ebook img

Physical, Structural, Barrier, and Antifungal Characterization of Chitosan–Zein Edible Films with PDF

14 Pages·2017·1.13 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Physical, Structural, Barrier, and Antifungal Characterization of Chitosan–Zein Edible Films with

International Journal o f Molecular Sciences Article Physical, Structural, Barrier, and Antifungal Characterization of Chitosan–Zein Edible Films with Added Essential Oils MonserratEscamilla-García1,GeorginaCalderón-Domínguez2,JorgeJ.Chanona-Pérez2, AngélicaG.Mendoza-Madrigal3,ProsperoDiPierro4,BlancaE.García-Almendárez1, AldoAmaro-Reyes1andCarlosRegalado-González1,* ID 1 DepartmentofFoodResearchandPostgraduateStudies,C.U.,AutonomousUniversityofQuerétaro, CerrodelasCampanasS/N,LasCampanas,SantiagodeQuerétaro76010,Mexico; [email protected](M.E.-G.);[email protected](B.E.G.-A.);[email protected](A.A.-R.) 2 DepartmentofBiochemicalEngineering,NationalPolytechnicInstitute,Av.WilfridoMassieuEsq.Cda. MiguelStampaS/N,GustavoA.Madero,CiudaddeMéxico07738,Mexico; [email protected](G.C.-D.);[email protected](J.J.C.-P.) 3 FacultyofNutrition,ResearchLaboratory,AutonomousUniversityoftheStateofMorelos, VistaHermosaS/N,Cuernavaca62350,Mexico;[email protected] 4 DepartmentofChemicalSciences,UniversityofNaples“FedericoII”,ComplessoUniversitariodiMonte Sant’Angelo,ViaCinthia,21,80126Napoli,Italy;[email protected] * Correspondence:[email protected];Tel.:+52-442-123-8332 Received:13October2017;Accepted:2November2017;Published:8November2017 Abstract: Edible films (EFs) have gained great interest due to their ability to keep foods safe, maintaining their physical and organoleptic properties for a longer time. The aim of this work was to develop EFs based on a chitosan–zein mixture with three different essential oils (EOs) added: anise,orange,andcinnamon,andtocharacterizethemtoestablishtherelationshipbetween their structural and physical properties. The addition of an EO into an EF significantly affected (p < 0.05) the a* (redness/greenness) and b* (yellowness/blueness) values of the film surface. TheEFspresentedarefractiveindexbetween1.35and1.55,andthusareclassifiedastransparent. ThephysicalpropertiesofEFswithanaddedEOwereimproved,andfilmsthatincorporatedthe anise EO showed significantly lower water vapor permeability (1.2 ± 0.1 g mm h−1 m−2 kPa−1) andhighhardness(104.3 ± 3.22MPa). EFswithanaddedEOwereabletoinhibitthegrowthof Penicillium sp. and Rhizopus sp. to a larger extent than without an EO. Films’ structural changes weretheresultofchemicalinteractionsamongaminoacidsidechainsfromzein,glucosaminefrom chitosan,andcinnamaldehyde,anethole,orlimonenefromtheEOsasdetectedbyaRamananalysis. TheincorporationofanEOintheEFs’formulationcouldrepresentanalternativeuseascoatingsto enhancetheshelflifeoffoodproducts. Keywords: essentialoils;ediblefilms;ramanspectroscopy;chitosan;zein;Rhizopus;Penicllium 1. Introduction Thegrowingdemandforhigh-qualityandsafefoodsisleadingtoincreasedsyntheticpackaging materialsproduction. However,thereareenvironmentalconcernsabouttheirusedespitethebenefits theyprovide,suchaspreservingandensuringfoodquality[1].Ediblefilms(EFs)maybeanalternative toreducetheuseofsyntheticpolymers,whiletheadditionofessentialoils(EO)mayimprovephysical andantimicrobialproperties[2]. EOshavebeenextensivelystudiedasnaturalproductstoprovide benefits in food and human health. EOs or their components can be added directly to foods or Int.J.Mol.Sci.2017,18,2370;doi:10.3390/ijms18112370 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2017,18,2370 2of14 incorporatedintocontainersmadeofnon-renewablematerials,orbiomaterials,suchaspolypropylene orchitosan,respectively,tobereleasedduringtransportandstorage[3]. CinnamaldehydeisthemajoractivecomponentofthecinnamonEO(CN),andhasshownabroad antimicrobial spectrum against bacteria, yeasts, and molds. Thus, CN could be used as a natural foodpreservative,andmaybeaddedintoediblecoatingstoimprovetheshelflifeandsafetyoffood products[4]. TherehavebeenreportsonthebactericidaleffectofCNagainstSalmonella,Campylobacter, EscherichiacoliO157:H7,andListeriamonocytogenes,anditsantifungalactivityagainstAspergilliussp., Penicilliumsp.,andColletotrichumsp.[5,6]. ThereisincreasedinterestintheuseoftheaniseEO(AS)duetoitsantioxidantcapacityandantifungal effectagainstPenicilliumsp. andAspergillussp.