ebook img

Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures PDF

15 Pages·2017·27.79 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures

materials Article Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures AreejT.Almalkawi1,* ID,TalalSalem1,SameerHamadna2,A.G.N.D.Darsanasiri2, ParvizSoroushian2,AnagiBalchandra2andGhassanAl-Chaar3 1 DepartmentofCivilandEnvironmentalEngineering,MichiganStateUniversity,3546EngineeringBuilding, E.Lansing,MI48824,USA 2 MetnaCorporation,1926TurnerStreet,Lansing,MI48906-4051,USA 3 ConstructionEngineeringResearchLaboratory(CERL),USArmyEngineerResearchandDevelopment Center,Champaign,IL61822,USA * Correspondence:[email protected] (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:27February2018;Accepted:4April2018;Published:12April2018 Abstract: Cementitiouscomposites,includingferrocementandcontinuousfiberreinforcedcement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowablecementitiousslurry. Therelativelyhighdensityofcementitiousbinders,whencompared withpolymericbinders,areasetbackineffortstointroducecementitiouscompositesaslower-cost, fire-resistant,anddurablealternativestopolymercomposites. Aerationoftheslurryisaneffective meansofreducingthedensityofcementitiouscomposites. Thisapproach,however,compromises themechanicalpropertiesofcementitiousbinders. Anexperimentalprogramwasundertakenin order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strengthdevelopmentinaeratedcementitiousslurrywasalsoinvestigated. Thisresearchproduced aeratedslurrieswithdensitiesaslowas0.9g/cm3withviablemechanicalandbarrierqualitiesfor productionofcomposites. Themicrostructureofthesecompositeswasalsoinvestigated. Keywords: aeratedcementslurry;foamingagent;microstructure;thermalconductivity;sorptivity; density;compressivestrength;lightweightstructures;composites 1. Introduction Continuousfiberreinforcedcementcompositesandferrocementareexamplesofcompositesused inbuildingconstructionandrepairapplications[1–4]. Whencomparedwithpolymercomposites, cementitiouscompositesofferimprovedfireandmoistureresistance,andeconomics. Thedensityof cementitiousmatrices,however,ishigherthanthatofpolymericmatrices. Oneapproachtoproductionofcementitiouscompositesinvolvesinfiltrationofthereinforcement systemwithacementitiousslurry.Aerationoftheslurryofferstheopportunitytoreducethedensityof cementitiousmatrices. Whileaerationtendstocompromisethestrengthofcementitiousmaterials,the aeratedmatricesmaystillbeabletomeetthedemandsontheirmechanicalperformanceinthecontext ofcompositeswithrelativelyhigh-volumefractionsofcontinuousreinforcementwithhighspecific surfacearea. Thesedemandsaredifferentfromthoseplacedonconcreteinconventionalreinforced concretestructures. Thecombinationofaerationandreinforcementofhighspecificsurfaceareaand closespacingcouldalsoprovidedesiredworkabilityattributes(e.g.,easeofscrewapplicationand cutting)thatwouldmakesomewoodconstructiontechniquesapplicabletothematerial. Materials2018,11,597;doi:10.3390/ma11040597 www.mdpi.com/journal/materials Materials2018,11,597 2of15 Efforts to reduce the density of slurry need to address (besides mechanical performance and interactionswithdifferentreinforcementsystemssuchaswiremeshreinforcement)twoaspectsofthe slurrybehaviorthatareofpracticalsignificanceinthisapplication: (i)sorptivityforprotectingthe insulationandtheinteriorofthebuildingagainstmoisturetransport;and(ii)thermalconductivityfor