ebook img

Phenomenology of renormalons and the OPE from lattice regularization: the gluon condensate and the heavy quark pole mass PDF

0.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Phenomenology of renormalons and the OPE from lattice regularization: the gluon condensate and the heavy quark pole mass

Phenomenology of renormalons and the OPE from lattice regularization: the gluon condensate and the heavy quark pole mass Gunnar S. Bali ,† and Antonio Pineda ∗ ∗∗ 5 1 InstitutfürTheoretischePhysik,UniversitätRegensburg,D-93040Regensburg,Germany 0 ∗ †TataInstituteofFundamentalResearch,HomiBhabhaRoad,Mumbai400005,India 2 ∗∗GrupdeFísicaTeòricaandIFAE,UniversitatAutònomadeBarcelona,E-08193Bellaterra,Barcelona,Spain n a J Abstract. Westudytheoperatorproductexpansionoftheplaquette(gluoncondensate)andtheself-energyofaninfinitely heavyquark.Wefirstcomputetheirperturbativeexpansionstoordera 35anda 20,respectively,inthelatticescheme.Inboth 1 caseswereachtheasymptoticregimewheretherenormalonbehaviorsetsin.Subtractingtheperturbativeseries,weobtain 3 theleadingnon-perturbativecorrectionsoftheirrespectiveoperatorproductexpansions.Inthefirstcaseweobtainthegluon condensateandinthesecondthebindingenergyoftheheavyquarkintheinfinitemasslimit.Theresultsarefullyconsistent ] h withtheexpectationsfromrenormalonsandtheoperatorproductexpansion. p Keywords: Renormalons,operatorproductexpansion,latticeQCD,gluoncondensate,heavyquarkeffectivetheory - PACS: 12.38.Gc,12.38.Bx,11.55.Hx,12.38.Cy,11.15.Bt p e h [ INTRODUCTION 1 Theoperatorproductexpansion(OPE)[1]isafundamentaltoolfortheoreticalanalysesinquantumfieldtheories.Its v 6 validity is only provenrigorously within perturbationtheory, to arbitrary finite orders [2]. The use of the OPE in a 8 non-perturbativeframeworkwasinitiatedbytheITEPgroup[3](seealsothediscussioninRef.[4]),whopostulated 0 thattheOPEofacorrelatorcouldbeapproximatedbythefollowingseries: 0 0 correlator(Q) (cid:229) 1 C (a ) O , (1) 2. ≃ d Qd d h di 0 wherethe expectationvaluesof localoperatorsO aresuppressedbyinversepowersofa largeexternalmomentum 5 d 1 Q L QCD, according to their dimensionality d. The Wilson coefficientsCd(a ) encode the physics at momentum : sca≫leslargerthanQ.Thesearewellapproximatedbyperturbativeexpansionsinthestrongcouplingparametera : v Xi Cd(a ) (cid:229) cna n+1. (2) ≃ n 0 r ≥ a The large-distance physics is described by the matrix elements O that usually have to be determined non- d perturbatively: O L d . h i h di∼ QCD Itcanhardlybeoveremphasizedthat(exceptfordirectpredictionsofnon-perturbativelatticesimulations,e.g.,on light hadron masses) all QCD predictions are based on factorizations that are generalizations of the above generic OPE. ThereexistsomemajorquestionsrelatedtotheOPEthathavetobeaddressed:1 • AretheperturbativeexpansionsofWilsoncoefficientsasymptoticseries? 1 Therearealsosomeimportantpointsthatwedonotaddresshere,including: Wedonotconsiderambiguitiesassociatedtoshort-distancenon-perturbativeeffects,whichwouldgiverisetosingularitiesfurtherawayfromthe originoftheBorelplanethanthosewestudyhere. Wetakethevalidity oftheOPEinpureperturbation theoryforgranted.Thisassumptionissolidincaseswithasinglelargescale,Q2,andin Euclideanspacetime. Wewillnotdiscussthevalidityofthe(non-perturbative) OPEfortimelikedistancesthatcanoccurinMinkowskispacetime,anissuerelatedto possibleviolationsofquark-hadronduality. • Ifso:aretheassociatedambiguitiesoftheasymptoticbehaviorconsistentwiththeOPE,i.e.withthepositionsof