ebook img

Physics of high-intensity high-energy particle beam propagation in open air and outer-space plasmas PDF

1.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physics of high-intensity high-energy particle beam propagation in open air and outer-space plasmas

9 0 0 2 n a J 1 1 ] h The Physics of high-intensity high-energy p - m Particle Beam Propagation s a in open Air and outer-space Plasmas l p . s c i s y h Andre Gsponer p Independent Scientific Research Institute [ 3 Oxford, OX4 4YS, England v 7 5 1 ISRI-82-04.56 January 11, 2009 9 0 4 0 / s c i s y h p : v i X r a 1979 — 2009 “Nuclearphysicshasputintothehandsofmankindformidablepower. Wearestillstrugglingwiththeproblemof howtousenuclearenergy efficiently and safely, we are rightly alarmed at the accumulation of nuclearweaponsofannihilation. Untilmankindhasshownthatitcan deal wisely with nuclear power, it is not prepared for something en- tirelynew. Untilthelastnuclearwarheadhaseitherbeendispatched to outer space or quitely burnt up as fuel in an energy-producing re- actor,Iwouldnotwelcomeanentirelynewdevelopment. Ihaveoften said that I am in favor of supporting high energy physics, provided that the high energy physicists can promise not to produce applica- ble results within the next twenty-five years. I am usually not taken seriously when I make such remarks. I do, however, mean them very seriously.” H.B.G. Casimir, The25thAnniversaryCeremony, CERN Courier, September1979, page237. 1 Abstract This report is a self-contained and comprehensive review of the physics of propagatingpulsesofhigh-intensityhigh-energyparticlebeamsinpre-existingor self-generated plasmas. Consideration is given to beams of electrons, protons, muons, and their antiparticles, as well as to neutral-hydrogen, positronium, and electron-positron-plasmoid beams. The first part is a systematic overview of the theory pertaining to propagation, plasma self-generation, energy/current-losses, and stability of such pulses. The second part reviews the major full-scale propa- gation experiments which have been carried out, in atmospheric and outer-space plasmas, to assess the validity of theoretical models. It is found that the data available on these experiments demonstrate that range and stability are in agree- ment with theory. In particular, stable self-pinched propagation of high-current charged-particle beams in the atmosphere is possibleoverdistances equal to sev- eral Nordsieck lengths. In order not to be deflected by Earth’s magnetic field, electron-beam pulses need to be guided by a pre-formed channel, while proton- beam pulses may under suitable conditions propagate undeflected through both the low-and high-atmosphere. In ionosphericorouter-space plasmas, very-long- range propagation across Earth’s magnetic field requires GeV to TeV electrons or positron beams in order for the transverse deflection to be acceptable, while undeflected propagation is possible for plasmoid beams consisting of co-moving high-energy particlepairssuch as electronsand positrons. Contents 1 Introduction 8 2 Somepreliminary definitions and concepts 10 3 Particlebeam propagationinvacuum ora negligiblemedium 15 3.1 Neutral beamin vacuum: ballisticpropagation . . . . . . . . . . 15 3.2 Charged beamin vacuum: space-charge-driven expansion . . . . 17 3.3 Injectionofacharged beam intovacuum: limitingcurrent . . . . 20 3.4 Inductivehead erosion . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 Injectionintoouter-space: spacecraft charging . . . . . . . . . . 