addingvaluetowardsenhancingtheenergy-efficiencyofthebuilding. Thesynergybetweenfibersandorganicpolymershasbeenkeytotheemergenceofcomposites aswidelyusedstructuralmaterials. Inthissynergisticaction,fibersaccountforthedistinctlyhigh strengthandmodulusofcomposites. Organicpolymers,ontheotherhand,provideforstresstransfer tofibers,andstressredistributionamongfibersuponearlyruptureofsomestatisticallyweakerones[5]. Thesecontributionsofthepolymermatrixrelyheavilyupontheirstraincapacityanddesiredadhesion tofibers. Giventhebrittlenatureofpolymermatricessuchasepoxy;itistheirrelativelylowelastic modulusthatisresponsiblefortheirelongationcapacity. Thepolymermatrixalsocontributesbarrier qualitiestocomposites. Thegenerallyopenmolecularstructuresofbothorganicpolymersandfibers areresponsiblefortherelativelylowdensityofcompositesthatbenefitstheir‘specific’strengthand modulus. Weightsavinghasbeenavitalconsiderationintransitionfrommetalstocompositesin aerospaceandotherapplications[5]. Theworkreportedhereinfocusesondevelopmentofaninorganicmatrixwithreduceddensity and elastic modulus that suits utilization as matrix in continuous fiber reinforced composites that have similarities to ferrocement products. The matrix developed here is an aerated slurry that offersdesiredrheologicalattributesforinfiltratingfabricandmeshreinforcementsystems. Aerated cementitious materials (e.g., aerated concrete) have been developed mostly to provide thermal insulationqualities[6–8]. Thisworkfocusedonthedevelopmentofaeratedslurrieswitharelatively lowdensityandmodulusandviablestrengthforuseasmatrixinstructuralcompositesasinvestigated inourpreviousstudies[9–13]. Thisaeratedslurry-infiltratedmeshisdevelopedasaconstruction materialthatoffersqualitiesintermediatebetweenwoodandconcrete. Itisintendedtoprovidea desiredbalanceofrelativelylowdensity,ductility,toughness,strength,workability,moistureandfire resistance,anddurabilityunderweatheringexposure. 2. MaterialsandMethods Theaeratedslurrywaspreparedbymixingthefoamingagent(saponin). Saponinsarenatural surfactants found abundantly in various plant species. More specifically, they are amphipathic glycosides comprising one or more hydrophilic glycoside moieties combined with a lipophilic triterpene derivative [14]. Figure 1 shows a saponin molecule obtained from the residues of sisal defibering. Ithasbeenusedinformulationofdetergents[15]. Figure1.Saponinmoleculeextractedfromsisalwaste[16]. Aerationofcementitiousmaterialscanbeaccomplishedviastabilizationofentrappedairusing surfactants [17–19], or by the addition of fine powder that generates gas by undergoing chemical Materials2018,11,597 3of15 reactions with cementitious materials. Aerated concrete has been produced with a wide range of densities(300to1800kg/m3). Thefocusofthisworkisonachievingdensitiesbelow1000kg/m3 thataregenerallyviewedasinsulatingmaterials[20,21]. Saponin(ahydrolyzedproteinextracted fromplants)[22–24]wasusedinthisworkasasurfactantforproductionofaeratedslurry. Saponin wasmixedwiththemixingwaterofslurry,andagitatedtoformfoam,whichwasthenmixedwith Portlandcementtype1toproducetheaeratedslurry. Asasurfactant, saponinlowersthesurface tensionofwater. Surfactantsaremoleculeswithpolarandnonpolarendsthatattachtowaterand air,respectively. Surfactantsaremoleculeswithpolarandnonpolarendsthatattachtowaterandair, respectively. Theorientationofsurfactantmoleculesinbulksolutionisrandom. Thoseoccurringatthe air/liquidinterfacesoradsorbedoncementparticles,however,havepreferredorientationsthattend