FusionEngineeringandDesign80(2006)25–62 Physics basis for the advanced tokamak fusion power plant, ARIES-AT S.C. Jardina,∗, C.E. Kessela, T.K. Maub, R.L. Millerb, F. Najmabadib, V.S. Chanc, M.S. Chuc, R. LaHayec, L.L. Laoc, T.W. Petriec, P. Politzerc, H.E. St.Johnc, P. Snyderc, G.M. Staeblerc, A.D. Turnbullc, W.P. Westc aPrincetonPlasmaPhysicsLaboratory,P.O.Box451,Princeton,NJ08543,USA bFusionEnergyResearchProgram,UniversityofCalifornia,SanDiego,9500GilmanDr.,LaJolla,CA92093,USA cGeneralAtomics,P.O.Box85608,SanDiego,CA92186,USA Accepted1June2005 Availableonline5October2005 Abstract The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A≡R/a=4.0, an elongation and triangularity of κ=2.20,δ=0.90 (evaluated at the separatrix surface), a toroidal beta ofβ=9.1%(normalizedtothevacuumtoroidalfieldattheplasmacenter),whichcorrespondstoanormalizedbetaofβ ≡ N 100×β/(I (MA)/a(m)B(T))=5.4.Thesebetavaluesarechosentobe10%belowtheidealMHDstabilitylimit.Thebootstrap- P currentfractionisfBS≡IBS/IP =0.91.ThisleadstoadesignwithtotalplasmacurrentIP=12.8MA,andtoroidalfieldof 11.1T(atthecoiledge)and5.8T(attheplasmacenter).Themajorandminorradiiare5.2and1.3m.TheeffectsofH-modeedge gradientsandthestabilityofthisconfigurationtonon-idealmodesisanalyzed.ThecurrentdrivesystemconsistsofICRF/FW foron-axiscurrentdriveandaLowerHybridsystemforoff-axis.Transportprojectionsarepresentedusingthedrift-wavebased GLF23model.Theapproachtopowerandparticleexhaustusingbothplasmacoreandscrape-off-layerradiationispresented. ©2005ElsevierB.V.Allrightsreserved. Keywords:Reactorstudies;Fusionpowerplant;Advancedtokamak;Physicsbasis 1. Introduction [1], describe the physics basis and physics optimiza- tionstudiesperformedfortheARIES-ATfusionpower This, and the companion paper on ideal-MHD- plantstudy.ARIES-ATisanadvancedtokamak,aswas based optimizations to define a reference equilibrium ARIES-RS[2].Assuch,thetokamaksafetyfactor,or q-profile,hasa“reversedshear”propertywhereitisa ∗ Correspondingauthor.Tel.:+16092432635; local maximum on axis, decreases outward to a local minimum,andthenincreasestotheplasmaboundary. fax:+16092432662. E-mailaddress:[email protected](S.C.Jardin). Thisconfigurationisfavoredforitspropertiesthat(1) 0920-3796/$–seefrontmatter©2005ElsevierB.V.Allrightsreserved. doi:10.1016/j.fusengdes.2005.06.352 26 S.C.Jardinetal./FusionEngineeringandDesign80(2006)25–62 it remains stable to ideal MHD ballooning and inter- The current drive systems for ARIES-AT are ana- nalkinkmodesatverylargevaluesoftheplasmaβ≡ lyzed in Section 3. This includes an analysis and de- 2µ p/B2 , (where B is the vacuum toroidal field sign specifications for the baseline current drive sys- 0 vac vac evaluatedattheplasmacenter),(2)itimpliesaplasma tem of ion cyclotron resonant frequency (ICRF) and currentdensityprofilepeakedoff-axisthatisconsistent lower hybrid wave (LHW) heating and current drive. withalargebootstrap-currentfractionf ∼1,and(3) We also include analysis of backup systems, consist- BS itisconsistentwithfavorabletransportpropertiesnear ing of high harmonic fast wave (HHFW) and neu- andinteriortotheshearreversalregion. tralbeaminjection(NBI).Theprimaryfunctionofall Therearemanysimilaritiesbetweenthisdesignand these systems is to drive plasma current where it is our earlier design study, ARIES-RS [2]. The primary neededfromplasmastabilityandtransportconsidera- difference is that we have carried the optimizations tions.However,theheatingandcurrentdrivesystems further in this design in order to produce a more ag- also are used during plasma startup, and in addition gressive,andhencemoreattractiveconfiguration.This they produce plasma rotation, which affects both the has been accomplished by considering a wider class MHDstabilityandthetransportpropertiesofthecon- ofpressureandcurrentprofiles,byutilizingmoread- figuration. vanced cross-sectional shaping, and by allowing the Thetransportpropertiesofthedeviceareanalyzed plasma region to extend further to the X-point singu- in Section 4. Modern