theexpectedrenormalons[5]intheBorelplane? • IstheOPEvalidbeyondperturbationtheory? • Whatistherealsizeofthefirstnon-perturbativecorrectionwithinagivenOPEexpansion? • Isthisvaluestronglyaffectedbyambiguitiesassociatedtorenormalons? In this paper we summarize and discuss our recent results [6–10], which address these questions for the case of the plaquette and the energy of an infinitely heavy quark in the pure gluodynamics approximation to QCD. Both analyses utilize lattice regularization.Contrary to, e.g., dimensionalregulation,lattice regularizationcan be defined non-perturbatively. Using a lattice scheme rather than the MS scheme, we can, not only expand observables in perturbationtheory,butalsoevaluatethemnon-perturbatively.Anotheradvantageofthischoiceisthatitenablesusto usenumericalstochasticperturbationtheory[11–13]toobtainperturbativeexpansioncoefficients.Thisallowsusto realizemuchhigherordersthanwouldhavebeenpossiblewithdiagrammatictechniques.Adisadvantageofthelattice schemeisthat,atleastinourdiscretization,latticeperturbativeexpansionsconvergeslowerthanexpansionsintheMS coupling.Thismeansthatwehavetogotocomparativelyhigherorderstobecomesensitivetotheasymptoticbehavior. ManyoftheresultsobtainedinalatticeschemeeitherdirectlyapplytotheMSschemetooorcansubsequentlyeasily (andinsomecasesexactly)beconvertedintothisscheme. InourstudiesweusedtheWilsongaugeaction[14].Wedefinethevacuumexpectationvalueofagenericoperator Bofengineeringdimensionzeroas 1 B W BW = [dUx,m ]e−S[U]B[U] (3) h i≡h | | i Z Z LwEithisthaeEpuacrltiidtieoannfsupnaccteitoinmZel=attRic[edUwxi,tmh]lea−ttSi[cUe] sapnadcminegaasuarned[dUUx,xm,m ]=eiA(cid:213) m (xx∈+L aE/,2m)dUSx,Um .(3|W)iisdaegnaoutegsetlhinekv.acuumstate, ≈ ∈ THE PLAQUETTE: OPEINPERTURBATION THEORY ForthecaseoftheplaquettewehaveB P,where → hPi= N14x(cid:229) L EhPxi, Px=1−316m(cid:229)>n Tr Ux,mn +Ux†,mn , (4) ∈ (cid:0) (cid:1) andUx,mn denotestheorientedproductofgaugelinksenclosinganelementarysquare(plaquette)inthem -n planeof thelattice.Fordetailsonthenotationandsimulationset-upseeRef.[9]. P willdependonthelatticeextentNa,thespacingaanda =g2/(4p ) a (a 1)(notethata isthebarelattice − couhpliingand its naturalscale is of ordera 1). We first computethis expect≡ationvalue in strict perturbationtheory. − Inotherwords,weTaylorexpandinpowersofgbeforeaveragingoverthegaugeconfigurations(whichwedousing NSPT[11–13]).Theoutcomeisapowerseriesina : P pert(N) 1 [dUx,m ]e−S[U]P[U] = (cid:229) pn(N)a n+1. h i ≡ Z Z (cid:12)NSPT n 0 (cid:12) ≥ (cid:12) Thedimensionlesscoefficients pn(N)arefunctionsofthelinear(cid:12)latticesizeN.Weemphasizethattheydonotdepend onthelatticespacingaoronthephysicallatticeextentNaalonebutonlyontheratioN=(Na)/a. Weareinterestedinthelarge-N(i.e.infinitevolume)limit.Inthissituation 1 1 (5) a ≫ Na anditmakessensetofactorizethecontributionsofthedifferentscaleswithintheOPEframework.Thehardmodes, ofscale 1/a,determinetheWilsoncoefficients,whereasthesoftmodes,ofscale 1/(Na),canbedescribedbyex- ∼ ∼ pectationvaluesoflocalgaugeinvariantoperators.Therearenosuchoperatorsofdimensiontwo.Therenormalization groupinvariantdefinitionofthegluoncondensate 2 b (a ) a hG2i=−b W a Gcmn Gcmn W = W [1+O(a )]p Gcmn Gcmn W (6) 0(cid:28) (cid:12)(cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12)(cid:12) (cid:29) D (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) E istheonlylocalgaugeinvariantexpectationvalueofanoperatorofdimensiona 4inpuregluodynamics.Inthepurely − perturbativecasediscussedhere,thisonlydependsonthesoftscale1/(Na),i.e.onthelatticeextent.Ondimensional grounds,theperturbativegluoncondensate G2 isproportionalto1/(Na)4,andthelogarithmic(Na)-dependence soft isencodedina [1/(Na)].Therefore, h i p 2a4 G2 = 1 (cid:229) f a n+1[1/(Na)], (7) 36 h isoft −N4 n n 0 ≥ andtheperturbativeexpansionoftheplaquetteonafinitevolumeofN4 sitescanbewrittenas p 2 1 P (N)=P (a ) 1 + C (a )a4 G2 +O , (8) h ipert pert h i 36 G h isoft N6 (cid:18) (cid:19) where P (a )= (cid:229) p a n+1 (9) pert n n 0 ≥ and p aretheinfinitevolumecoefficientsthatweareinterestedin.Theconstantpre-factorp 2/36ischosensuchthat n theWilsoncoefficient,whichonlydependsona ,isnormalizedtounityfora =0.Itcanbeexpandedina : C (a )=1+(cid:229) c a k+1. (10) G k k 0 ≥ SinceouractionisproportionaltotheplaquetteP,C isfixedbytheconformaltraceanomaly[15,16]: G 2pb (a ) b a b a 2 b a 3 C 1(a )= =1+ 1 + 2 + 3 +O(a 4). (11) G− − b a 2 b 4p b 4p b 4p 0 0 0 0 (cid:16) (cid:17) (cid:16) (cid:17) Theb -functioncoefficients2b areknowninthelatticeschemefor j 3(seeEq.(25)ofRef.[9]). j ≤ CombiningEqs.(7),(8)and(10)gives P (N)= (cid:229) p fn(N) a n+1 (12) h ipert n− N4 n 0(cid:20) (cid:21) ≥ = (cid:229) p a n+1 1 1+(cid:229) c a k+1(a 1) (cid:229) f a n+1((Na) 1)+O 1 , n 0 n −N4 k 0 k − !×n 0 n − (cid:18)N6(cid:19) ≥ ≥ ≥ where f (N) is a polynomialin powersof ln(N). Fitting this equationto the perturbativelattice results, the first 35 n coefficientsp weredeterminedinRef.[9].Theresultswereconfrontedwiththeexpectationsfromrenormalons: n plnattn→=¥ NPlatt 2bp0d nG (Gn(+1+1+dbd)b) 1+20.n08+9d3b1...+(n+d5b0)5(n±+3d3b 1)+O n13 , (13) (cid:18) (cid:19) (cid:20) − (cid:18) (cid:19)(cid:21) pn = b 0 1+db+db(1−ds1)+db 1−3ds1+d2b(s1+2s2) +O 1 , (14) np 2p d n n2 n3 n4 n−1 ( (cid:2) (cid:3) (cid:18) (cid:19)) whereb=b /(2b 2),s =(b 2 b b )/(4bb 4)ands =(b 3 2b b b +b 2b )/(16b2b 6)aredefinedsothat 1 0 1 1 − 0 2 0 2 1 − 0 1 2 0 3 0 1 1 t b a= exp bln +s bt s b2t2+ with t= 0a . (15) L −t − 2 1 − 2 ··· 2p latt (cid:20) (cid:21) InFig.1wecomparetheinfinitevolumeratiosp /(np )totheexpectationEq.(14):theasymptoticbehaviorofthe n n 1 perturbativeseriesduetorenormalonsisreachedaroun−dordersn 27 30,proving,forthefirsttime,theexistence ∼ − of the renormalonin the plaquette.Note that incorporatingfinite volumeeffectsis compulsoryto see this behavior, sincetherearenoinfraredrenormalonsonafinitelattice.Toparameterizefinitesizeeffectswemadeuseofthepurely perturbativeOPE Eq.(8).Thebehaviorseen inFig. 1,althoughcomputedfromperturbativeexpansioncoefficients, goesbeyondthepurelyperturbativeOPEsinceitpredictsthepositionofanon-perturbativeobjectintheBorelplane. 2 Wedefinetheb -functionasb (a )=da /dlnm = b0/(2p )a 2 b1/(8p 2)a 3 ,i.e.b0=11. − − −··· ¥ N = 1.2 N = 28 6 ¥ (1/N ) N = 1.0 LO NLO ) 1 0.8 - NNLO n p NNNLO n 0.6 ( / n p 0.4 0.2 0 10 15 20 25 30 35 n FIGURE1. Theratios pn/(npn 1)compared withtheleadingorder (LO),next-to-leadingorder (NLO),NNLOandNNNLO predictions of the1/n-expansion E−q.(14).Onlythe“N =¥ ”extrapolation includesthesystematic uncertainties. Wealsoshow finite volume data for N =28, and the result from the alternative N ¥ extrapolation including some 1/N6 corrections. The → symbolshavebeenshiftedslightlyhorizontally. THE PLAQUETTE: OPEBEYONDPERTURBATION THEORY SinceinNSPTweTaylorexpandinpowersofgbeforeaveragingoverthegaugevariables,nomassgapisgenerated. In non-perturbativeMonte-Carlo (MC) lattice simulations an additional scale, L QCD 1/ae−2p /(b0a ), is generated dynamically(seealsoEq.