tominimizetheunfavorableinteractionsbetweentheliquidphaseanddifferentmolecularsectionsof thesurfactant. Figure2showsthealignmentofamonolayerofsurfactantmoleculesattheinterface betweenairandsurroundingliquidphase. Thehydrophobictailsofsurfactantmoleculesstickoutof thesolutiontoreducethedistortionofwatermolecules,andthuslowertheoverallfreeenergyofthe system[25,26]. Themutualrepulsionbetweenthehydrophilicheadsofsurfactantmoleculesreduces theattractionofthebulkliquidphase,producingalowersurfacetension. Becauseoftheelectrostatic componentoftherepulsionforceofionicsurfactants, theireffectivenesstoreducesurfacetension is more significant than that provided by nonionic surfactants [27]. The nature and concentration of surfactants determine the physical and chemical properties of the air bubble/liquid interfaces, including surface tension (equals to free surface energy) and stability. The electrostatic and steric repulsionsbetweensurfactantshelpstostabilizetheairbubblesthatformwithintheliquid[28,29]. Thehydrophilicendsofthesurfactantmoleculesarealsoelectrostaticallyattractedtocementparticles, thisisalsoafactorinstabilizingtheairbubbleswithincementpaste(Figure3). Figure2.Surfactantmoleculesatthewater–airinterface[25,30]. Figure3.Interactionbetweenairbubblesandcementparticles[25]. Saponinandwaterweremixedat1200rpmrotationalspeed,usingaCraftsman®mixingblade attachedtoadrill(Figure4),toproducefoamedwater. Thefoamedmixingwaterwasthenaddedto cementatwater/cementratioof0.45to0.6. Mixingwasaccomplishedinamortarmixerfor2min. Materials2018,11,597 4of15 Thewater/cementratioofdifferentaeratedslurrieswasadjustedinordertoproduceadesiredfresh mixrheologyforinfiltratingmultiplelayersofchickenmesh. Therequiredfreshmixrheologycould bedefinedbyaviscosityofabout1900cPandayieldstrengthofabout70. Theresultingaeratedslurry wasplacedin50mmcubemoldsandkeptinsealedconditionatroomtemperaturefor24h. Thecube specimens were then demolded and cured at 95 ± 5% relative humidity and room temperature for seven days. The aerated slurry mix proportions considered in this experimental program are introducedinTable1. Forthenon-aeratedslurry(with0%saponincontent),water/cementratiowas between(0.45–0.55). Figure4.Foamgenerationinwaterviahigh-speedmixing. Table1.Theaeratedslurrymixesproportionsconsideredinthisinvestigation. Mix SaponinDosage(byWeightofCement) Water/CementRatio 1 0.005% 2 0.01% 0.45 3 0.02% 4 0.005% 5 0.01% 0.50 6 0.02% 7 0.005% 8 0.01% 9 0.015% 0.55 10 0.02% 11 0.025% 12 0.03% 13 0.02% 0.6 14 0.025% Figure5showsexamplesoftheaeratedslurrycubespecimensthatweretestedincompression formeasurementofthecompressivestrengthofaeratedslurry(atsevendaysofage). Thedensityof aeratedslurrywasmeasuredbydividingtheair-driedweighttothevolumeofthesespecimens. Figure5.Aeratedslurryspecimens. Materials2018,11,597 5of15 The aerated slurry would be the primary protection of the building interior and also the indigenousinsulationtobeusedwithinthestructuralpanelsagainstweatheringeffects. Moisture wouldbetransportedthroughtheaeratedslurryskins(withchickenmeshreinforcement)viacapillary sorption. Anexperimentalstudywasthusundertakeninordertomeasuretheeffectsofaerationon thecapillarysorptivityoftheslurry. SorptivitytestswereperformedperASTMC1585;thespecimens usedforthispurposewerecylindersof100mmdiameterand50mmthickness. Aschematicofthetest setupisshowninFigure6a,andapictureofmultiplespecimensduringsorptivitytestingisshownin Figure6b. Thespecimensweredemoldedafter24hofstorageinsealedconditionandwerecuredat roomtemperatureuntilthetestage. Thistestmethodinvolvesexposureofoneflatsurfaceofspecimen towater,whichtheremainingsurfacessealedagainstmoistureloss. Massgainovertimeisrecorded asameasureofmoisturesorption. Sorptivityisexpressedintermsofthesorptionrateofmoistureinto theaeratedslurry. Thistestwascontinuedfortwodaysinordertogainfurtherinsightintoschematic time-historyofcapillarysorption[31,32]. Figure6.Sorptivitytestsetup.