transport analysis tools and the larity in the confining magnetic field for the stability GLF23transportmodelareappliedtoanalyzethecon- evaluations[1]Table1. sistencyoftheplasmaprofileswithrespecttoevolution Wehavealsoincreasedboththedepthandthequal- duetotransportprocesses.Aspartofthisanalysis,we ityoftheanalysisoftheplasmaconfigurationoverthat consider the effects of the driven rotation on plasma whichwasdoneforARIES-RS.Asdescribedin[1],we transport. have used a more complete prescription for the self- The power and particle exhaust properties of the driven, or bootstrap current, that includes collisional plasmaareanalyzedinSection5.Weconsiderthera- corrections. We have considered the effects of edge diativeandconductiveheatlossesfromtheplasmaand pressuregradientsandcurrentdensityvaluesexpected edgeregions,andtheeffectofimpuritydoping.Theen- forH-modeplasmas,asisdescribedinSection2.2.We gineeringconstraintsonthemaximumallowableheat have also analyzed the stability requirements for the fluxesonthefirstwallanddivertorregionsputsevere resistive wall mode (RWM), the neoclassical tearing constraintsontheallowablesolutions. mode (NTM) and the edge localized modes (ELMs), In Section 6 we summarize the plasma operating asisdescribedintheSections2.3–2.5. regimeparametersintermsofaplasmaoperatingcon- tour (POPCON) diagram, and present an analysis of Table1 thestartuprequirements.Themainresultsofthisstudy ARIES-ATglobalequilibriumparameters aresummarizedinSection7. Plasmacurrent(MA) IP 12.8 Toroidalfieldonaxis(T) BT 5.86 Majorradius(m) R 5.2 2. Plasmaequilibriumandstability Minorradius(m) a 1.3 Elongation(X-point) κ 2.20 Triangularity(X-point) δ 0.90 The ideal MHD-based optimization procedure Poloidalbeta βP 2.28 whichledtothespecificationofthebaselinepressure Toroidalbeta(%) β 9.07 andcurrentprofilesisdescribedin[1].Wesummarize Normalizedbeta(Troyon) βN 5.4 theresultsofthatoptimizationinSection2.1.Inthefol- On-axissafetyfactor q0 3.50 lowingsectionsweconsidertheeffectsofH-modepro- BMoiontismtruampcsuarfreetyntfactor IqBmSin 121..440 filesontheplasmastability(Section2.2),andextend Cylindricalsafetyfactor q∗ 1.85 thestabilityanalysistoincludetheresistivewallmode Internalinductance (cid:4)i(3) 0.29 (RWM) (Section 2.3), the neoclassical tearing mode Peak/averagedensity n0/(cid:4)n(cid:5) 1.34 (NTM) (Section 2.4), and the edge localized modes Peak/averagetemperature T0/(cid:4)T(cid:5) 1.72 (ELMS)(Section2.5). S.C.Jardinetal./FusionEngineeringandDesign80(2006)25–62 27 2.1. Baselineequilibriumandprofiles 2.2. EffectsofH-modelikepressureandcurrent profiles Thebaselineplasmaprofileshavezeropressuregra- dientandzerocurrentdensityattheplasmaedge.These The equilibrium and stability analysis described boundaryconditions(sometimescalledL-modeedge) in Ref. [1] and in Section 2.1 was based on “stan- are conservative in that they normally lead to lower dard” pressure and current profile functions that go optimized beta limits than those which would be ob- smoothly to zero at the plasma edge, with zero pres- tained by allowing the edge gradients to be nonzero. surederivativethere.Thisclassofprofiles,whichhave (Notethattheyalsoshouldbeagoodapproximationto traditionally been used in stability studies, are typ- thepost-crashphaseofanH-modeELMingdischarge, ical of L-mode plasmas and of post-ELM H-mode seeSection2.5.)Theeffectontheplasmastabilityof plasmas.BecauseARIES-ATrequirestheenergycon- relaxingtheseconditionsisdiscussedinthenextsec- finement times typical of an H-mode, we have ex- tion. tended the stability analysis to examine the effects of Thepressureprofileforthereferenceequilibriumis the edge gradients typical of pre-ELM H-mode plas- givenbythesumoftwofunctions: mas. p(ψ)=p [c (1−ψˆb1)a1 +c (1−ψˆb2)a2]. (1) 2.2.1. H-modeequilibrium 0 1 2 Theprimarydifferencebetweentheplasmaprofiles definedinSection2.1andtheH-modeprofilesdefined Theearlierdesignstudy[2],AIRES-RS,restrictedthe herearethevaluesofthepressuregradientandcurrent