[7]. AnetholeisthemajoractivecomponentofAS[8], whichhasbeenincorporatedintoediblecoatingsfordriedfishandfruitspreservation[9].Limoneneisthe maincomponentoftheorangeEO(OR),andhasshowninsecticidal,antibacterial,andantifungalactivities. IthasshownactivityagainstStreptococcussp.,Aspergillussp.,andPenicilliumsp.[10,11].Limonenehas manyapplicationsinboththefoodandcosmeticindustries,butduetoitslipophiliccharacter,itexhibits poorwaterabsorption,palatability,andoxidativedeterioration[12]. TheFoodandDrugAdministrationoftheU.S.listsalloftheessentialoilsusedinthisworkas GenerallyRecognizedasSafe(GRAS).Watervaporpermeabilityandthemigrationofatmospheric gasesaredependentonmanyinterrelatedfactors,includingthepolarityandstructuralfeaturesof polymers’sidechains, hydrogenbondingcharacteristics, thedegreeofbranchingorcross-linking, andthedegreeofcrystallinity[13]. Thespatialarrangementofatomsgivesarecognizableshapethatis uniquetoeachmolecule,andX-raydiffractionhelpstoelucidatethepreferredmolecularstructureand thepackingarrangement. Ultraviolet,infrared,andRamanspectroscopiesarehelpfulfordiagnosing the presence of functional groups’ interactions and the presence of hydrogen bonds that provide auniquespectralfingerprintthatenablesustoidentifyanddetectvariouscompounds[13,14]. Theobjectiveofthisworkwastoevaluate: (1)theeffectoftheadditionoftheEOscinnamon (CN),anise(AS),andorange(OR)inEFspreparedfromachitosan–zeinblend(50%:50%);and(2)the relationshipofthefilms’structuralmatrixwiththeirphysicalandmechanicalproperties. Theeffectof CN,AS,andORincorporatedintoEFswasqualitativelytestedonfungalgrowthinhibition. 2. ResultsandDiscussion 2.1. Color,Transparency,andOpticalProperties Theeffectoftheaddedessentialoilsonthetransparency,chromaticity,andrefractiveindexof theediblefilmspreparedfromachitosan–zein50:50%blendarepresentedinTable1. Addingthe EOs into the chitosan films significantly affected (p < 0.05) the a* (redness/greenness) and b* (yellowness/blueness)valuesofthefilms’surface. WhenEFswereincorporatedwithORandCN, thea*valuesshowed27%and6%morenegativevalues,indicatingarednesstendency,whereasthe EFwithANaddedshowedthehighesta*valueamongthetreatments(greennesstendency). AllEFs incorporatingEOsincreasedtheirb*values,indicatingayellownesstendency. Polysaccharidefilms areusuallycolorless,essentialoilsshowaslightlyyellowappearance,andtheincorporationofEOs intopolysaccharide-basedEFshavebeenreportedtoaffectcolorandtransparency[4,6]. AS showed the highest transparency value and the lowest refractive index of all of the EOs incorporatedintoanEF.Nevertheless,allediblefilmspresentedarefractiveindexbetween1.35and 1.55,andbecausetheyfallintherange1.35–1.70theyareclassifiedastransparent[15]. Therefractive index of EFs incorporating CN or OR showed similar values compared to the EFs without an EO. However,therefractiveindexoftheEFincorporatingASwassignificantlydifferent(p<0.05)from thevaluesoftheEFwithoutanEO,andtheEFwithCN.Nevertheless, evensmallchangesinthe refractiveindexindicatethatEOadditionledtostructuralchanges[16]. Thevisualpropertiesofafilm areanimportantfactorforconsumeracceptability. Int.J.Mol.Sci.2017,18,2370 3of14 Table1.Colorandtransparencyofediblefilmszein–chitosan50:50%withessentialoils. EdibleFilm %T a* b* η Withoutoil 88.4±0.7a −1.34±0.02a 12.4±2.2a 1.45±0.02a Anise 72.6±1.4b −1.10±0.01b 22.6±1.3b 1.35±0.02b Orange 71.6±1.1b,c −1.70±0.02c 27.8±1.2c 1.55±0.01a,c Cinnamon 69.3±1.1c −1.42±0.01d 28.8±1.3c 1.50±0.02c Dataarethemean±standarddeviation. Superscriptlettersa–dareusednexttoreportedvalues,indicating thatifthesameletterappearsinthesamecolumn,thevaluescomparedarenotsignificantlydifferent(p>0.05). %T:%transparency;a*andb*:chromaticity;η:refractiveindex. 2.2. PhysicalProperties EF thickness (e) and filmogenic suspension density (ρ) changed with EO addition, achieving higherthicknessvaluesascomparedtothecontrolsample(Table2). Thiseffectcanbepartlyrelatedto thefilmogenicsuspensiondensity,becauseahigherdensitywasdeterminedwithinthesesamples. Inthisregard,Bonillaetal.