(15)).However,wecanalwaystuneN anda suchthat ∼ 1 1 L . (16) QCD a ≫ Na ≫ In this small-volume situation we encounter a double expansion in powers of a/(Na) and aL [or, equivalently, QCD (Na)L a/(Na)]. The constructionof the OPE is completely analogousto that of the previoussection and we QCD obtain3 × 1 p 2 P MC= [dUx,m ]e−S[U]P[U] =Ppert(a ) 1 + CG(a )a4 G2 MC+O(a6). (17) h i Z h i 36 h i Z (cid:12)MC (cid:12) Inthelastequalitywehavefactoredoutthehard(cid:12)scale1/afromthescales1/(Na)andL ,whichareencodedin (cid:12) QCD G2 .Exploitingtheright-mostinequalityofEq.(16),wecanexpand G2 asfollows: MC MC h i h i G2 = G2 1+O[L 2 (Na)2] . (18) h iMC h isoft QCD (cid:8) (cid:9) 3 In the last equality, we approximate the Wilson coefficients by their perturbative expansions, neglecting the possibility of non-perturbative contributionsassociatedtothehardscale1/a.Thesewouldbesuppressedbyfactors exp( 2p /a )andthereforewouldbesub-leading,relative ∼ − tothegluoncondensate. Hence,anon-perturbativesmall-volumesimulationwouldyieldthesameexpressionasNSPT,uptonon-perturbative corrections that can be made arbitrarily small by reducing a and therefore Na, keeping N fixed. In other words, pNSPT(N)=pMC(N)uptonon-perturbativecorrections. n n Wecanalsoconsiderthelimit 1 1 L . (19) QCD a ≫ ≫ Na Thisisthestandardsituationrealizedinnon-perturbativelatticesimulations.AgaintheOPEcanbeconstructedasin theprevioussection,Eq.(17)holds,andthe p -andc -valuesarestillthesame.Thedifferenceisthatnow n n 1 G2 = G2 1+O , (20) h iMC h iNP" L 2QCD(Na)2!# where G2 L 4 istheso-callednon-perturbativegluoncondensateintroducedinRef.[3].Fromnowonwewill h iNP∼ QCD callthisquantitysimplythe“gluoncondensate” G2 .Wearenowintheposition h i • todeterminethegluoncondensateand • tocheckthevalidityoftheOPE(atlowordersinthea2 scaleexpansion)forthecaseoftheplaquette. Inordertodosoweproceedasfollows.Theperturbativeseriesisdivergentduetorenormalonsandother,sub-leading, instabilities.4Thismakesanydeterminationof G2 ambiguous,unlesswedefinepreciselyhowtotruncateorhowto approximatetheperturbativeseries.Areasonabhlediefinitionthatisconsistentwith G2 L 4 canonlybegivenif h i∼ QCD theasymptoticbehavioroftheperturbativeseriesisundercontrol.Thishasonlybeenachievedrecently[9],wherethe perturbativeexpansionoftheplaquettewascomputeduptoO(a 35),seetheprevioussection.Theobservedasymptotic behaviorwas in full compliancewith renormalonexpectations,with successive contributionsstarting to divergefor ordersarounda 27–a 30 withintherangeofcouplingsa typicallyemployedinpresent-daylatticesimulations. Extracting the gluon condensate from the average plaquette was pioneered in Refs. [17–20] and many attempts followedduringthenextdecades,see,e.g.,Refs.[21–30].Thesesufferedfrominsufficientlyhighperturbativeorders and,insomecases,alsofinitevolumeeffects.Thefailuretomakecontacttotheasymptoticregimepreventedareliable latticedeterminationof G2 .ThisproblemwassolvedinRef.[10],whichwenowsummarize. h i Truncatingtheinfinitesumattheorderoftheminimalcontributionprovidesonedefinitionoftheperturbativeseries. VaryingthetruncationorderwillresultinchangesofsizeL 4 a4,wherethedimensiond=4isfixedbythatofthe QCD gluoncondensate.Weapproximatetheasymptoticseriesbythetruncatedsum n S (a ) S (a ), where S (a )= (cid:229) p a j+1. (21) P ≡ n0 n j j=0 n0≡n0(a )istheorderforwhich pn0a n0+1isminimal.Wethenobtainthegluoncondensatefromtherelation 36C 1(a ) G2 = G− [ P (a ) S (a )]+O(a2L 2 ). (22) h i p 2a4(a ) h iMC − P QCD C 1(a )isproportionaltotheb -function,andthefirstfewtermsareknown,seeEq.