functionalformofthepressureprofiletoasinglefunc- densityneartheplasmaedge.Becausethestabilityof tion,whichseverelyrestrictedthefunctionspacethat the H-mode profiles depends sensitively on the inter- weoptimizedover.Thepresentformeffectivelyallows play of the strong shaping near the edge of a diver- separateoptimizationsforthecoreandedgeregions. tor plasma and the steep gradients there, we have re- The result of this optimization, described in [1], computedthefree-boundarydivertedequilibriumwith arethefollowingnumericalvaluesforthecoefficients: (H-mode-like) pressure and current profiles using the a =2.75,b =2.25,c =0.55anda =2.00,b = EFITcode.Theseprofileswerebasedonthereference 1 1 1 2 2 1.00,c =0.45,p =2.467×106. The parallel cur- equilibriumdescribedintheprevioussection.Thisnew 2 0 rentdensityprofileisaself-consistentcombinationof equilibrium[3]withnon-zeroedgepressuregradients thebootstrapcurrentconsistentwiththispressurepro- formsthebasisforthestabilityanalysisintheremain- fileandtheexternallydrivencurrentprofilesfromfast derofthissection. wave and lower hybrid current drive described in the Inthisprocedure,thepressureandthecurrentpro- sectionstofollow. filesfromthereference(L-modelike)equilibriumare Inthebaselinefixed-boundaryequilibriumandsta- first fit to a set of polynomial basis functions. H- bilitystudies,theplasma-vacuumboundaryisthe99% mode like equilibria are then generated by perturb- flux surface from the free-boundary equilibrium. Al- ing the outer region of the reference equilibrium ob- though the plasma boundary cannot be described an- tainedusingthefittedprofileswhilekeepingthecore alytically,itcanbeparameterizedintermsofamajor as similar to the reference case as possible. The edge and minor radius R=5.2m, a=1.30m, and a sep- pressure gradient and current density are allowed to aratrix elongation and triangularity of κ=2.20 and be finite. This is illustrated in Fig. 1, where the two δ=0.90. free pressure and poloidal current functions, P(cid:6)(ψ) These parameters have been chosen to maximize and FF(cid:6)(ψ), the safety factor q(ψ), and the flux sur- theplasmaβwhilemaintainingstabilitytoidealMHD faces for the reference and H-mode like equilibria modes,andtoprovideahighbootstrapfractionequilib- are compared. This particular H-mode like equilib- riumthatiscompatiblewiththecurrentdrivesystems rium has P(cid:6)(1)∼0.2P(cid:6)(0),(cid:4)J (cid:5)(1)∼0.38J ,β ∼ T ave T described in Section 3. The equilibrium has a hollow 9.7%, and β ∼5.9. Because of the finite edge pres- N currentprofile,withthelocationoftheqmin(minimum suregradient,thenew(H-modelike)casehasaslightly safetyfactor)closetotheedge. higherβvalue. 28 S.C.Jardinetal./FusionEngineeringandDesign80(2006)25–62 Stabilityagainstthehigh-nidealballooningmodes, which are limiting the reference limiter equilibrium, areactuallyimprovedbytheH-modelikeprofiles,even though the pressure gradients and β value are higher. Withsufficientlyhighedgepressuregradientandboot- strap current, the H-mode like equilibria have second stabilityaccessforballooningmodesoveressentially the entire plasma volume. This is illustrated in Fig. 2 fortheH-modelikeequilibriumshowninFig.1. 2.3. Stabilitytotheresistivewallmode(RWM) anditsstabilizationbyplasmarotation TheARIES-ATequilibria[3]wastestedforitssta- bilitytotheresistivewallmode(RWM)andstabiliza- tionoftheRWMbyplasmarotationwasevaluatedby usingtheMARSstabilitycode[5].MARSisaneigen- valuecode,whichsolvesforthefullMHDperturbation equationswiththeMHDmodefrequencyastheeigen- value and the perturbed MHD quantities (perturbed plasma displacement, magnetic field and pressure) as eigenfunctions.Oneofthemostimportantinputquan- titiesinthepresentstudyistheplasmarotationprofile. Fig.1. Comparisonofthepressureandpoloidalcurrentfunctions p(cid:6)(ψ)andFF(cid:6)(ψ),thesafetyfactorprofileq(ψ),andthefluxsurfaces For simplicity, we assume that the plasma has a con- foraH-modelikeequilibrium(dashedcurves)againstthoseforthe