[17]workingwithbasilreportedthatthehigherdensityofafilmogenic suspensioncontaininganEOwasduetolargermolecularcontactbetweenthechitosan’sCHgroups andtheoilcompounds,weakeningthepolymerchainaggregationforces,andproducingamoreopen matrixleadingtoahigherfilmthickness. Table2.Physicalpropertiesofediblefilm(EF)withdifferenttypesofessentialoils. EdibleFilm e(µm) ρ(gcm−3) WVP(gmmh−1m−2kPa−1) Rq(nm) Ra(nm) Withoutoil 20.02±1.45a 1.33±0.02a 2.92±0.16a 13.94±0.09a 12.63±0.06a Anise 23.92±0.92b 1.72±0.01b 1.21±0.10b 11.63±0.14b 9.12±0.12b Orange 21.43±0.51c 1.42±0.02a 1.62±0.02c 7.24±0.11c 5.64±0.16c Cinnamon 22.54±0.32d 1.54±0.02c 1.53±0.20b,c 3.62±0.12d 2.84±0.09d Dataarethemean±standarddeviation. Superscriptlettersa–dareusednexttoreportedvalues,indicating thatifthesameletterappearsinthesamecolumn,thevaluescomparedarenotsignificantlydifferent(p>0.05). e:EFthickness;ρ:densityofsolution;WVP:EFwatervaporpermeability;RaandRq:EFroughness. The film prepared without an EO tended to show higher surface roughness than the others; thiscouldbeduetotheformationofZagglomerates,resultingfromhydrogenordisulfidebonding andhydrophobicinteractionspromotedbythepHatwhichthefilms’suspensionswereprepared. ThiseffectwasnotedbyEscamillaetal.[18]whenworkingwithEFswithoutEOaddition,andwas confirmedbyGuoetal.[19]. The additionof EOscould reduce suchinteractions, decreasing agglomerates’ formation and promotingasmoothersurface. Theroughness(Ra,Rq)oftheEFdecreasedwiththeadditionofanEO, inagreementwithAtarésetal.[20]. Theseauthorsworkedwithfilmsmadefromsoyproteinisolate withaddedgingerandcinnamonEOsandreportedthatheatingenablestheintegrationoftheEOs intotheproteinmatrix,resultinginsmoothersurfaces. TheadditionofEOsimprovedthewatervaporbarrierpropertyofthechitosan-zein(CT-Z)EF, achievingpermeabilityof1.2, 1.5, and1.6gmmh−1 m−2 kPa−1 forAS,OR,andCN,respectively (Table 2). Aguirre et al. [21], working with whey protein isolate and the oregano EO, suggested aprotein–EOinteractionthatimmobilizedtheproteinchain,producingamoreorderedandtightly crosslinkedstructure,andconsequentlyalowerpermeability. Ontheotherhand,theinteractionofEO componentssuchasethers,ketones,andaldehydeswiththeOHgroupsofpolymersincreasedthe EFs’hydrophobicity,therebyimprovingthewatervaporbarrierproperty[22]. Another study produced sodium caseinate films incorporating the cinnamon or ginger EOs, andthecinnamonEOwashomogenouslydistributedintheproteinmatrix,whereasthegingeroil dropletsshowedagglomeration[20]. Theseauthorsconcludedthatstructuraldifferenceslinkedto theoiltypeweretheresultofcomplexinteractionstakingplaceamonglipids,proteins,andsolvents. Anotherstudyreportedthatwatervaporpermeability(WVP)dependsondifferentstructuralfactors, Int.J.Mol.Sci.2017,18,2370 4of14 suchasthekindofmatrix,thecompositionandamountofoiladded,interactionswiththepolymers, andthehydrophilic–hydrophobicbalanceinthematrix[23]. Nevertheless,onereportconcludedthatadecreaseintheWVPofchitosan(CT)-basedfilmswith alemongrass,thyme,orcinnamonEOaddedwasduetoanincreaseinthetortuosityfactorofthe watertransferwithinthefilmmatrix[24]. Bonillaetal.[17]reportedadecreaseintheWVPofCT filmswithanincreasingconcentrationofthebasilEO,suggestingthatthewatermolecules’diffusivity decreasedbecauseofthehydrophobicnatureoftheEOsthatpredominatedoverthecohesionforcesof theCTmatrix. MechanicalProperties TheadditionofEOsdecreasedtheelasticmodulusandincreasedthehardnessoftheEFwithoutan EO.AllEFsincorporatinganEOdidnotshowasignificantdifferenceintheelasticmodulus,whereas theASEFexhibitedthehighesthardnessvalue(Table3).Theadditionoflemongrass,rosemarypepper, andbasilEOsdecreasedtheelasticmodulusofacellulose-basedEF,suggestingthattheinteractionsof EFpolymerswithanEOweresimilartothoseexertedbyplasticizers[25]. AnEFmadefromfishskin gelatinwithaddedCN,basil,plai,andlemonEOsshowedadecreasedelasticmodulus,butalarger elongationatbreakduetothereplacementofprotein–proteininteractionsbyEOadditioninthefilm network[26]. ThisreportagreeswiththatofZinoviadou[26],whoworkedwithwheyproteinwiththe oreganoEOadded. Inthisregard,thethree-dimensionalstructureofproteinsstabilizedbyhydrogen anddisulfidebondsshouldbedisruptedtoobtainseparate,entangledmacromoleculestoachieve plastic-likeproperties. TheEOandotherplasticizersareabletoreducetheinter-andintra-molecular interactionsandincreasefilms’flexibilitydependingontheoilandproteincompatibility[20]. Table3.Mechanicalpropertiesofzein–chitosanfilmswithessentialoilsadded. EdibleFilm Hardness(MPa) ElasticModulus(MPa) Withoutoil 5.91±0.41a 66±6a Anise 104.33±3.22b 22±3b Orange 57.51±2.43c 20±2b Cinnamon 25.54±1.85d 24±3b Dataarethemean±standarddeviation.Superscriptlettersa–dareusednexttoreportedvalues,indicatingthatif thesameletterappearsinthesamecolumn,thevaluescomparedarenotsignificantlydifferent(p>0.05). 