(a)Schematics;(b)pictureofmultiplespecimensduringthetest. The ultrasound pulse velocity (UPV) of aerated slurry was measured nondestructively using a portable equipment (58-E4800 UPV tester, CONTROLS S.p.A, Milan, Itlay). The UPV test setup is shown in Figure 7. In this test, an ultrasonic pulse is generated and transmitted to the surface of concrete through the transmitter transducer. The time taken by the pulse to travel through the aeratedslurry,t ,ismeasuredbythereceivertransducerontheoppositeside. The54kHztransducers us werepositionedatthecenterofeachopposingface. Thepropagationtimeoftheultrasonicwaves transmittedthroughthe150mmlongcylindricalspecimenswasmeasuredwithaccuracyupto0.1s. Athincouplant(solidbluekaolin-glycerolpastewasusedattheinterfacebetweentransducersandthe aeratedslurryspecimensurfacestoensuregoodcontact. Thepulsetraveltime(t)fromthefrontsideto therearsidewasautomaticallyrecorded. Theultrasoundpulsevelocitywasmeasuredapproximately 50haftermixingoftheaeratedslurry[33–35]. Thespecimensusedforperformanceoftheultrasound pulsevelocitywerepreparedfromaeratedslurrymixesofsimilarproportionsasthoseusedforother experiments; themixesusedforpreparationoftheultrasoundpulsevelocityspecimens,however, werenotthesameasthoseusedforpreparationofthespecimensusedinothertests. Allspecimens werecuredatroomtemperatureand95±5%relativehumidity. Thethermalconductivityofaeratedslurrytestwasmeasuredatsevendaysofageinaccordance toASTMC177[36]. Aeratedslurrycementspecimenswereovendriedfor24hatatemperatureof 105±5◦C.Figure8showsthethermalconductivitytestingconfigurationandtestsetup.Thespecimen wasplacedbetweenhotandcoldplateswith40and18◦C,respectively,tosimulateoutdoorandindoor temperatures. Temperaturesonthehotandthecoldplatesaswellastheheatflowwererecorded versustimeover24h. Theresults,aftertheprocessreachedequilibrium,wereusedtocalculatethe thermalconductivityofaeratedslurry. Materials2018,11,597 6of15 Figure7.Ultrasoundpulsevelocitytestsetup. Figure8.(a)Thermalconductivitytestingdiagramand(b)testsetup. Furthermore,aeratedslurrysamplesweresubjectedtoScanningElectronMeasurement(SEM) observationtoevaluatemicrostructuralfeatures. SEMobservationswerecarriedoutonJCM-5000 NeoScope™(JEOLLtd.,Tokyo,Japan)atanacceleratingvoltageof10–15kVusingasecondaryelectron (SE)detector. Theinvestigationswereconductedonfracturesurfacesofthepasteofthesamplesafter 28days. SamplesweresputteredwithgoldbeforetheSEMmeasurements. 3. ExperimentalResultsandDiscussion 3.1. CompressiveStrength Table 2 presents the measured values of seven-day compressive strength and density for the aeratedslurrymixdesignsintroducedearlierinTable1. Lowervaluesofdensitytendtocorrespond withlowervaluesofcompressivestrength. Thisisbothbecauseoftheriseinaircontentandalso theincreaseinwater/cementratioforachievingviablefreshmixrheology. Mix13withdensityof 0.9g/cm3and5.4MPacompressivestrengthatsevendaysprovidesaviablebalanceofdensityand strength for the targeted ferro-cement application. This paper strongly emphasizes the density of