stant(rigid)rotationfrequencyprofileacrossitscross- reference(L-modelike)baseequilibrium(solidcurves).TheL-mode section.Themodelforthedampingofthetoroidalmo- referencecasehasalimitershapewithnoX-pointontheboundary, mentum used is the sound wave damping model. In whereastheH-modelikecasehasadivertorshapewithtwoX-points thismodel,thereisaforcewhichdampstheperturbed ontheboundary. toroidalmotionofthemodeaccordingtotheformula √ 2.2.2. Effectonballooningandkinkstability F =−κ π|k v |ρv(cid:9)·bˆbˆ. Ideal stability analyses indicates that stability SD (cid:7) (cid:7) thi against the low n=1–3 modes are relatively insen- Hereκ(cid:7)isanumericalcoefficientchosentomodelthe sitive to the presence of the X-point and the broader ion Landau damping process, k(cid:7) is the parallel wave H-mode like pressure and current profiles width. The number(m−nq)/R,v istheionthermalvelocity,ρ locationsoftheconductingwallrequiredforstabiliza- isthemassdensity,v(cid:9)isthtiheperturbedplasmavelocity tionagainstthesemodesremainsimilar.Thisissum- and bˆ is the unit vector of the equilibrium magnetic marizedinTable2. field. In this study, the value of k(cid:7) is chosen to be 0.89, which has been found to best fit the DIII-D Table2 experimental data [4]. This value is half of the value Comparisonofthecriticalwalllocationforstabilizationagainstthe of 1.77 predicted by the theoretical ion sound wave n=1–3idealmodesforthereferenceandH-modelikeequilibria dampingmodel. Marginalwall n=1 n=2 n=3 2.3.1. RWMwithtoroidalmodenumbern=1 L-modelimiterβN=5.6 1.525 1.450 1.350 The critical rotation frequency for stabilization of L-modedivertorβN=5.6 1.600 1.475 1.425 the RWM in the H-mode equilibria [3] is found H-modedivertorβN=5.8 1.550 1.475 1.450 to be between 0.07 and 0.08 of the Alfven transit H-modedivertorβN=5.9 1.575 1.450 1.400 frequency. No stability window is found for rotation S.C.Jardinetal./FusionEngineeringandDesign80(2006)25–62 29 Fig.2. Comparisonofballooningstabilityforthereference(left)andH-modelike(right)equilibria. frequencybelow0.07.Thestabilitywindowforthelo- ture. Shown in Fig. 4 is the growth rate of the RWM cation of the resistive wall is between 1.3 and 1.45 asafunctionofthelocationoftheresistivewall.Each of the plasma radius when the plasma rotation fre- curvehasadifferentplasmarotationfrequencyrelative quency is at 0.08 of Alfven frequency. This window totheresistivewall.Thesameequilibriumisusedhere widens to between 1.075 and 1.45 of the plasma ra- asinFig.3. dius when the rotation frequency is increased to 0.09 oftheAlfvenfrequency.Here,theAlfvenfrequencyis 2.3.2. RWMwithtoroidalmodenumbern=2 definedas Asimilarstudyhasalsobeenperformedforthen= v 2mode.Itisfoundthattherotationrequiredforthen= f = A, av R whereRistheplasmacenterandv isdefinedas A B v = √ vac . A µ ρ 0 0 A uniform density 50-50% D–T plasma with elec- tron density 2.2×1020/m3 is used and the value of f iscomputedtobe1.06×106/s.Theresistivewall av time has been taken to be 5000τ or 5ms. When the a rotation frequency is increased beyond 0.09 of the Alfven frequency, the growth rate normalized to the wall time is reduced below 0.1. It would then have a timescalelongerthan50ms,orafrequencylessthan 20Hz. Theseresultsareillustratedinthefollowingfigures. ShowninFig.3isthecomputedmodestructurefrom MARS.ItshowsthepoloidalFourierharmonicsofthe perturbed radial magnetic field of an unstable RWM Fig.3. Amplitudesofthepoloidalharmonicsoftheperturbedmag- stabilizedbyplasmarotationat8%oftheAlfvenfre- quency,withagrowthrateofγτ =0.28.Thelocation neticfie√ldδBψofastabilizedRWM.HereδBψisplottedasafunc- W tionof V forequilibria[3]forauniformlyrotatingplasmawith oftheexternalresistivewallisat1.35timestheplasma Ω=0.08measuredinunitsofAlfventoroidaltransitfrequencyand radius.Itisobservedthatthismodehasaglobalstruc- withrW=1.35rpandtoroidalmodenumbern=1. 