2.3. X-rayDiffraction ToconfirmstructuralchangesinanEFmatrix,X-raydiffractionandRamanspectroscopyanalyses wereconducted. EFspreparedwithoutEOadditionshowedtwowell-definedpeaks,oneat7.5◦ and theotherat20◦ (2θ);however,regardingEO-containingfilms,twopeaks,oneat2.7◦ andanotherat about10◦ (2θ),canbenoted. BasedonEquation(14),ASadditionpromotedhighercrystallinitythantheotherEOsaddedto theEFs,whichwasprobablyassociatedwithhighercomponentsmiscibilityinthefilms’matrix[27]. Ontheotherhand,ORaddedtoanEFbarelydecreasedthecrystallinity(%C:21.0±0.4vs. 22.4±0.5) (Figure1).AccordingtoSánchez-Gonzalezetal.[28],anEOaddedtoanEFbasedonCTonlyincreased thecrystallinityupto50%,whereasglycerolincreasesresultedinalowerEFcrystallinityduetothe highermobilityofthepolymerchains[27]. Thus,itissuggestedthatthepresenceofORleadstoadecreasedcrystallinityoftheprepared films. ThisphenomenoncorrespondstonewlyformedinteractionsbetweenCTandORthatslightly destroytheoriginalcrystallinestructure,whereasASandCNincorporationincreasedthecrystallinity, suggesting that AS and CN reinforced CT films, leading to more dense crystalline domains in comparisontopureCTandCT–OR;similarresultshavebeenreportedbyJahedetal.[29]. Int.J.Mol.Sci.2017,18,2370 5of14 Int. J. Mol. Sci. 2017, 18, 2370 5 of 14 Figure1. X-raydifractrogramsofEFbasedonamixtureofzein–chitosan(a)Withoutessentialoil Figure 1. X-ray difractrograms of EF based on a mixture of zein–chitosan (a) Without essential oil (% (%C=22.4±0.5);(b)Withthecinnamon(CN)essentialoil(%C=27±0.3);(c)Withtheanise(AS) C = 22.4 ± 0.5); (b) With the cinnamon (CN) essential oil (% C = 27 ± 0.3); (c) With the anise (AS) essentialoil(%C=32±0.2);(d)Withtheorange(OR)essentialoil(%C=21.0±0.4). essential oil (% C = 32 ± 0.2); (d) With the orange (OR) essential oil (% C = 21.0 ± 0.4). 2.4. RamanSpectroscopy 2.4. Raman Spectroscopy Raman spectroscopy showed that, for all EFs with an EO added, the signal at 1745 cm−1 Raman spectroscopy showed that, for all EFs with an EO added, the signal at 1745 cm−1 disappeared (Figure 2a), which, according to Gizem-Gezer et al. [30], is a characteristic Z signal disappeared (Figure 2a), which, according to Gizem-Gezer et al. [30], is a characteristic Z signal that that corresponds to the functional group O=S=O. This was attributed to interactions between the corresponds to the functional group O=S=O. This was attributed to interactions between the protein proteinandEOcomponents. and EO components. Thesignalat1666cm−1wasassociatedwiththepartialacetylationoftheNH groupofCT[31]; The signal at 1666 cm−1 was associated with the partial acetylation of the NH22 group of CT [31]; italsodisappearedinthepresenceofanEO. it also disappeared in the presence of an EO. InrelationtoCNediblefilms,cinnamaldehyde,whichiscomprisedofamono-substitutedbenzene In relation to CN edible films, cinnamaldehyde, which is comprised of a mono-substituted ring, an aldehyde functional group, and a conjugated double bond, reacted with CT, promoting benzene ring, an aldehyde functional group, and a conjugated double bond, reacted with CT, anucleophilicadditionreactiontypicalofaldehydes(Figure2b). WhenanalyzingtheEF’sstructural promoting a nucleophilic addition reaction typical of aldehydes (Figure 2b). When analyzing the EF’s components,thecarbonylgroup(C=O)providesareactivesitefornucleophilicaddition,withaSchiff structural components, the carbonyl group (C=O) provides a reactive site for nucleophilic addition, base(N=C)formation. with a Schiff base (N=C) formation. The presence of carbonyl and amino primary groups with a free electron pair allows for the The presence of carbonyl and amino primary groups with a free electron pair allows for the formationofaSchiffbaseduetotheelectron-deficientcarbonylcarbon. Thiswasconfirmedbythe formation of a Schiff base due to the electron-deficient carbonyl carbon. This was confirmed by the disappearanceofthecharacteristiccarbonyl(C=O)signalat1745.9cm−1whentheCNEOwasadded, disappearance of the characteristic