(11).ThecorrectionstoC =1 G− G aresmall.However,theO(a 2)andO(a 3)termsareofsimilarsizes.Wewillaccountforthisuncertaintyinourerror budget. FollowingEq.(22),wesubtractthetruncatedsumS (a )calculatedfromthecoefficientsp ofRef.[9]fromtheMC P n dataon P (a )ofRef.[31]intherangeb [5.8,6.65](b =6/g2),wherea(b )isgivenbythephenomenological MC paramethriziationofRef.[32](x=b 6) ∈ − a=r exp 1.6804 1.7331x+0.7849x2 0.4428x3 , (23) 0 − − − wherer 0.5fm.Thiscorrespondsto(a(cid:0)/r )4 [3.1 10 5,5.5 10 3],coveringmo(cid:1)rethantwoordersofmagnitude. 0 0 − − ≈ ∈ × × 4 Theleadingrenormalonislocatedatu=d/2=2intheBorelplane,whilethefirstinstanton-anti-instanton contribution occursatu=b0= 11Nc/3=11 2. ≫ 0.020 N=32 3.18(a/r )4 0 4.0 N=16 3.26(a/r )4- 4.38(a/r )6 0 0 0.015 3.5 > > <2G 3.0 <2G 0.010 4 0 4 r a 2.5 0.005 2.0 0 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 0 0.002 0.004 0.006 b a4/r4 0 FIGURE 2. Leftpanel: Eq. (22) evaluated using the N =16 and N =32 MC data of Ref. [31]. TheN =32 outer error bars includetheerrorofSP(a ).Theerrorbandisourpredictionfor OG ,Eq.(24). Rightpanel:Eq.(22)timesa4vs.a4(a )/r4fromEq.(23).ThehlineairfitwithslopeEq.(24)istothea4<0.0013r4pointsonly. 0 0 Multiplyingthisdifferenceby36r4/(p 2C a4)givesr4 O plushigherordernon-perturbativeterms.Weshowthis 0 G 0h Gi combinationintheleftpanelofFig.2.ThesmallererrorbarsrepresenttheerrorsoftheMCdata,theoutererrorbars (notplottedforN=16)thetotaluncertainty,includingthatofS .Thispartoftheerroriscorrelatedbetweendifferent P b -values(seethediscussioninRef[10]).TheMCdatawereobtainedonvolumesN4=164 andN4=324.Towards largeb -valuesthephysicalvolumes[Na(b )]4willbecomesmall,resultingintransitionsintothedeconfinedphase.For b <6.3wefindnosignificantdifferencesbetweentheN=16andN=32results.Intheanalysiswerestrictourselves to the more precise N =32 data and, to keep finite size effects undercontrol, to b 6.65. We also limit ourselves tob 5.8toavoidlargeO(a2)corrections.Atverylargeb -valuesnotonlydoesthe≤parametrizationEq.(23)break down≥butobtainingmeaningfulresultsbecomeschallengingnumerically:theindividualerrorsbothof P (a )and MC ofS (a )somewhatdecreasewithincreasingb .However,therearestrongcancellationsbetweenthesehtwioterms,in P particularatlargeb -values,sincethisdifferencedecreaseswitha 4 L 4 exp(16p 2b /33)ondimensionalgrounds − ∼ latt while P dependsonlylogarithmicallyona. MC ThehdaitaintheleftpanelofFig.2showanapproximatelyconstantbehavior.5Thisindicatesthat,aftersubtracting S (a ) fromthecorrespondingMC values P (a ), the remainderscaleslike a4. Thiscan beseen moreexplicitly P MC in the right panel of Fig. 2, where we ploththiis difference in lattice units against a4. The result is consistent with a linearbehaviorbutasmallcurvatureseemstobepresentthatcanbeparametrizedasana6-correction.Theright-most point(b =5.8)correspondstoa 1 1.45GeVwhileb =6.65correspondstoa 1 5.3GeV.Notethata2-termsare − − ≃ ≃ clearlyruledout. Wenowdeterminethegluoncondensate.Weobtainthecentralvalueanditsstatisticalerror G2 =3.177(36)r 4 fromaveragingtheN=32datafor6.0 b 6.65.We nowestimatethesystematicuncertainthies.iDifferentinfini0−te ≤ ≤ volumeextrapolationsofthep (N)data[9]resultinchangesofthepredictionofabout6%.Another6%errorisdueto n includingana6-termornotandvaryingthefitrange.Nextthereisascaleerrorofabout2.5%,translatinga4intounits of r . The uncertaintyof the perturbativelydeterminedWilson coefficientC is of a similar size. This is estimated 0 G as the difference between evaluating Eq. (11) to O(a 2) and to O(a 3). Adding all these sources of uncertainty in quadratureandusingthepuregluodynamicsvalue[33]L =0.602(48)r 1yields MS 0− G2 =3.18(29)r 4=24.2(8.0)L 4 . (24) h i 0− MS ThegluoncondensateEq.