30 S.C.Jardinetal./FusionEngineeringandDesign80(2006)25–62 Fig.4. StabilitywindowinrWforthen=1RWMforequilibrium Fig.5. StabilitywindowinrWforthen=2resistivewallmodefor [3].Plottedaregrowthratesoftheidealandresistivewallmodesvs. equilibrium[3].Plottedaregrowthratesoftheidealandresistive rW.Thecurvelabeledidealisthegrowthrateoftheidealexternal wallmodesvs.rW.Thecurvelabeledidealisthegrowthrateofthe kinkwiththescalesmultipliedby200.Othercurvesarelabeledby idealexternalkinkwiththescalesmultipliedby200.Othercurves the rotation frequency of the plasma with respect to the resistive arelabeledbytherotationfrequencyoftheplasmawithrespectto wallmeasuredinunitsofthetoroidalAlfventransitfrequency.The the resistive wall measured in units of the toroidal Alfven transit growthratesoftheresistivewallmodesaremultipliedbyτW. frequency.ThegrowthratesoftheRWMsaremultipliedbyτW. 2modeissubstantiallyreducedfromthatforthen=1 mode. This reduction factor is close to 2, as shown in Fig. 5. In this figure growth rates of the resistive wallmodewiththeplasmarotatingatdifferentrotation frequenciesareplottedasafunctionofthelocationof the resistive wall. Note that there is an opening up of thestabilitywindowfirstatr =1.5ataroundrotation W frequency of 0.03 of the Alfven frequency. When the rotation frequency is increased to 0.05 of the Alfven transitfrequency,thiswindowwidenstobetweenr = W 1.32andr =1.5. W Thereasonforthisreductionistheincreasedsound wavedampingduetotheincreasednumberofresonant fluxsurfaces.Thecorrespondingmodestructureofthe n=2RWMisshowninFig.6.Themodestructureis stillquiteglobal. 2.3.3. StabilitytotheRWMthroughuseof Fig.6. Amplitudesofthepoloidalharmonicsoftheperturbedmag- intelligentshellfeedback netic field δBψ of a stabilized RWM with√toroidal mode number ItwasfoundinSections2.3.1and2.3.2thatthero- n=2.HereδBψisplottedasafunctionof V forequilibrium[3] tation frequency required for the stabilization of the forauniformlyrotatingplasmawithΩ=0.08measuredinunitsof RWMisoverafewpercentoftheAlfvenwavetransit AlfventoroidaltransitfrequencyandwithrW=1.35rp. S.C.Jardinetal./FusionEngineeringandDesign80(2006)25–62 31 frequency. As is shown in Sections 4.2 and 4.3, this UniversityandDIII-DatGeneralAtomicsarepresently amount of rotation would be difficult to maintain for implementing such a feedback control to provide an a net-power producing tokamak such as ARIES-AT. experimentaldemonstrationofRWMfeedback. Therefore,thealternativeapproachofactivefeedback AconceptualfeedbackcoilforARIES-ATisshown stabilizationoftheRWMhasalsobeenstudied.Inthe in Fig. 7. It is based on the “C-Coil” in DIII-D [10]. intelligentshellfeedbackscheme,externalcoilcurrents Assuming the copper vertical stabilizing shells act to are utilized to make the resistive wall appear almost inhibitn=1fluxpenetration,thefeedbackcoilmust ideally conductive to the plasma. This approach has opposeanyn=1fluxleakagethroughthevacuumves- been formulated for a finite β plasma in toroidal ge- sel at the outboard midplane. An array of integrated ometrybyextendingtheidealMHDenergyprinciple, “saddleloop”sensorswillbeplacedontheinsideves- and implemented numerically by coupling GATO [6] sel wall to detect the mode and act in the feedback withVACUUM[7].Applicationofthisformulationto loop. The coil top and bottom are at Z =±1.45m, C theARIES-ATgeometry[3],andemploying“fluxcon- R =7.5m,tosubtendapoloidalangleof60◦fromthe C servingintelligentcoils”locatedontheresistivewall, plasmaaxis;thisisabout1/2apoloidalwavelengthfor indicatedthattheresistivewallcanbemadetobe90% thedominantm=3component.Asetofeight“win- effectiveton=1RWMbycoveringtheresistivewall dowpane”coils,subtending45◦ wideeachtoroidally, withsevensegmentsofpoloidalcoilsofequalpoloidal covers the torus and fits into the N =16 symmetry coverage. Here, the effectiveness of the coil arrange- of the TF-coil. These would be hooked up into four ◦ mentisdefinedas pair with 180 opposite coils connected in anti-series for n odd with n=1 dominant. Thus four indepen- δW −δW Eff= ηW=∞ . dent power supplies are required. The coils must be δW −δW ηW=0 ηW=∞ designedtoavoidportobstructions,oralternativelya ThevalueofδWηW=0of0.04wasinferredbyincreasing thevalueofβtoreachmarginalstabilitywiththeideal wall.Therefore,thereferencedesigncasehasaβvalue at90%oftheidealwalllimit.Theseresultsimplythat thereferencebaselinecaseisstabletothen=1RWM with smart shell feedback logic. This is implemented intheARIES-ATdesignbycoveringtheresistiveshell withsevensegmentsofpoloidalcoilsofequalpoloidal angularextent. 