carbonyl (C=O) signal at 1745.9 cm−1 when the CN EO was added, whichinvolvedasignaldecreaseat998–953cm−1 andat1081–1083.7cm−1, bothcharacteristicof which involved a signal decrease at 998–953 cm−1 and at 1081–1083.7 cm−1, both characteristic of C–O–C bonds. This finding agrees with those reported by Gao et al. [32], who studied reactions C–O–C bonds. This finding agrees with those reported by Gao et al. [32], who studied reactions betweenaldehydesandCT,nucleophilicadditionbeingthemosttypicalreaction. between aldehydes and CT, nucleophilic addition being the most typical reaction. Int.J.Mol.Sci.2017,18,2370 6of14 Int. J. Mol. Sci. 2017, 18, 2370 6 of 14 FFiigguurree 22.. SSppeeccttrrooggrraammss ooff EEFFss bbaasseedd oonn aa mmiixxttuurree ooff zzeeiinn––cchhiittoossaann ((11::11 ww//ww)).. ((aa)) WWiitthhoouutt eesssseennttiiaall ooiill;; ((bb)) WWiitthh cciinnnnaammoonn eesssseennttiiaall ooiill.. AArrrroowwss iinnddiiccaattee tthhee ddiissaappppeeaarraannccee ooff zzeeiinn ssiiggnnaallss.. The spectrogram of the edible film containing the OR EO (Figure 3a) did not show characteristic ThespectrogramoftheediblefilmcontainingtheOREO(Figure3a)didnotshowcharacteristic ssiiggnnaallss aatt 11008811,, 11444400,, aanndd 11774455..99 ccmm−−11 aassssoocciiaatteedd wwiitthh tthhee CC––OO––CC,, NN==NN,, aanndd OO==SS==OO bboonnddss,, respectively. Limonene (an olefin) is the main active component of the OR EO, which in the presence respectively. Limonene(anolefin)isthemainactivecomponentoftheOREO,whichinthepresence of CT experiences olefin metathesis allowing for the synthesis of small and polymeric molecules by ofCTexperiencesolefinmetathesisallowingforthesynthesisofsmallandpolymericmoleculesby sscciissssiioonn aanndd tthhee rreeggeenneerraattiioonn ooff CC==CC mmoolleeccuulleess [[3333]],, wwhhiicchh wweerreed deetteecctteedda att1 1559977c cmm−−11,, wwhheerreeaass tthhee signals listed above disappeared. signalslistedabovedisappeared. The EF with the AS EO added showed signal disappearance at 729.74 (C–S), 1110–1150 (C–O– TheEFwiththeASEOaddedshowedsignaldisappearanceat729.74(C–S),1110–1150(C–O–C), C), 1440 (N=N), and 1745 (C=O). These signal losses indicate the interaction of EF components 1440(N=N),and1745(C=O).ThesesignallossesindicatetheinteractionofEFcomponents(CT-Z) (CT-Z) with the AS EO, causing bond disruption. The characteristic tyrosine signal disappeared upon withtheASEO,causingbonddisruption. Thecharacteristictyrosinesignaldisappeareduponthe athded iatidodnitoiofnth eofA tShEe OA(S8 2E1Oc m(8−211) ,cams−w1)e, lalsa swtheell saigs ntahlea tsi1g7n4a5l. 9actm 1−7415t.h9a tcmis−r1e ltahtaetd itso rtehleatZedfu tnoc ttihoen aZl functional group O=S=O reacting with CT [30] (Figure 3b). This implies the disruption of the protein’s groupO=S=OreactingwithCT[30](Figure3b). Thisimpliesthedisruptionoftheprotein’ssecondary secondary structure (α-helix) [34] so that protein structural changes due to EO addition allow for a structure (α-helix) [34] so that protein structural changes due to EO addition allow for a tyrosine rtyearoctsiionne wreiathctiootnh ewrifithlm octhoemr pfoilnme nctosm. Tphoenernedtsu. cTehdes irgendaulcaetd1 s6i1g9n.a4l– 1a6t 5156.419c.m4–−1165in5.d4i ccamte−s1 cinhdemicaicteasl chemical interactions due to C=N bonds losses. The addition of each EO resulted in a signal interactionsduetoC=Nbondslosses. TheadditionofeachEOresultedinasignaldisappearanceat 7d2is9a.7p4pcemar−an1,cceh aatr a7c2t9e.r7is4t iccmo−f1,t hcehCar–aSctaelriipshtiact iocfg trhoeu pC–oSf caylsiptehiantei,c sgurgoguepst ionfg ctyhseterienaec,t isoungogfesetainchg otnhee reaction of each one of the three EOs with the CT-Z EF. ofthethreeEOswiththeCT-ZEF. From the Raman spectra, the addition of any EO confirms the X-ray analysis, since an EF’s From the Raman spectra, the addition of any EO confirms the X-ray analysis, since an EF’s structure was modified through the formation of a Schiff base, metathesis of CT, or disappearance of structurewasmodifiedthroughtheformationofaSchiffbase,metathesisofCT,ordisappearanceof CS bonds. CSbonds. Int.J.Mol.Sci.2017,18,2370 7of14 Int. J. Mol. Sci. 2017, 18, 2370 7 of 14 Figure3. SpectrogramsofEFbasedonamixtureofzein–chitosan(50%:50%w/w). (a)Withorange Figure 3. Spectrograms of EF based on a mixture of zein–chitosan (50%:50% w/w). (a) With orange essentialoil;(b)Withaniseessentialoil.Arrowsindicatethedisappearanceofzeinsignals. essential oil; (b) With anise essential oil. Arrows indicate the disappearance of zein signals. 