(6)isindependentoftherenormalizationscale.However, G2 wasobtainedemploying h i oneparticularprescriptionintermsoftheobservableandourchoiceofhowtotruncatetheperturbativeserieswithina givenrenormalizationscheme.Different(reasonable)prescriptionscaninprinciplegivedifferentresults.Onemayfor 5 Notethatn0increasesfrom26to27atb =5.85,from27to28atb =6.1andfrom28to29atb =6.55.Thisquantizationofn0explainsthe visiblejumpatb =6.1. n = -1 -1 10 ) n = 0 a( n = 1 ]n10-2 n = 2 S n = 3 - n = 5 C n = 7 M -3 >10 n = 9 0 a n = 11 P 1 < n = 14 a [10-4 n = 19 a2 3 n = 24 a n = 29 4 a 0.07 0.1 0.15 0.2 0.3 a a( )/r 0 FIGURE3. Differences P MC(a ) Sn(a )betweenMCdataandsumstruncatedatordersa n+1 (S 1=0)vs.a(a )/r0.The lines(cid:181) ajaredrawntoguidheitheeye.− − instancechoosetotruncatethesumatordersn (a ) n (a )andtheresultwouldstillscalelikeL 4 .Weestimated 0 ± 0 QCD thisintrinsicambiguityofthedefinitionofthegluonpcondensateinRef.[9]asd hG2i=36/(p 2CGa4)√n0pn0a n0+1, i.e.as n (a )timesthecontributionoftheminimalterm: 0 p d G2 =27(11)L 4 . (25) h i MS Upto1/n -correctionsthisdefinitionisscheme-andscale-independentandcorrespondstothe(ambiguous)imaginary 0 partoftheBorelintegraltimes 2/p . InQCDwithseaquarkstheOPEoftheaverageplaquetteoroftheAdlerfunctionwillreceiveadditionalcontribu- tionsfromthechiralcondensatep.Forinstance G2 needstoberedefined,addingterms(cid:181) g (a )myy¯ [34,35].Due m h i h i tothisandtheproblemofsettingaphysicalscaleinpuregluodynamics,itisdifficulttoassesstheprecisenumerical impactofincludingseaquarksontoourestimates G2 0.077GeV4, d G2 0.087GeV4, (26) h i≃ h i≃ whichweobtainusingr 0.5fm[36].WhilethesystematicsofapplyingEqs.(24)–(25)tofullQCDareunknown, 0 ≃ ourmainobservationsshouldstillextendtothiscase.WeremarkthatourpredictionofthegluoncondensateEq.(26) issignificantlybiggerthanvaluesobtainedinone-andtwo-loopsumruleanalyses,rangingfrom0.01GeV4 [3,37] up to 0.02GeV4 [38, 39]. However,these numberswere not extractedin the asymptotic regime,which for a d =4 renormalonintheMSschemeweexpecttosetinatordersn&7.Moreover,weremarkthatinschemeswithoutahard ultravioletcut-off,likedimensionalregularization,the extractionof G2 canbecomeobscuredbythepossibilityof h i ultravioletrenormalons.Independentoftheseconsiderations,allthesevaluesaresmallerthantheintrinsicprescription dependenceEq.(25). Our analysis confirms the validity of the OPE beyond perturbation theory for the case of the plaquette. Our a4- scaling clearly disfavors suggestions about the existence of dimension two condensates beyond the standard OPE framework[25, 40–43]. In factwe can also explainwhyana2-contributionto the plaquettewas foundin Ref. [25]. In the log-logplotof Fig. 3 we subtractsums S , truncatedatdifferentfixedordersa n+1, from P . The scaling n MC continuouslymovesfrom a0atO(a 0)to a4aroundO(a 30).Notethattruncatingatana -indehpeindentfixedorder ∼ ∼ isinconsistent,explainingwhyinthefigureweneverexactlyobtainana4-slope.Forn 9wereproducethea2-scaling ∼ reportedinRef.