aeratedslurryinordertoenhancetheefficiencyofseismicdesign[37,38]andalsotoenablemanual installationofthebuildingstructure. Materials2018,11,597 7of15 Table2.Mixdesignsandperformancecharacteristicsoftheaeratedslurry. Mix Seven-DayCompressiveStrength,MPa Density,g/cm3 1 10.7 1.9 2 8.2 1.5 3 6.3 1.4 4 14.1 1.2 5 10.5 1.81 6 9.2 1.3 7 13.3 1.6 8 11.1 1.7 9 9.4 1.3 10 6.4 1.17 11 2.4 0.65 12 1.2 0.8 13 5.4 0.9 14 7.1 1.12 3.2. Sorptivity ThesorptivitytestresultsarepresentedinFigure9asthecapillaryriseofmoistureversustimefor aeratedslurriespreparedwithdifferentdosagesofthefoamingagent(saponin),withwater/cement ratioof0.55. Thetwohigherdosagesoffoamingagent(0.015%and0.02%)areobservedtoproduce lowersorptionratesandcapacities. Thisisapositivetrend,indicatingthatloweringthedensityofthe slurryviaaerationwouldactuallyimproveitsbarrierqualitiesforprotectingthebuildinginterioras wellasthenaturalinsulationagainstweatheringeffects. Figure9.Capillarysorptionofaeratedslurriesversusthesquarerootoftime. The initial sorption rate (S) is the slope of the sorption curve shown in Figure 9 up to 6 h; i thesecondarysorptionrateistheslopeofthecurveafteroneday. Boththesecalculationsaremade usingalinearregressionanalysis(ASTMC1585)[39]: √ I = S × t+b i The resulting values of initial and secondary sorption rate are presented in Table 3 together with the corresponding values of the aerated slurry density. These results confirm that lowering thedensityofaeratedslurryfrom1.7to1.17–1.3g/cm3leadstoasignificantdropintheinitialand secondary sorption rates of the slurry. This can be explained by the fact that aeration introduces isolatedairbubblesintotheslurry, whichdisruptthecontinuityofcapillaryporesthroughwhich sorptionoccurs[40–45]. AnoverallsorptivityvalueisalsopresentedinTable3,whichistheslopeofa Materials2018,11,597 8of15 regressionlinefitintothewholedatapoints(usingtheaboveequation). Theoverallsorptivityvalues furtherconfirmsthedropinsorptionratewithreductionofthedensityofaeratedslurry. Table3.Sorptionratesanddensitiesofslurriespreparedwithdifferentdosagesofthefoamingagent. DosageofFoamingAgent% 0.01% 0.015% 0.02% √ Initialsorptionrate,mm/ s 0.0242 0.0188 0.0132 √ Secondarysorptionrate,mm/ s 0.0044 0.0013 0.0019 R2(Regressionvalue) 0.951 0.950 0.958 Density,g/cm3 1.7 1.3 1.17 Sorptivity,mm/min0.5 0.75 0.5 0.34 In order to confirm the finding that aeration actually reduces the sorption rate and extent of slurry(i.e.,enhancesitsbarrierqualities),testswerealsoperformedonaslurrywithoutanyaeration. The sorption test data presented in Figure 10 confirm that aeration reduces the rate and extent of moisturesorptionintotheslurry. AsschematicallydepictedinFigure11,introductionofisolatedair bubbleforcestortuoussorptionpathsthroughcapillarypores,whichreducethesorptionrateofthe slurry. Theexperiencewithentrainedairbubblesindicatesthatindividualairbubblesremainlargely emptyofwaterevenunderlong-termexposuretomoistconditions. Thisphenomenon,aswellasthe reductionintherateofmoisturesorption,explainthedropintheextentofmoisturesorptionwith introductionofindividualairbubblesviaaerationofslurry. Figure10.Sorptivityofnon-aeratedversusaeratedslurries. Figure11.Sorptionpathsintonon-aeratedandaeratedslurries.