22..55.. AAnnttiiffuunnggaall AAccttiivviittyy AAllll EEFFss wwiitthh aann EEOO aaddddeedd sshhoowweedd iinnhhiibbiittoorryy eeffffeeccttss aaggaaiinnsstt RRhhiizzooppuuss sspp.. aanndd PPeenniicciilllliiuumm sspp..,, wwhheerreeaass AASS aanndd CCNN sshhoowweedd aann iinnhhiibbiittoorryy eeffffeecctt oonn PPeenniicciilllliiuumm sspp..,, tthhoouugghh aa lloowweerr aannttiiffuunnggaall eeffffeecctt wwaass oobbsseerrvveedd ffoorr RRhhiizzooppuuss sspp.. ((TTaabbllee 44)).. TThhee iinnhhiibbiittoorryy eeffffeecctt ooff tthhee AASS EEOO wwaass aattttrriibbuutteedd ttoo aanneetthhoollee,, iittss mmaaiinn bbiiooaaccttiivvee ccoommppoouunndd [[88]],, wwhhiicchh iiss eeffffeeccttiivvee aaggaaiinnsstt mmyyccoottooxxiiggeenniicc ffuunnggii,, ssuucchh aass RRhhiizzooppuuss sspp.. aanndd PPeenniicciilllliiuumm sspp.. [[77]]. .AAmmonogn gthteh eEOEsO, sO,RO sRhoshwoewde tdhet hsemsamlleasltl eisnthiinbhitiobriyto erfyfeecftf oecnt eoanche aocfh thoef ttwheo ttwesotedte sfutendgif.u Tnhgei. amThoeunatm oof uenactho fEOea cuhseEdO tou csoenddtuoctc tohned auncttiftuhnegaanl ttiefsutns gwalast e1s5ts.6 wpapsm1, 5w.6hipcphm is, wbehloicwh itshbe edloawilyt hinegdeastiiloyni nlgimesitt ioonf 2li5m0 iptpomf2 5[305p].p Tmhu[3s5, ]h.iTghheurs ,dhoisgehse mrdaoys bees mmaoyreb eefmfecotrievee fafegcatiinvset athgeasien sftutnhgeis weiftuhnoguit wexitcheoeudtinegx ctheeed pinergmthitetepde lremveitlt. eCdolnecveenl.trCatoionnces notfr a1t0i0o npspomf 1o0f 0anpeptmhoolef iannheitbhitoelde iAnshpiebrigtieldlusA sfplaevrugisl luansdfl aAvuspsearngidlluAss ppearrgaislliutiscupsa,r awsihtiecruesa,sw ah ecroemaspalecteo minphliebtietiionnh iwbiatiso nacwhiaesvaecdh iuesviendg ucosinncgencotrnactieonntrsa otifo 1n0s0o pfp1m00 apnpdm 20a0n dpp2m00, prepsmpe,crteisvpeelyc t[i3v6e]l.y [36]. TTaabbllee 44.. IInnhhiibbiittoorryy eeffffeecctt ooff EEFFss wwiitthh ddiiffffeerreenntt aaddddeedd eesssseennttiiaall ooiillss.. Average Diameter (cm) AverageDiameter(cm) Edible Film EdibleFilm Penicillium sp. Rhizopus sp. Penicilliumsp. Rhizopussp. Without essential oil 0 0 AWnisiteh eosusteenstsiaeln otiial loil 2.2 ± 0.20 a 1.5 ±0 0.3 a Aniseessentialoil 2.2±0.2a 1.5±0.3a Cinnamon essential oil 1.9 ± 0.3 a 1.7 ± 0.3 a Cinnamonessentialoil 1.9±0.3a 1.7±0.3a Orange essential oil 0.7 ± 0.1 b 0.6 ± 0.2 b Orangeessentialoil 0.7±0.1b 0.6±0.2b Data are the mean ± standard deviation. Superscript letters a-b are used next to reported values, Dataarethemean±standarddeviation.Superscriptlettersa-bareusednexttoreportedvalues,indicatingthatif indicating that if the same letter appears in the same column, the values compared are not thesameletterappearsinthesamecolumn,thevaluescomparedarenotsignificantlydifferent(p>0.05). significantly different (p > 0.05). Anetholetargetsafungi’smitochondrialdefensesystemagainstoxidativestress[37].Theantifungal activiAtyneotfhtohlee EtaOrghetass ab efeunngoib’ss emrvietodchatonddifrfiearle ndtefsetangsees soyfstaemfu naggia’sinlsitf eocxyidclaet,ivine cslutrdeisnsg [3a7t]s. pTohree gaenrtmifuinnagtaiol na,ctthiveitfyo romf athtieo nEOof hpaesn betereanti nogbssetrruvectdu raet sd,iafnfedremnyt csetaliguems oafn ad fsupnogrui’lsa ltiifoen cdyecvlee,l oinpcmluednitn[g3 8a]t. Lspimoroen egneerimstihneataicotniv, etihneg refdoriemnattoifoOn Ro,fa npdeintectaruasteinsgc hasntrguecstuinreasm, iacnrodb iamlyceclellmiuemm barnande ’ssppororuplearttiioesn, idnecvreealospinmgeintst f[l3u8i]d. iLtyi,maonndelneea disi nthget oacatlitveer eindgpreerdmieenatb oilfi tOyRa,n adndho imt ceaoussteass icshlaonssg.eIsn ina dad mitiiocrno,btihael cEeOll membrane’s properties, increasing its fluidity, and leading to altered permeability and homeostasis loss. In addition, the EO components of OR denature enzymes responsible for germination and sporulation. A concentration of 500 ppm of OR produced a fungistatic effect on A. flavus [28]. Int.J.Mol.Sci.2017,18,2370 8of14 componentsofORdenatureenzymesresponsibleforgerminationandsporulation. Aconcentrationof 500ppmofORproducedafungistaticeffectonA.flavus[28]. CinnamaldehydeistheactivecompoundofCN,anditsmechanismofactioninvolvescellular