2.3.4. Evaluationofresistivewallmodecontrol coilrequirementsforARIES-AT The n=1 resistive wall mode (RWM) is an ideal kinkwhichoccurswhenbetaexceedstheno-wallbeta limitbutislessthantheideal-wallbetalimit.Sinceany realwallisnotidealbutresistivewithaneffectivewall timeτ ,theRWMcangrowbutisslowedtoagrowth W rate γ ≤τ−1 and to a rotation frequency ω≤τ−1 by W W theresistivewall.TheRWMmanifestsitselfasann= 1radialfieldB˜ comingthroughthewall.Theslowing R downofthemodegrowthmakesstabilizationtractable by feedback control with an external (to the vacuum vessel)coilwhichopposesthechangeinB˜ atthewall, R i.e.,actstomakethewallbehaveasaperfectconductor Fig.7. Cross-sectionofARIES-ATpowercoreconfigurationshow- [8,9].ExperimentsinthetokamaksHBTXatColumbia ingtheproposedRWMcontrolcoil. 32 S.C.Jardinetal./FusionEngineeringandDesign80(2006)25–62 ◦ configurationofsixteen-22.5 widecoilsmakingupan Table3 equivalentensemblemightbedesirable. RWMfeedbackcoilrequirements Thepresentdesignonlyexplicitlyconsidersmodes No.ofcoils 16◦–22.5◦ wideinφ,60◦ wideinθ, with n=1, since RWMs with n>1 have not been outboard Nturns 4 experimentallyobserved.(However,wenotethatthis RC,ZC 7.50m±1.45m cexopueldrimbeendtuaeltdoistchheafragcets,ththaetaatcphrieevseendt,βiNnimsoresltaotifvethlye |IBC˜R|atvessel 15500kGA-turns low(≤3–4)andthereforemorestabletothen=2ex- ωτW ≤3(sof ≤25HzforτW≈20ms) ternal kink mode. The n=2 mode is predicted to be ResistanceR 17m(cid:13)(eachoffoursets,2.6cmOD unstableathighervaluesofβ withlargeredgepres- Cuturns) N LC=N2µ0RC 9N2(cid:1)H ssuhroeulgdraadlsioenbtes.e)fTfehcetivfeeefdobranck=s2ysmteomdetso,bbuetdthesiscriisbseude VICC/N=3Nµ0RCIC/τW 13300kAVffrroommeeaacchhssuuppppllyy((ooffffoouurr)) needstobeaddressedinmoredepthinfutureinvesti- (IC/N)VC/2 2MWfromeachsupply(offour),re- gations. activepower InDIII-D,modesaredetectableatthelevel|B˜ |≈ (IC/N)2R/2 1.5MW (each of four), dissipated R power o1rGabinouatd5is×ch1a0rg−e5wofithBax.iaTlhtoerCoi-dCaolifileilndDBITI0I-Dofc2aTn δT/δt 1.5◦C/s(nocoolingassumed) T0 produce field at the sensor up to 50 times this. Thus designofusingeightcoilsconnectedintofourpairs,the each (of four pair) RWM coils in ARIES-AT must makeabout50×5×10−5×5.9×104G≈150Gat stabilizationofthen=2RWMcanalsobeeasilyac- commodated.Requirementsforthecoilandthepower the outboard midplane vacuum vessel. The necessary currentisaboutI ≈πZ |B˜ |/µ =50kA-turns. supplies/linear amplifiers are summarized in Table 3. C C R 0 Afurtherrequirementonthelinearamplifiersisneg- Thenumberofturnsandbandwidthofthefourinde- ligible phase shift up to ωτ ≈10 so that the closed pendentpowersuppliesdependsonthenecessaryfre- W quencyωwhichinturndependsonthewalltimeτ . loopfeedbacksystemdoesnotgounstable. W An additional use of the RWM Coil would be for Neglecting the radially thick Li–Pb blankets of rela- tively high resistivity (1.2(cid:1)(cid:13)m) which have Li–Pb errorfieldcorrection,theoriginalpurposeoftheC-Coil inDIII-D.AsymmetriesinwindingandpositioningPF in SiC channels and also neglecting the copper verti- and TF coils produce resonant n=1 magnetic field calstabilizingshells.