(a)Non-aerated;(b)aerated. Opticmicroscopeimageswereobtainedfromsectionsofaeratedslurriespreparedwithdifferent dosagesofthefoamingagentinordertounderstandthemorphologyofairbubblesandexplaintheir effects on compressive strength. Figure 12a,b show microscopic images of slurries prepared with 0.005%and0.02%concentrationsofthefoamingagent,respectively.Ariseinthefoamingagentdosage Materials2018,11,597 9of15 isobservedtoincreasethesize(aswellasthevolumefraction)ofairbubble. Itshouldbenotedthat smaller and regularly formed air bubbles produce higher compressive strengths than coarser and irregularlyformedairbubbles[46]. Mechanicalpropertiesarestronglyinfluencedbythedistribution ofporeswithinthehardenedaeratedslurry[47,48]. Thesphericalanddistributednatureoffoamsin Figure12bwithhigheraircontentledtoaviablelevelofcompressivestrengthwhichwasnotlower thanthatprovidedbytheaeratedslurryshowninFigure12bwithlowercontentofirregularly-shaped airbubbles. Thisobservationconfirmsthatmicrostructuralpropertiesareprimaryfactorsinfluencing the material properties of aerated slurry [38]. An example optic microscope image of an exterior surfaceofanaeratedslurryofhighercompressivestrengthisshowninFigure13,wherefinerand moreuniformlydispersedairbubblescanbeobserved. Figure12. Opticalmicroscopeimagesofsectionsofaeratedslurrieswithdifferentdosagesofthe foamingagent(saponin).(a)0.005%foamingagent;(b)0.02%foamingagent. Figure 13. A typical microscopic image of the exterior surface of an aerated slurry with higher compressivestrength. Materials2018,11,597 10of15 3.3. SEMObservations Thesphericalgeometryofairvoidsisanimportantfactorinfluencingthestructuralandfunctional propertiesofaeratedbinders[49,50]. Inaddition,thevoidsshouldbedistributedevenlyinthemassto producehomogenousbindersofimprovedperformance. Largervoids(macro-pores)wouldlower thedensityofaeratedslurrybutcouldcompromiseitsmechanicalperformance. Dependingonthe type and dosage of the foaming agent, aerated cement slurries may incorporate both micro- and macro-pores [51]. Macro-pores could be formed as a result of the merger of micro-pores. This is because expansion of the matrix upon micro-pore formation generates pressure at the interfaces betweenmicro-pores[52]. Figure14ashowsanSEMimageofanaeratedslurryafterhydration. Figure14.SEMimagesofthefracturedsurfacesoffoamcementsmadefromslurriesafterhydration for28dayswithadensityof(a)1.0g/cm3(b)0.75g/cm3(c)1.3g/cm3. Asidefromthegelpores(<10nm)andcapillarypores(10nmto10µm),hollowshellporeshave beenproposedasathirdcategoryofintrinsicporesinbulkofhydrationproducts[52]. Hollowshells haverangeinsizefrom1toaround20µm, aboutthesizeofsmallercementgrains, embeddedin cementgelandchanneledtotheoutsidethroughcapillaryandgelpores. Anidealmicrostructureofaeratedcementminimizestheextentofwatertransportbyuniformly distributingthediscretemicro-sizeporesgeneratedbythefoamingagentwithinthecementslurry. Thecoalescenceofmanyirregular-shapedpores, however, maycreateadisturbedmicrostructure, triggeringahighdegreeofwatermobility. Inordertoverifythis,twofracturedsamplesofaerated slurrieswith0.75and1.3g/cm3bulkdensitieswereexaminedusingascanningelectronmicroscope (Figure14b,c,respectively). Theimageontheright,fortheslurrywith1.3g/cm3bulkdensity,shows amicrostructureofuniformlydistributeddisjunctivepores. Incontrast,adifferentmicrostructurewas observedfortheaeratedslurrywith0.75g/cm3bulkdensity(left)whereananomalouscoalescence

Description:
with polymeric binders, are a setback in efforts to introduce cementitious composites as fire-resistant, and durable alternatives to polymer composites. with aerated slurry-infiltrated chicken mesh under cyclic lateral loading.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.