ultrastructuralchanges,includingorganellesdisappearanceandsolidificationandthedegenerationof thecellwallandcytoplasm. Aninhibitoryconcentrationof0.5%(v/v)wasfoundagainstA.niger[38]. AlthoughEOs’mechanismofactionisnotwell-definedyet,theirinhibitoryeffecthasbeengenerally associated with their hydrophobicity, which causes changes in the permeability, ion transport, and solubilizationoflipidcomponentsofthecellmembrane.Morestudiesareneededtoevaluatethecombined effectofthetestedEOstoascertainwhethertherearesynergisticeffectsagainstavarietyoffungi. Microbialfoodspoilageisoneofthemainproblemsofthefoodindustry,andmorethan50%of fruitsandfruitproducts,arespoiltbyfungi;inthebakingindustry,theselossesrepresentbetween1% and3%. Inaddition,antifungalpackaginghasbeenproposedtoextendthesafetyandshelflifeof ready-to-eatfoods[39].Thus,activeediblefilmsmayrepresentagoodalternativeforfoodpreservation inthebakingandfruitindustry,andaresuitablefordirectfoodproductsconsumption. 3. MaterialsandMethods 3.1. Materials Anise(Essencefleur,AceitesyEsenciasCat. No. 98019,CiudaddeMexico,Mexico),cinnamon (Essencefleur, Cat. No. 91041) and orange (Essencefleur, Cat. No. 10002) EOs were used. Chitosan(≥75%deacetylation,molecularweightof375kDa,Sigma-Aldrich,St. Louis,MO,USA), Zein(Ingredion,SanJuandelRío,Qro.,Mexico),Penicilliumsp.,andRhizopussp. wereacquiredfrom thetypeculturecollectionoftheEscuelaNacionaldeCienciasBiológicas(ENCB,IPN,Ciudadde Mexico,Mexico). 3.2. FilmsPreparation SuspensionsofCT(1%CTin1Naceticacid,w/v),andZ(1:10,Z:ethanol,w/v),werepreparedby mixinginahotplate(Barnstead,Thermolyne,MN,USA)for15minat200rpmat90◦C;thesesolutions weremixedina1:1ratio. ThreedifferentEFswereelaboratedincorporatinganEO(AS,CN,andOR) to promote ingredients solubilization and films formation; the pH was adjusted to 9.4 with 0.5 M NaOH[40]. AnAS,anOR,oraCNEOwasaddedtoreach250ppmandwasmixedfor10minat roomtemperature(~24◦C).Glycerol(Sigma-Aldrich)wasaddedata3:1ratio(Z:glycerol,w/w)and stirredfor10minforcompletehomogenization. Finally,10goftheCT-Z-EOmixtureswerepoured intopetridishes(90×15mm)anddriedinaconvectionoven(Terlab,Puebla,Mexico)atconstant relativehumidity(RH)(45%)andtemperature(40◦C)for24h,accordingtoAbugoch[41]. Allsamples were separated from the dishes and stored at constant RH (59.7%) and temperature (20 ◦C) until furtheranalysis. 3.3. PhysicalCharacterization 3.3.1. Color,Transparency,andOpticalProperties The films’ thickness, absorption coefficient, and refractive index were determined according to Murray and Dutcher [42] with modifications. Briefly, an ellipsometer (Uvisell LT M200 AGMS, YvonHoriba,Longiumeau,France)ata250to800nmwavelengthwasused. Therefractiveindexand thicknesswereevaluatedbythepolarizationchangesofincidentlightbeams(70◦C)onthesurface of the film; these changes consider the ellipsometric angles of the equipment (∆ and Ψ), which in turn are related by mathematical models (polymer and amino acids) included in the software of the same company providing the values of the refractive index and thickness for the equipment. Asecondmethodwasusedtoconfirmtheellipsometerresultsbyusingaprecisiondigitalmicrometer (IP54,Newton,MA,USA),thatwasemployedtomeasurefivedifferentzonesofthefilmsatrandom Int.J.Mol.Sci.2017,18,2370 9of14 locations. EFtransparencyandcolorweredeterminedbyusingacolorimeter(CR-400ChromaMeter, KonicaMinolta,Tokyo,Japan)withaD65illuminationsourceata0◦viewingangle,whitebackground, andbyassumingthatacompletelytransparentfilmwillgeneratethesameluminosityvalues(L*)as thoseobtainedfromthewhitecalibrationplate(L*=100)andthatanydifferencewillbetheresult ofamoreopaquematerial(L*<100);then,lightnessisconsideredasequaltotransparency. Inthis experiment,thefilmwasplacedoverthecalibrationplateandmeasurementswereperformedatfive differentpointsofthefilm(centerandouterparts)avoidingtheedges[18]. Priortotheformation ofthefilms,samplesofeachofthesolutionsweretaken(CT-ZwithandwithoutanEO)andtheir densitywasevaluatedasdescribedbyASTMD1217-12[43]. Inapycnometer(10mL)atconstant weight,10mLofthefilmogenicsolutionwaspoured,theweightwasdetermined,andthedensitywas obtainedbyEquation(1): m ρ = (1) v whereρisthesolutiondensity,visthevolume(10mL),andmisthemassof10mLofsolution. 