[25]forafixedordertruncationatn=7.InviewofFig.3,weconcludethattheobservationofthis scalingpowerwasaccidental. THE BINDINGENERGY OFHQET:OPEINPERTURBATION THEORY The OPE of the plaquette is analogous to the OPE of the vacuum polarization (or the Adler function) in position space.Aswe alreadymentioned,theOPE conceptofthefactorizationofscalescanalso beappliedto moregeneral kinematical settings (in particular to cases where some scales are defined in Minkowski spacetime). A prominent exampleisheavyquarkeffectivetheory(HQET).Inthiscasetheterm O ofEq.(1)isreplacedbyanon-perturbative 1 quantity, the so-called heavy quark binding energy L , that cannot behrepiresented as an expectationvalue of a local gaugeinvariantoperator.Weconsidertheself-energyofaheavyquarkintheinfinitemasslimit(inotherwords,the self-energyofastaticsourceinthetripletrepresentation,forothercolorrepresentationsseeRef.[7]),thatisclosely relatedtoL .Wecomputethisquantityincloseanalogytothecaseoftheplaquetteinlatticeregularization. Firstwecomputetheself-energyofthestaticquarkinperturbationtheory(againusingNSPT).Weobtainthisfrom thePolyakovloopinanasymmetricvolumeN3N a4ofspatialandtemporalextentsN aandN a,respectively: S T S T 1 (cid:229) 1 N(cid:213)T−1 L(N ,N )= Tr U , (27) S T NS3 x 3 "x4/a=0 x,4# or,morespecifically,fromitslogarithm P(N ,N )= lnhL(NS,NT)ipert = (cid:229) c (N ,N )a n+1. (28) S T n S T − aNT n 0 ≥ Again,Ux,m denotesa gaugelink and x=(x,x4) L E are Euclideanlattice points.We definethe energyof a static ∈ sourceanditsperturbativeexpansioninafinitespatialvolume, d m(N )= lim P(N ,N )= 1 (cid:229) c (N )a n+1(1/a), where c (N )= lim c (N ,N ), (29) S S T n S n S n S T NT→¥ an 0 NT→¥ ≥ anditsinfinitevolumelimit ¥ d m= lim P(N ,N )= 1 (cid:229) c a n+1(1/a) with c = lim c (N ). (30) S T n n n S NS,NT→¥ an=0 NS→¥ WenowconstructthepurelyperturbativeOPEinafinitevolume.ForlargeN ,wecanwrite[a 1 (N a) 1]: S − S − ≫ ¥ d m(N )= 1 (cid:229) c fn(NS) a n+1(1/a)+O 1 (31) S a n− N N2 n 0(cid:18) S (cid:19) (cid:18) S(cid:19) ≥ = 1 (cid:229) c a n+1(1/a) 1 (cid:229) f a n+1[1/(N a)]+O 1 . a n −N a n S N2 n 0 S n 0 (cid:18) S(cid:19) ≥ ≥ Note the similarity between this equationand Eq. (12). f (N )=(cid:229) n f(j)lnj(N ) is again a polynomialin powers n S j=0 n S ofln(N ),andthe f(j) areknowncombinationsofb -functioncoefficientsandlowerorderinfinitevolumeexpansion S n coefficientsc ,k<n.Themaindifferencewithrespecttothegluoncondensateisthatthepowercorrectionscaleslike k 1/N ,insteadof1/N4,andthatnowtheWilsoncoefficientistrivial.This1/N scalingalsomeansthattherenormalon S S S behaviorwillshowupatlowerordersnoftheperturbativeexpansion.Fittingthec (N )datatothisequation,thefirst n S 20c coefficientsweredeterminedinRefs.[6–8]andconfrontedwiththerenormalonexpectations:6 n cnn→=¥ Nm(cid:18)2bp0(cid:19)n G (Gn(+1+1+b)b)"1+(nb+s1b)+(nb+2(cid:0)bs)21(/n2+−bs−2(cid:1)1)+···#. (32) 6 HerewedeviatefromRefs.[6–8]inthedefinitionoftheconstants2,seeEq.(15). 9 unsmeared 8 smeared LO 7 NLO 1.95 NNLO ) 6 1 1.90 - NNNLO n c 5 1.85 n ( / n 4 1.80 c 3 1.75 8 10 12 14 16 18 2 1 2 4 6 8 10 12 14 16 18 n FIGURE 4. Ratios cn/(ncn 1) of the unsmeared (squares) and smeared (circles) triplet static self-energy coefficients cn in comparison to the theoretical−prediction Eq. (33), truncated at different orders in 1/n. In the inset we magnify the asymptotic region. Inthelatticeschemethenumericalvaluesoftheabovecoefficientsreadbs =1.36095381(11)andb2(s2/2 s )= 1 1 − 2 5.34(51). As expected, the above expansion converges much faster in 1/n than Eq. (13). Calculating the ratio of subsequentperturbativecoefficientsgives c 1 b b bs 1 1 n = 0 1+ 1 + 2b2s +b(b 1)s +O . (33) c n 2p n− n2 n3 2 − 1 n4 n−1 (cid:26) (cid:18) (cid:19)(cid:27) (cid:2) (cid:3) We remarkthatEq.