25 4 Particlebeam propagationina gasorplasma 27 4.1 Beam charge and current neutralization . . . . . . . . . . . . . . 27 4.2 Charged beamin aplasma: theBennett pinch . . . . . . . . . . . 33 4.3 Effect ofinternalforces : cohesionand coupling . . . . . . . . . . 41 4.4 Effect ofexternalforces : Earth’smagneticfield . . . . . . . . . . 46 4.4.1 Effect oncharge andcurrent neutralization . . . . . . . . 48 4.4.2 Effect onbeam trajectory . . . . . . . . . . . . . . . . . . 49 4.4.3 Effect onbeam head . . . . . . . . . . . . . . . . . . . . 51 4.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.5 Charged beamin adensegasorplasma: Nordsieckequation . . . 57 1 4.6 Particlebeamin agasorplasma: emittance-drivenexpansion . . 64 4.7 Deflection and guidingby conductorsandchannels . . . . . . . . 66 4.7.1 Deflection andguidingbyconductors . . . . . . . . . . . 67 4.7.2 Magnetictrackingin dischargeplasmachannels . . . . . . 70 4.7.3 Electrostatictrackinginion-focusingchannels . . . . . . 71 4.7.4 Electrostaticchannel-trackingin full-densityair . . . . . . 75 4.7.5 Magneticchannel-trackingin full-densityair . . . . . . . 76 5 Injection ofa high-power beam into theatmosphere 78 5.1 Plasmagenerationby aparticlebeam . . . . . . . . . . . . . . . 78 5.1.1 Maxwell’sequationsand beam coordinatesystem . . . . . 80 5.1.2 Circuitequation . . . . . . . . . . . . . . . . . . . . . . . 82 5.1.3 Conductivityequation . . . . . . . . . . . . . . . . . . . 85 5.1.4 Current enhancement . . . . . . . . . . . . . . . . . . . . 87 5.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 Charge neutralization: limitationsdueto atmosphericdensity . . 89 5.3 Conductivitygenerationand criticalbeam current . . . . . . . . . 94 5.4 Ohmiclossesand return-current heating . . . . . . . . . . . . . . 97 5.5 Beam head erosion . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.6 Beam conditioning . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.7 Propagationofatrainofpulses . . . . . . . . . . . . . . . . . . . 107 6 Stability ofpropagating high-power beams 108 6.1 General considerationsonbeam stability . . . . . . . . . . . . . . 108 6.2 Microinstabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.2.1 Two-streaminstability . . . . . . . . . . . . . . . . . . . 114 6.2.2 Weibel(ormicro-filamentation)instability . . . . . . . . 116 6.2.3 Beam-plasmaheatingbymicroinstabilities . . . . . . . . 120 2 6.2.4 Discussionofmicroinstabilities . . . . . . . . . . . . . . 120 6.3 Macroinstabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.3.1 Macro-filamentation . . . . . . . . . . . . . . . . . . . . 122 6.3.2 Electrostatickink(or‘ionhose’)instability . . . . . . . . 124 6.3.3 Electromagnetickink(or‘resistivehose’)instability . . . 126 6.3.4 Macrostabilityofabeam penetratinganeutralgas . . . . 128 6.3.5 Macrostabilityofbeamswithrounded radialprofiles . . . 130 6.3.6 Discussionofmacroinstabilities . . . . . . . . . . . . . . 133 6.4 Masteringand dampinginstabilities . . . . . . . . . . . . . . . . 133 7 Plasmoidbeam propagation 135 7.1 Plasmoidsinfundamentaland appliedsciences . . . . . . . . . . 135 7.1.1 Compactplasmoids . . . . . . . . . . . . . . . . . . . . . 138 7.1.2 Beam plasmoids . . . . . . . . . . . . . . . . . . . . . . 141 7.1.3 Time-scalesforbeamplasmoidpropagation . . . . . . . . 143 7.2 Propagationacross amagnetizedvacuum . . . . . . . . . . . . . 144 7.3 Propagationacross amagnetizedplasma . . . . . . . . . . . . . . 150 7.4 Gaussian-profilebeam plasmoidmodel . . . . . . . . . . . . . . . 154 7.5 Feasibilityofmatter-antimatterbeam plasmoids . . . . . . . . . . 