(Thecopperverticalstabilization non-axisymmetrywhichcanslowrotation,destabilize shellsareexpectedtobeabletofurtherslowdownthe n=1RWMs,orleadtolockedmodes.AsintheDIII- growthrateoftheRWM.Thisallowsalongerresponse DC-Coil[11],theproposedRWMCoilcanbeoperated timeoftheexternalfeedbackcircuit.Thedesignlisted inaduplexfashiontobothcorrect“dc”errorfieldand inTable3canbeconsideredasconservativeestimates.) tofeedbackstabilize“ac”RWMs. Oneassumesthesamegeometryandmaterialvacuum vessel as DIII-D with τ scaled up by size squared W from5msinDIII-Dtoabout20msinARIES-AT.Re- 2.4. Neoclassicaltearingmodecontrol quiringalinearamplifierwithavoltagecapableofdriv- requirements ing±I /N uptoωτ ≈3(ω/2π ≈25Hz)setsV ≈ C W C ωL(I /N) where L is the inductance of one pair in Theneoclassicaltearingmode(NTM)islandresults C anti-series,Nisthenumberofturns,weneglectthecoil when: (1) the free energy ∆(cid:6) available in the current resistanceandanycablingimpedance,andweneglect profile is negative, i.e., stabilizing, (2) the bootstrap anycurrentinducedinthevessel.NowL≈N2µ R currentishelicallyperturbedreinforcingtheperturba- 0 C perpairandV ≈3Nµ R I /τ ≈300VforN =4 tion,and(3)themetastableplasmawithoutanisland, C 0 C C W withI /N ≈13kAor0.5V (I /N)≈2MWeachof is sufficiently perturbed above a threshold so that the C C C foursupplies(linearamplifiers).Carefuldesigntomin- islandgrowsandsaturates[12]. imizecablingimpedanceandcoilresistanceisassumed In an AT plasma without sawteeth or fishbones, here.Suchlinearamplifiersareoforderofwhatisop- ELMscouldstillbepresentandmightcauseseedper- erationalonDIII-D.Wenotethatwiththepresentcoil turbations to excite resonant q=m/n mode such as S.C.Jardinetal./FusionEngineeringandDesign80(2006)25–62 33 m/n=5/2 at ρ=0.92 in ARIES-AT [3]. The large bootstrap current can produce a very large island if excited and allowed to grow. However, current pro- filecontrolwithradiallylocalizedoff-axisco-electron cyclotron current drive (ECCD) or lower hybrid cur- rentdrive(LHCD)couldsuppresstheislandbyeither replacing the “missing” bootstrap current [13] or by making∆(cid:6)morenegative[14]. Stability is determined by analyzing the modified Rutherford equation including the effect of replacing the“missing”bootstrapcurrent,J /J term,andwith rf bs the“polarization”thresholdω term[12]: pol (cid:1) (cid:2) τ dw √ L R =∆(cid:6)r+ (cid:17) q β θ r dt L p (cid:3) (cid:4) r rw2 8qrδ ηJ × − pol − rf . (2) w w3 π2w2 J Fig.8. Unstableregionw˙ >0,shrinksslightlyat∆(cid:6)r=−10witha bs verylargerfcurrentapplied(10%ofIP)ormoreeffectivelyif∆(cid:6)r √ ismademorenegative. HereJbs = (cid:17)p/(LqBθ),Jrf =Irf/(2πrδ),δisthefull radialwidthhalfmaximumoftherfcurrent,andη= Itseemsclearthatacombinationofcurrentprofile η /(1+2δ2/w2)withperfectpositioningontheisland 0 modification and a replacement of the missing boot- assumed. The unstable region is bounded in βθ−w strapcurrentismosteffective.Futureworkshouldin- spaceforw˙ ≡0,asgivenby clude:(1)equilibriumconstructionswithlocalcurrent −∆(cid:6)r/√(cid:17)(L /L ) densitybumpssuchasin[14]forevaluationof∆(cid:6)with βθ = q p “TEAR”orPEST-III,(2)analysisofthevalidityofEq. [(r/w)−(rw2 /w3)−(8qrδ/π2w2)(ηJ /J )] pol rf bs (2)undertheARIES-ATconditions,(3)evaluationof rf power and launcher requirements for a multi-MA (3) off-axis ECCD system, and (4) analysis of the feasi- bilityofproducingtherequiredlocalizedcurrentpro- Evaluation of the unstable region for the ARIES- AT equilibrium is shown in Fig. 8. For m/n=5/2, filemodificationswithaLHCDsystem.Anotherpart ∆(cid:6)r =−10 is very stable [15]. However, without rf, ofthestrategyistoavoidlarge-ELMsandotherideal an unacceptably large island, w/r ∼0.5 at βθ =2.3, MHD modes, and thus avoid triggering of the NTM. The above discussed LHCD and ECCD can then be couldbeexcited. usedasabackupforthecontrolofoccasionaltriggered ThefeasibilityofusingradiallylocalizedECCDto replace the missing bootstrap current, at fixed ∆(cid:6), is islandsfromunusualevents. alsoshowninFig.8.Thisisseent√obeineffectiveeven for I /I =0.1 (assuming δ= 3w ≈6cm<w 2.5. Edgestabilityandedgelocalizedmodes rf p pol for good efficiency of η=0.5 ) as J /J =0.3 and (ELMs) rf bs aboutJ /J ≈1∼2isneeded,thiscorrespondstoa rf bs largeECCDrequirement(I /I ≈0.3∼1.0). In addition to low toroidal mode number (low-n) rf p Allowingtheequilibriumcurrentdensitytobemod- globalkinkmodesandhigh-nballooninginstabilities, ifiedbytheradiallylocalizedECCDorLHCDsoasto high performance AT plasmas can also be subject to make∆(cid:6)morenegative,improvesthesituationgreatly. edge localized MHD instabilities in the intermediate AsshowninFig.8,itrequires∆(cid:6)r<−50tolimitthe rangeoftoroidalmodenumbers(3<n<30).These mode at βθ =2.3. The feasibility of this is currently modeshavebeenproposedasamodelforELMsand beinginvestigated. pedestalconstraintsinthe“peeling-ballooning”model 34 S.C.Jardinetal./FusionEngineeringandDesign80(2006)25–62 (seeforexampleRefs.