(14)includestheeffectofthenon-trivialWilsoncoefficientC . Therefore,justsettingd =1in G thatequationdoesnotresultinEq.(33)above. InFig.4wecomparethedatatoEq.(33)fortwodifferentlatticediscretizationsofthecovarianttemporalderivative, whichamountsto“smearing”ornotsmearingtemporalgaugelinks.Thisshouldnotaffecttheinfraredbehaviorand, indeed,beyondthefirstfewordersthedifferencebecomesinvisible.Theasymptoticbehavioroftheperturbativeseries duetotherenormalonisconfirmedinfullgloryforn&8,provingtheexistenceoftherenormalonbehaviorinQCD beyondanyreasonabledoubt.Againtheincorporationoffinitevolumeeffectswasdecisivetoobtainthisresult. THE BINDINGENERGY OFHQET:OPEBEYONDPERTURBATION THEORY The methods used for the gluon condensate can also be applied to other observables. We now consider the non- perturbativeevaluationoftheenergyofastatic-lightmesononthelatticeanditsOPE: E (a )=E (a )+L +O(aL 2 ). (34) MC pert QCD L isthenon-perturbativebindingenergyandE (a )=d m(a )istheself-energyofthestaticsourceinperturbation pert theory,i.e.Eq.(30).InHQETthemassoftheBmesonisgivenasm =m +L +O(1/m ),wherem isthe B b,pert b b,pert b-quarkpolemassmOS,whichsuffersfromthesamerenormalonambiguityasd m[44–46]. b 0.4 ) (a 0.3 m Sd a - 0.2 ) a( C M E 0.1 MS 2 a MS 3 latt 0 0 0.05 0.10 0.15 0.20 0.25 a a( )/r 0 (FMIGSU3)RloEop5s. anadL tr=unacEaMteCd−atathSed mrevssp.eac/tirv0e.mThineimsuamloarSddemrs.ETq.h(e3c6u)rwveassaarlesofictsontoveLrtae+dicnato2/trh02e.MSschemeattwo(MS2)andthree The perturbativeexpansionof ad m(a )=(cid:229) c a n+1 was obtained in Refs. [6, 7] up to O(a 20), see the previous n n section.Itsintrinsicambiguity d L =√n0cn0a n0+1=0.748(42)L MS=0.450(44)r0−1 (35) wascomputedinRefs.[7,8].MCdataforthegroundstateenergyE ofastatic-lightmesonwiththeWilsonaction MC canbefoundinRefs.[47–49]. Truncatingtheinfinitesumind mattheorderoftheminimalcontributionprovidesonedefinitionoftheperturbative series.Aswedidfortheplaquette,weapproximatetheasymptoticseriesbythetruncatedsum Sd m(a )≡ a1n0(cid:229) (a )cja j+1, (36) j=0 where n0 ≡n0(a ) is the order for which cn0a n0+1 is minimal. While for the gluon condensate we expected an a4- scaling(seetherightpanelofFig.2),foraL =aEMC aSd m(a )weexpectascalinglinearina.Comfortingenough thisiswhatwefind,uptotheexpectedaO(aL 2 )di−scretizationcorrections,seeFig.5.Subtractingthepartialsum QCD truncatedatordersn (a )=6fromtheb [5.9,6.4]data,weobtainL =1.55(8)r 1fromsuchalinearplusquadratic 0 ∈ 0− fit,whereweonlygivethestatisticaluncertainty.Theerrorsoftheperturbativecoefficientsarealltiny,whichallows ustotransformtheexpansionad m(a )intoMS-likeschemesandtocomputeL accordingly.We definetheschemes MS and MS by truncating a (a 1)=a (1+d a +d a 2+...) exactly at O(a 3) and O(a 4), respectively. The 2 3 MS − 1 2 d are knownfor j 3 [7, 8]. We typicallyfindnMSi(a )=2,3andobtainL 2.17(8)r 1 andL 1.89(8)r 1, j ≤ 0 MSi ∼ 0− ∼ 0− respectively,seeFig.5.Weconcludethatthechangesduetotheseresummationsareindeedofthesized L 0.5r 1, ∼ 0− addingconfidencethatourdefinitionoftheambiguityEq.(35)isneitheragrossoverestimatenoranunderestimate. Fortheplaquette,whereweexpectnMS 7,wecannotcarryoutasimilaranalysis,duetotheextremelyhighprecision thatisrequiredtoresolvethediffere0nce∼sbetweenS (a )and P (a ),whichlargelycancelinEq.(22). P MC h i

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.