mismatched conditions. The final chapter details the design of DC/DC n t converters, which usually perform the MPPT function, with special emphasis P r o on their energy efficiency. h l o T t e o Featuring a wealth of examples and illustrations, this book tackles state-of-the- c v art issues in extracting the maximum electrical power from photovoltaic arrays o h l n under any weather condition. A valuable reference, it offers practical guidance t i a q for researchers and industry professionals who want to implement MPPT in i u c photovoltaic systems. e S s y f s o t r K14643 e 6000 Broken Sound Parkway, NW m Suite 300, Boca Raton, FL 33487 ISBN: 978-1-4665-0690-9 s 711 Third Avenue 90000 New York, NY 10017 an informa business 2 Park Square, Milton Park www.taylorandfrancisgroup.com Abingdon, Oxon OX14 4RN, UK 9 781466 506909 w w w. c r c p r e s s . c o m K14643 cvr mech.indd 1 11/14/12 2:38 PM Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems IndustrIal ElEctronIcs sErIEs Series Editors: Bogdan M. Wilamowski & J. David Irwin PuBlIsheD TITles Power electronics and Control Techniques for Maximum energy harvesting in Photovoltaic systems, Nicola Femia, Giovanni Petrone, Giovanni Spagnuolo, and Massimo Vitelli extreme environment electronics, John D. Cressler and H. Alan Mantooth Renewable energy systems: Advanced Conversion Technologies and Applications, Fang Lin Luo and Hong Ye Multiobjective Optimization Methodology: A Jumping Gene Approach, K.S. Tang, T.M. Chan, R.J. Yin, and K.F. Man The Industrial Information Technology handbook, Richard Zurawski The Power electronics handbook, Timothy L. Skvarenina supervised and unsupervised Pattern Recognition: Feature extraction and Computational Intelligence, Evangelia Micheli-Tzanakou switched Reluctance Motor Drives: Modeling, simulation, Analysis, Design, and Applications, R. Krishnan FORThCOMING TITles Industrial Wireless sensor Networks: Applications, Protocols, standards, and Products, Vehbi Cagri Gungor and Gerhard P. Hancke smart Grid Technologies: Applications, Architectures, Protocols, and standards, Vehbi Cagri Gungor, Carlo Cecati, Gerhard P. Hancke, Concettina Buccella, and Pierluigi Siano Multilevel Converters for Industrial Applications, Sergio Alberto Gonzalez, Santiago Andres Verne, and Maria Ines Valla Data Mining: Theory and Practice, Milos Manic Granular Computing: Analysis and Design of Intelligent systems, Witold Pedrycz electric Multiphase Motor Drives: Modeling and Control, Emil Levi, Martin Jones, and Drazen Dujic sensorless Control systems for AC Machines: A Multiscalar Model-Based Approach, Zbigniew Krzeminski Next-Generation Optical Networks: Qos for Industry, Janusz Korniak and Pawel Rozycki signal Integrity in Digital systems: Principles and Practice, Jianjian Song and Edward Wheeler FPGAs: Fundamentals, Advanced Features, and Applications in Industrial electronics, Juan Jose Rodriguez Andina and Eduardo de la Torre Dynamics of electrical Machines: Practical examples in energy and Transportation systems, M. Kemal Saioglu, Bulent Bilir, Metin Gokasan, and Seta Bogosyan Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems Nicola Femia • Giovanni Petrone Giovanni Spagnuolo • Massimo Vitelli CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20121207 International Standard Book Number-13: 978-1-4665-0691-6 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To Giuseppe, Nicola, Maria, Patrizia, and Nicola Jr. Angelo, Pina, Simonetta, and Valeria Felice, Annamaria, and Alessia TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Contents Preface ......................................................................................................................xi About the Authors ..............................................................................................xiii 1 PV Modeling ....................................................................................................1 1.1 From the Photovoltaic Cell to the Field ..............................................1 1.2 The Electrical Characteristic of a PV Module ...................................3 1.3 The Double-Diode and Single-Diode Models ...................................7 1.4 From Data Sheet Values to Model Parameters ................................12 1.4.1 Parameters Identification Assuming R → ∞ ...................13 p 1.4.2 Parameters Identification Including R ..............................15 p 1.4.3 Parameters Identification Including R : Explicit p Solution ..................................................................................16 1.4.4 Other Approaches Proposed in Literature .........................17 1.5 Example: PV Module Equivalent Circuit Parameters Calculation ...........................................................................................20 1.6 The Lambert W Function for Modeling a PV Field .......................22 1.6.1 PV Generator Working in Uniform Conditions ................22 1.6.2 Modeling a Mismatched PV Generator ..............................25 1.7 Example ................................................................................................29 References .......................................................................................................32 2 Maximum Power Point Tracking...............................................................35 2.1 The Dynamic Optimization Problem ..............................................35 2.2 Fractional Open-Circuit Voltage and Short-Circuit Current ........40 2.3 Soft Computing Methods ..................................................................41 2.4 The Perturb and Observe Approach ................................................42 2.4.1 Performance Optimization: Steady-State and Dynamic Conditions .............................................................45 2.4.2 Rapidly Changing Irradiance Conditions ..........................51 2.4.3 P&O Design Example: A PV Battery Charger ...................54 2.5 Improvements of the P&O Algorithm ..............................................62 2.5.1 P&O with Adaptive Step Size ..............................................62 2.5.2 P&O with Parabolic Approximation ...................................63 2.6 Evolution of the Perturbative Method..............................................68 2.6.1 Particle Swarm Optimization (PSO) ...................................68 2.6.2 Extremum Seeking and Ripple Correlation Techniques..........................................................................70 2.6.3 The Incremental Conductance Method ..............................71 vii viii Contents 2.7 PV MPPT via Output Parameters .....................................................75 2.7.1 The TEODI Approach ............................................................76 2.8 MPPT Efficiency ..................................................................................81 References .......................................................................................................84 3 MPPT Efficiency: Noise Sources and Methods for Reducing Their Effects ..................................................................................................89 3.1 Low-Frequency Disturbances in Single-Phase Applications........89 3.1.1 The Perturb and Observe Approach Applied to Closed-Loop Switching Converters ....................................95 3.1.2 Example of P&O Design for a Closed-Loop Boost Converter .................................................................................99 3.2 Instability of the Current-Based MPPT Algorithms ....................104 3.3 Sliding Mode in PV System .............................................................108 3.3.1 Noise Rejection by Sliding Mode: Numerical Example ....114 3.3.2 MPPT Current Control by Sliding Mode ..........................117 3.3.2.1 Basic Configuration of Sliding Mode with Voltage Controller ................................................117 3.3.2.2 Voltage Controller Design ...................................122 3.3.3 Sliding Mode MPPT Controller: Numerical Example ....123 3.4 Analysis of the MPPT Performances in a Noisy Environment ....126 3.4.1 Noise Attenuation by Using Low-Pass Filters .................129 3.4.2 Error Compensation by Increasing the Step Perturbation ..........................................................................131 3.4.3 ADC Quantization Error in the P&O Algorithm: Numerical Example .............................................................134 References .....................................................................................................136 4 Distributed Maximum Power Point Tracking of Photovoltaic Arrays ............................................................................................................139 4.1 Limitations of Standard MPPT .......................................................139 4.2 A New Approach: Distributed MPPT ............................................139 4.2.1 DMPPT by Means of Microinverters ................................140 4.2.2 DMPPT by Means of DC/DC Converters ........................142 4.3 DC Analysis of a PV Array with DMPPT ......................................145 4.3.1 Feasible Operating Regions ................................................145 4.3.2 Examples of Feasible Operating Regions .........................147 4.3.3 I-V and P-V Characteristics of Boost-Based SCPVMs .....152 4.3.4 I-V and P-V Characteristics of Buckboost-Based SCPVMs .................................................................................163 4.4 Optimal Operating Range of the DC Inverter Input Voltage .....177 4.5 AC Analysis of a PV Array with DMPPT ......................................185 4.5.1 AC Model of a Single SCPVM ............................................196 Contents ix 4.5.2 Small-Signal Model of a Photovoltaic Array with DMPPT ..................................................................................208 4.5.3 Stability of a String of SCPVMs .........................................212 References .....................................................................................................244 5 Design of High-Energy-Efficiency Power Converters for PV MPPT Applications ....................................................................................251 5.1 Introduction .......................................................................................251 5.2 Power, Energy, Efficiency .................................................................252 5.3 Energy Harvesting in PV Plant Using DMPPT Power Converters ..............................................................................................258 5.4 Losses in Power Converters .............................................................268 5.5 Losses in the Synchronous FET Switching Cells .........................270 5.6 Conduction Losses ............................................................................272 5.7 Switching Losses ...............................................................................276 5.7.1 Turn ON ................................................................................281 5.7.2 Turn OFF ...............................................................................283 5.7.3 Thermal Analysis .................................................................285 5.7.4 Example .................................................................................290 References .....................................................................................................308 Index .....................................................................................................................311

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.