161 8 Scientific and technical prospect 166 8.1 Discussionoftheoreticalprospect . . . . . . . . . . . . . . . . . 166 8.2 Discussionofbeam propagationexperiments . . . . . . . . . . . 169 9 Neutral particle beams propagationexperiments 172 9.1 Neutral hydrogenbeam technologydevelopment . . . . . . . . . 172 9.1.1 Theionsource . . . . . . . . . . . . . . . . . . . . . . . 173 9.1.2 Theinjector . . . . . . . . . . . . . . . . . . . . . . . . . 173 9.1.3 Theaccelerator . . . . . . . . . . . . . . . . . . . . . . . 174 3 9.1.4 Thebeamfocusingand steeringoptics . . . . . . . . . . . 175 9.1.5 Theneutralizingcell . . . . . . . . . . . . . . . . . . . . 175 9.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 176 9.2 BEAR andGTA at LosAlamosNationalLaboratory . . . . . . . 176 9.3 Emergingneutral beamtechnologies . . . . . . . . . . . . . . . . 179 9.3.1 Antihydrogenbeams . . . . . . . . . . . . . . . . . . . . 180 9.3.2 Positroniumbeams . . . . . . . . . . . . . . . . . . . . . 181 9.3.3 Ultra-high-energylaserbeams . . . . . . . . . . . . . . . 181 9.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 181 10 Charged particlebeams propagationexperiments 183 10.1 ATAat LawrenceLivermoreNationalLaboratory . . . . . . . . . 183 10.2 RADLACat SandiaNationalLaboratory . . . . . . . . . . . . . . 189 10.3 LIA-10 andLIA-30 at Arzamas-16 . . . . . . . . . . . . . . . . . 193 10.4 PHERMEX at LosAlamosNationalLaboratory . . . . . . . . . . 194 10.5 Otherelectron-beampropagationexperimentsin theUSA . . . . . 195 10.5.1 DARHT —2 kA, 3.5MV,2 µs . . . . . . . . . . . . . . 195 10.5.2 HermesIII —19 MeV, 700kA, 25ns . . . . . . . . . . . 196 10.5.3 IBEX — 70kA, 4Mev,20ns . . . . . . . . . . . . . . . 196 10.5.4 MEDEAII— 13kA, 1.2MV, 2 10ns . . . . . . . . . 197 × 10.5.5 Pulserad 310— 5–10kA,1 MeV, 35ns . . . . . . . . . . 198 10.5.6 Febetron 706— 5kA, 0.4MeV, 3 ns . . . . . . . . . . . 198 10.5.7 Stanford MarkIII —10 A, 42MeV, 4 ps . . . . . . . . . 199 10.6 Propagationexperimentsin othercountries . . . . . . . . . . . . 200 10.7 High-intensityproton andion beams . . . . . . . . . . . . . . . . 201 10.7.1 Accumulationand pulsecompression . . . . . . . . . . . 202 10.7.2 Collectiveacceleration . . . . . . . . . . . . . . . . . . . 203 10.7.3 Diode-likesources . . . . . . . . . . . . . . . . . . . . . 203 4 10.7.4 High-intensityprotonbeam propagationexperiments . . . 205 10.8 High-intensitymuonbeams . . . . . . . . . . . . . . . . . . . . . 206 10.9 Ultra-high-energyparticlebeams . . . . . . . . . . . . . . . . . . 208 11 Conclusion 210 12 Aboutthis report 211 13 References 221 5 List of Figures 4.1 Thepincheffect . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 Beam expansionforvariousparticles . . . . . . . . . . . . . . . . 59 4.3 Effectivebeamrangeversusmomentumforvariousparticles . . . 60 5.1 Propagationofapinchedbeam . . . . . . . . . . . . . . . . . . . 79 5.2 Coordinatesystemused indescribingthepropagatingbeam . . . . 81 5.3 Beam neck profile . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.1 ‘Dream Beam:’ Ultra-high-energy laser-drivenbeam . . . . . . . 170 6 List of Tables 4.1 Typicalionosphericand magnetosphericdata . . . . . . . . . . . 29 4.2 Behaviorofa3 MeV, 50kA, 30ns electronbeam in air . . . . . . 40 4.3 Rangeofa10 GeV/cplasmoidbeam propagatingin outer-space . 66 5.1 Atmosphericdensitylimitationson beam current density . . . . . 90 5.2 Atmosphericdensitylimitationson charge neutralization . . . . . 92 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.