3.3.2. AtomicForceMicroscopy(AFM) AFMprovidesrelativeandabsoluteroughnessmeasurementsandallowsinvestigatorstoobtain three-dimensional (3D) images showing the topographic characteristics of the sample. For this evaluation,anatomicforcemicroscope(MultimodeV,Veeco,CA,USA)wasused,andthetapping method was applied using silicon probes (RTESP Bruker cantilevers, Santa Barbara, CA, USA) with a resonance frequency of 286–362 kHz and a spring constant of 20–80 N m−1. Samples of 0.5×0.5cmwereusedandthreeareasof5×5µmwerescannedataspeedof1Hzandresolutionof 256×256pixels. Roughnesswascalculated(Equations(2)and(3)),usingtheNanoScopeAnalysis 1.20program(Veeco)andapplyingaflatteningprocess(onegrade). (cid:118) (cid:117) (cid:16) (cid:17) (cid:117)Σ Z2 (cid:116) i Rq = (2) N 1 ∑N Ra = Z (3) i N j=1 whereZ istheheightdeviationfromthemeanofheights,Z isthemaximumverticaldistancebetween i j thehighestandlowestdatapointsintheimagepriortotheplanefit,Rqisthestandarddeviationofthe Z values,Raisthearithmeticaverageoftheabsolutevaluesofthesurfaceheightdeviationsmeasured i fromthemeanplane,andNisthenumberofpointsintheimage[44]. 3.3.3. WaterVaporPermeability WatervaporpermeabilitywasevaluatedusingthegravimetricmethodASTME96–80[45]with modifications. Slightamountsofwatermayaccumulateonthesurfaceofhydrophilicediblefilms usingthecupmethod,andtheresistanceofthestagnantairlayerbetweenthebottomsideofthefilm andthesurfaceofthesaturatedsaltmaybesignificant,and,ifneglected,mayunderestimatethewater vaportransmissionrate(WVTR)[18,46]. Permeabilitycupswithanopenmouthofknownarea(A) wereused. Thefilmwassealedontopofapermeationcup,andplacedinadesiccatorwithasaturated NaClsolutionatconstanttemperature(25◦C)andRH(75%). ThecupscontainedasaturatedKNO 3 solution(HR=95.6%),andwereweighedat1hintervalsuntilequilibriumwasreached. Theslopeof theweightloss(W )versustime(t)plotwasobtainedbylinearregression,andthemeasuredWVTR S (WVTR )wascalculated(Equation(4)). m W WVTR = S (4) m tA Int.J.Mol.Sci.2017,18,2370 10of14 The corrected WVTR (WVTRc) was obtained following Gennadios et al. [47] using Equations(5)–(9). P −P WVTR =WVTR × w1 w2 (5) C m P −P w3 w4 RH P = P × 1 (6) w1 0 100 RH P = P × 2 (7) w2 0 100 WVTR×R×T×hi Pw3 = PT−(PT−Pw1) PT×D (8) WVTR×R×T×h0 Pw4 = PT−(PT−Pw2) PT×D (9) whereAisthecross-sectionalareaofthefilm,P isthepartialpressureinsidethepermeabilitycell, w1 P isthepartialpressureinsidethedesiccator,P andP arethepressuresbelowandabovethe w2 w3 w4 ediblefilm,respectively,Disthediffusivityofwatervaporthroughtheair(2.82m2/d),Risthegas constant,Tisthetemperature(298K),andP istheatmosphericpressure(85kPainQuerétaro,Mexico). T The water vapor permeability (WVP) was calculated according to Gennadios et al. [47] and Alvarado-Gonzálezetal.[46](Equation(10)). L WVP =WVTR (10) CP −P W1 W2 whereWVPisthewatervaporpermeability(gmmh−1m−2kPa−1),Listhefilmthickness(mm),andp W1 andp arethewatervaporpartialpressures(kPa)overandunderthefilm’ssurface,respectively. W2 3.3.4. MechanicalProperties Themechanicalpropertiesevaluatedwereelasticmodulusandhardness. Thesepropertieswere obtainedbyananoindenter(CSM,Peseux,Switzerland)measuringeightdifferentpartsofthefilms, includingtheedgesandcentralparts. Theindentationconditionswere: amaximumloadof2.5mNat loadingandunloadingratesof7.5mN/min,andapauseof35susingaBerkovichtipofknowncontact area(Ac). Fromtheload-displacementcurve,themaximumload(P ),maximumpenetrationdepth max (h ),andstiffnessofthematerial(h )wereobtained. Usingtheseparameters,valuesofhardness max S (Equation(11))andelasticmoduluswereevaluated(Equations(12)and(13))[46]. P H = max (11) A×hc √ S π E = √ (12) r 2 Ac 1−v2 E = (13) m 1 − 1−v2 Er Ei whereH(MPa)isthematerialhardness,E istheelasticmodulus(GPa),E isthereducedmodulus, m r S is the initial unloading stiffness in the load curve, hc is the difference between h and h , v is max S the Poisson’s ratio for polymeric samples estimated as 0.35, and E and v are the elastic modulus i i (1141GPa)oftheindenterandPoisson’sratio(0.07),respectively[47].

Description:
food preservative, and may be added into edible coatings to improve the shelf which has been incorporated into edible coatings for dried fish and fruits .. (Raman Olympus BX41, Horiba, Edison, NJ, USA) coupled to an Olympus
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.