[16,17]).Theseinstabilitiesare driven by a combination of the sharp pressure gradi- entsandtheresultinghighbootstrapcurrentdensities in H-mode type edge profiles. The calculated charac- teristic mode structure shows a combination of bal- looning, peeling, and kink-like features. Depending on radial mode width and other characteristics, these intermediate-nedgeinstabilitiescanbeassociatedwith smallbenignELMs,largeELMswhichposepotential heat load issues for the inner wall and divertor, and broader edge instabilities which can inhibit core per- formance. Ananalysisofintermediate-nedgeinstabilitieshas beencarriedoutusingtheELITEMHDstabilitycode [18]. ELITE solves the edge ballooning equations, Fig.9. Theradialeigenmodestructureofamarginallystablen=16 which incorporate the effects of edge current and a modeisshownasfunctionofnormalizedpoloidalflux.Themode propertreatmentoftheplasma-vacuumboundary.The structureiscalculatedbytheELITEidealMHDstabilitycodeus- standardL-modeARIES-ATequilibriumhasbeenan- ingthereferenceH-modeARIES-ATequilibrium.(Plottedarethe alyzed with ELITE and found to be stable to edge amplitudesofharmonics42<m<89.) modesoverawiderangeofintermediatemodenumbers (10<n<25).Thisresultisconsistentwithexpecta- ofthepowerplant.Atthepresentlevelofphysicsun- tions,becausetheequilibriumhaslowcurrentdensity derstanding, the key lies in our ability to access that andpressuregradientsintheedgeregion. classofequilibriawherealargeportion(∼90%)ofthe The H-mode ARIES-AT equilibrium described in plasma current is self-driven due to the neoclassical Section2.2.1ismuchclosertoedgeinstabilitybound- bootstrap effect. Target equilibria with high values of aries.Thoughtheequilibriumisstabletopureballoon- β and with high bootstrap fraction have been iden- N ingmodes,theadditional“peeling”driveprovidedby tified in Section 2. These equilibria require external thefiniteedgecurrentdrivesthisequilibriumcloseto currentdrivetomaintaintherequiredcurrentprofile. themarginalpointforintermediatenstability.ELITE We have used the reference ARIES-AT equi- findsthatmodeswitharadialstructuresimilartothat librium listed in Table 1 to determine the cur- showninFig.9aremarginalatcertainintermediateval- rent drive requirements for a number of operating uesofn∼15.Theselocalizedinstabilitiesmayleadto points. In Fig. 10, the current drive contributions are ELMsastheedgegradientsaredrivenupbytransport shown for a design point with the plasma param- fromthecore. eters: n =2.93×1020m−3, n /(cid:4)n(cid:5)=1.36,T = eo o eo Whilemuchrecentprogresshasbeenmadeinun- 26.3keV, (cid:4)Te(cid:5)n =18.25keV (density weighted vol- derstandingELMs,determinationofthepreciseELM umeaverageelectrontemperature),andZ =1.9us- eff structuresanddynamicstobeexpectedinARIES-AT ingNeonastheimpurityspecies.Tworadiofrequency willrequirefurtheradvancesinphysicsunderstanding. (RF)systemsareusedtodrivetheseedcurrentsinor- der to maintain the target equilibrium current profile. Plottedaretheintrinsicandexternallydrivencompo- 3. Currentdrive nents of the plasma current in the toroidal direction. About91%oftheplasmacurrentisself-driven,com- 3.1. Overview prising the bootstrap current (87%) and the diamag- neticcurrent(4%).Thebulk(1.1MA)oftheseedcur- One of the major physics considerations when rentisdrivenintheouterpartoftheplasma(ρ>0.8) designing ARIES-AT is how to maintain the high- by waves in the lower hybrid (LH) frequency range, performancetargetequilibriumwithaminimalamount whileasmallon-axiscomponent(0.15MA)isdriven of external power, which enhances the attractiveness byfastmagnetosonicwavesintheioncyclotronrange
Description: