ebook img

Phase transitions induced by variation of invasion rates in spatial cyclic predator-prey models with four or six species PDF

0.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Phase transitions induced by variation of invasion rates in spatial cyclic predator-prey models with four or six species

Phasetransitions induced by variationofinvasionrates inspatialcyclicpredator-prey models withfourorsixspecies Gyo¨rgy Szabo´ and Attila Szolnoki ResearchInstituteforTechnicalPhysicsandMaterialsScienceP.O.Box49, H-1525Budapest, Hungary Cyclicpredator-preymodelswithfourorsixspeciesarestudiedonasquarelatticewhentheinvasionrates arevaried. Itisfound that thecyclicinvasions maintainaself-organizing patternaslong asthedeviation of theinvasionrate(s)fromauniformvaluedoesnotexceedathresholdvalue. Forlargerdeviationsthesystem exhibitsacontinuousphasetransitionintoafrozendistributionofodd(oreven)labelspecies. PACSnumbers:87.23.Cc,89.75.Fb,05.50.+q 8 0 Spatial predator-prey models with cyclic competition ex- sensitivity is found when considering the effect of different 0 hibitseveralpeculiarfeaturesthatcanberelevantinbiologi- (species-specific)invasionrates. 2 cal, chemicalandecologicalsystems[1, 2, 3, 4, 5]. Inthese When the simplest (n = 3) case is considered, the varia- n systems species are distributed on the sites of a lattice and tionofinvasionratesmodifiesthecompositionofthecentral a the predators’ offspring can be substituted for the neighbor- (stationary)solution [4]. Paradoxically,if one of the species J ing prey. More precisely, for the simplest cyclic n-species isfedmoreeffectivelybyincreaseofitsinvasionratethenits 8 systems (n ≥ 3) a randomly chosen individual of species predatorwillbenefitfromthismodification[11,12]. Inother 1 i can occupy the neighboring site of species i + 1 mod n words, ifthe largestinvasionrate isfromspecies0to 1then ] (i = 0,1,...,n−1)with an invasionrate independentofi. species 2 (the predatorof 0) will have the highestdensity in E On a one-dimensionallattice (d = 1) this evolutionary pro- thecentralstationarystate. Thismean-fieldpredictioniscon- P cess yields growing domains (of sites occupied by the same firmed by MC simulations on two-dimensionallattices. The o. species)ifn<5;otherwisethesystemdevelopsintoafrozen unusual response of the system is related to the indirect in- i pattern[6]. Forhigher-dimensionallatticestheuniforminva- teractionmediatedthroughthefoodweb. Forexample,ifthe b sionratemaintainsaself-organizingpatternifthesystemsize densityofspecies0isincreasedbyanyexternaleffectthenit - q N goestoinfinityandthenumberofspeciesdoesnotexceed yieldsadecreaseinthedensityofspecies1, whichconsume [ a threshold value dependent on d, that is, n < nc(d) [e.g., lessofspecies2, andso on. Fora cyclicfoodwebwith odd 1 nc(d = 2) = 14] [7]. In this case the self-organization is numberofspeciesthismechanismresultsinanegativefeed- v maintained by the unceasing motion of interfaces separating back,inagreementwiththementionedresultsinthestation- 5 a predatorfrom its prey and the species are presentwith the arystate. Forevennumberofspecies,however,thefeedback 5 sameaveragedensity(ρi = 1/n)independentlyoftheinitial becomespositiveandmayyieldtheextinctionoftheodd(or 8 statecontainingallspecies. even)labelspecies. 2 . The mean-field analysis of these systems indicates differ- Using mean-field analysis, pair approximation, and MC 1 enttypesofsolutions[4]. Besidestheabovementionedsym- simulations,thisparityeffectwasdemonstratedbySatoetal. 0 8 metric solution (ρi = 1/n) these models have n homoge- [13]whoconsideredacyclicpredator-preymodelwhereeach 0 neous solutions (e.g., ρ0 = 1 and ρ1 = ... = ρn−1 = 0) invasionrateischosentobeunityexceptingtherate(α)from : whichare unstableagainsttheinvasionofthe corresponding species0 to 1. Accordingto theirresults for evenn the odd v predator. Atthesame timethissystemexhibitsacontinuous label species die out if α < 1, while the even label species i X setofoscillatorysolutionssatisfyingconservationlaws, e.g., becomeextinctifα>1. Hereα=1denotesasingularpoint ar Ptioniρ,ias=a1firasntdstQepitρoie=xtecnodnsthtaentcl[a4s]s.icTalhempeaainr-fiapelpdrotxhiemoray- fwohrteurneattheelys,ytmhemaeuttrhicorssolduitdionnot(ρsitu=dy1t/hne)crleomseavinicsisntiatbyleo.fUthnis- [3,8],confirmstheexistenceofboththesymmetricandthen singularpointintheirMCsimulations. homogeneoussolutions. Instead of the periodic oscillations, Now we show that, instead of sudden changes in ρi at however,thepairapproximationpredictsgrowingoscillations α = 1,thesystemsexhibittwoconsecutivephasetransitions endinginoneofthehomogeneousstatesduetothenumerical referringto the existence of an n-species state with continu- rounding or noise. For the simplest case, called the evolu- ouslyvaryingcomposition. Wealsostudythecriticalbehav- tionaryrock-scissors-papergame(n = 3),thelatterbehavior iorofthephasetransitionseparatingthefrozenandcoexisting was observedon Bethe lattices of degree z ≥ 6 in the limit states. N → ∞ [9, 10] (while a limit cycle is reported for z = 3 In order to improve accuracy, first we consider the sym- or4). Therealbehavior,observedbymeansofMonteCarlo metricversionofthemodelsuggestedbySatoetal. [13]for (MC) simulations, on a square lattice (for n = 3) could be n = 4. It should be mentioned that the qualitative results reproducedbythemoresophisticatedfour-siteapproximation obtainedfor the symmetric modelagree with those valid for determiningtheprobabilityofeachpossibleconfigurationon the original model as discussed later. We assume that each the 2×2 cluster of sites [3, 9]. The failure of the pair ap- site x of a square lattice is occupied by a single individual proximationforspatialmodelsindicatesthattheirbehavioris belonging to one of the n species and their spatial distribu- sensitivetothedetailsofthelatticestructure.Similarrelevant tion is described by a set of site variables s = i where x 2 i = 0,...,(n−1)referstothelabeloftheresidentspecies. 0.5 Thesystemevolutionisgovernedbytherepetitionofinvasion between two neighboringsites chosen at random if the sites i=0,2 areoccupiedbyapredator-preypair[i.e.,(s ,s )→(s ,s ) 0.4 x y x x ifs isthepredatorofs ].Thespecies-specificinvasionprob- x y abilitiesareproportionaltotheinvasionratesdenotedinFig.1 0.3 and backward invasions are forbidden. Notice that if a suit- ρi ablenewtimescaleischosenforα > 1thissystembecomes equivalent to a model with α < 1 if the species labels are 0.2 increasedby1. 0.1 i=1,3 0 1 α 0.00.90 0.95 1.00 1.05 1.10 α 3 1 FIG.2: Averagedensityofspeciesasafunctionofαcharacterizing α 1 theinvasion ratesfromtheevenlabel species asdenoted inFig.1. 2 Diamonds and squares indicate MC results while the dashed line showsthepredictionofthepairapproximation[13]fortheevenla- belspecies. Theresultsof2×2-and3×3-siteapproximationsare illustratedbydash-dottedandsolidlines. FIG.1: Invasionratesbetweenthepredator-preypairsforthefour- speciescyclicfoodweb. see AppendixCin Ref.[3]). Clearly, theanalyticalapproxi- MCsimulationsareperformedfordifferentvaluesofαon mationspredictmean-fieldtypetransitionsandthenumerical a square lattice with periodic boundaryy conditions and the valuesforthe first critical pointare: α(4p) = 0.9267(2)and linear size L of the system is varied from 600 to 4000. The c1 largesystem size is chosento avoid artifacteffectslike trap- αc(91p) =0.9252(1). ping to an absorbingstate as a consequenceof small system The rigorous analysis of the MC data in the vicinity of size. Duringonetimeunit,calledaMCstep(MCS),eachsite the first transition point indicates critical behavior. Namely, hasachanceonceonaveragetobeinvadedandtoinvadeone the density of the vanishing species, as an order parameter, oftheneighboringsites. Thesystemisstartedfromarandom follows a power law behavior when approachingthe critical initialstateandafterasuitablethermalizationtimett theav- point,thatis, ρ0 = ρ2 ≃ (α−αc1)β whereβ = 0.58(1)as eragedensityofspecies(ρ )isdeterminedbyaveragingover illustrated in Fig. 3. Similar behavior characterizes systems i asamplingtime(t ). Thethermalizationandsamplingtimes belongingtothedirectedpercolation(DP)universalityclass. s (tt ≃ts >∼5τrwhereτristherelaxationtime)arevariedfrom Infact,whenthetransitionpointisapproached,theextinction 10000to200000MCSs. Clearly,thelargestvaluesofL,t , ofthefour-speciescyclicphaseforsufficientlylargetimeand t and t are used in the close vicinity of the transition points lengthscalesbecomesanalogoustotheeliminationofinfected s wheretherelaxationtime,correlationlength,andfluctuations sitesinthecontactprocess[14]. diverge algebraically. Due to the translational symmetry in The universal behavior of the directed percolation uni- theinvasionrates,theodd(even)labelspecieshavethesame versality class [15] occurs typically on homogeneous back- density,thatis,ρ =ρ andρ =ρ =1/2−ρ . Henceforth grounds[8]. Inthepresentcase,however,theextinctionpro- 0 2 1 3 0 ouranalysiswillbefocusedonthelimitN →∞. cessleavesaninhomogeneous,frozenpatternbehind.Conse- Accordingto the MCresults(see Fig. 2), two consecutive quentlythissystemhasinfinitelymanyabsorbingstates. Con- criticaltransitionscan beobservedforα = 0.9332(1)and sideringamuchsimplersystem,Jensen[16]hasdemonstrated c1 α = 1/α . For α < α the simulationsend in a frozen thatinsuchsystemsthenon-equilibriumphasetransitionmay c2 c1 c1 spatial distribution of species 1 and 3. Clearly, the even la- alsobelongtothedirectedpercolationuniversalityclass. belspecies(0and2)formafrozenpatterninthefinalstateif The present MC results give another example where the α > α . Both typesof frozenpatterncan be consideredas universalbehavioris not affected by some types of inhomo- c2 aninfinitelydegenerateabsorbingstatefromwhichthesystem geneities. Inotherwords,theextinctionprocessiscontrolled cannotescape.Withintheintermediateregionthefourspecies byabackgroundthatcanbeconsideredhomogeneousonsuf- coexistandinvadeeachothercyclically.Inthisphase,theav- ficiently large time and length scales. To confirm this state- eragedensityofspeciesvariesmonotonicallywithαasillus- ment, we have also determined the time dependence of the tratedinFig.2. Thisfeatureiswellreproducedbygeneralized densityofthevanishingspeciesatthefirstcriticalpoint. Itis mean-field techniqueswhere we have determinedthe proba- wellknownthatforthetwo-dimensional,directedpercolation bilityofeachpossibleconfigurationon2×2-or3×3-siteclus- universalityclass the orderparametervanishesalgebraically, tersonasquarelattice(forabriefdescriptionofthismethod that is, ρ (t) = ρ (t) ≃ t−θ where θ = 0.45(1) [17]. The 0 2 3 one invasion rate differs from 1. Following the notation of Sato et al. [13], we havestudied the system where the inva- sionratefromspecies0to1(denotedbyα)isvariedwhilethe otherratesremainunity.Here,intheabsenceofthepreviously 10-1 mentionedsymmetryall the speciesdensitiesbecomediffer- entwithin thefour-speciesphase existingif α < α < α c1 c2 [here α = 0.8716(1) and α = 1.145(1)]. When α is ρ c1 c2 c1 approached from above, the densities of even label species decreasesimultaneously,i.e.,ρ ,ρ ≃(α−α )β (ρ >ρ ), 0 2 c1 0 2 suggesting that the critical behavior belongs to the DP uni- versality class too. An asymmetric composition can also be observedintwo-strategyfrozenpatterns,namely,ρ > ρ if 1 3 α < α , and ρ > ρ if α > α . Similar behavioris ex- c1 2 0 c2 10-2 pectedwhenalltheinvasionratesaretuned.Therobustnessof 10-4 10-3 10-2 10-1 thisuniversalbehaviorwasconfirmedforthosesystemswhere α−α c a slightmixingisintroducedbyallowingsite exchangewith alowprobabilitybetweenneighboringneutralspecies(e.g.,0 FIG.3:Log-logplotofthevanishingdensityofspeciesvs.α−αc1. and2or1and3)[18,19]. Thedashedlinewithaslopeof0.58indicatesthepowerlawbehavior Inadditiontothefour-speciessystems,wehavealsostud- characteristic of the directed percolation universality class in two- iedwhathappensinasix-speciescyclicpredator-preymodel dimensionalsystems. if the invasion rate α from species0 to 1 is varied while the others are chosen to be unity. In the spirit of the parity law [13], the cyclic food web mediates an indirect effect yield- MCdata(seeFig.4)justifythisexpectation. ingthebehaviordescribedabove. MCsimulationshavecon- firmed that this system evolvesfrom the random initial state to a frozen pattern consisting of odd (even) label species if α < α = 0.8971(3)[α > α = 1.1196(3)]. Within the c1 c2 intermediate phase (α < α < α ) all six species survive c1 c2 and their densities vary similarly to those plotted in Fig. 2. 10-1 Accordingtoourpreviouspaper[20],similarbehaviorisex- ) pectedforn = 6if someweak mixingisallowed, while the ρ (t unusualbehaviorwithinarangeofthestrengthofmixingfor n=8and10raisesfurtherquestions. Insummary,thepresentinvestigationrevisestheparitylaw deduced originally from the results of the pair approxima- tionforspatialcyclicpredator-preymodelswithevennumber of species. The more sophisticated levels of the dynamical mean-fieldapproximationandalsotheMCsimulationsshow 10-2100 101 102 103 104 thata(noisy)cyclicinvasioniscapableofmaintainingastate in which all the species survive with a composition depend- t [MCS] ing on the invasion rates if the unilateral deviation from the uniform rate does not exceed a threshold value. When the FIG.4: Log-logplotfor thetimedependence of thedensity ofthe invasionrate(s)isvariedthesystemexhibits(directedperco- vanishing speciesatthecriticalpoint (L = 3000). Fluctuationsin lationtype)criticalphasetransitionsintofrozenstateswhere ρ0(t)=ρ2(t)aresuppressedbyaveragingoveratimewindowwith onlytheodd(oreven)labelspeciesarepresent. atypicalwidthoft/6. Thedashedline(withaslopeof-0.45)illus- tratesthepowerlawbehaviorcharacteristicofthedirectedpercola- tionuniversalityclass. Acknowledgments The existence of the four-speciesphase (and phase transi- tions) is independentof the symmetricalinvasionrates illus- trated in Fig. 1. According to the MC simulations the four- This work was supported by the Hungarian National Re- species phase is also observed for those models where only searchFund(GrantNo. T-47003). [1] R.DurrettandS.Levin,Theor.Pop.Biol.53,30(1998). (2002). [2] C.R.JohnsonandI.Seinen,Proc.Roy.Soc.Lond.B269,655 [3] G.Szabo´ andG.Fa´th,Phys.Rep.446,97(2007). 4 [4] J. Hofbauer and K. Sigmund, Evolutionary Games and Pop- [12] M.FreanandE.D.Abraham,Proc.R.Soc.Lond.B268,1323 ulation Dynamics (Cambridge University Press, Cambridge, (2001). 1998). [13] K. Sato, N.Yoshida, andN. Konno, Appl. Math. Comp. 126, [5] A.TraulsenandJ.C.Claussen,Phys.Rev.E70,046128(2004). 255(2002). [6] L.Frachebourg,P.L.Krapivsky,andE.Ben-Naim,Phys.Rev. [14] T. M. Liggett, Interacting Particle Systems (Springer-Verlag, E54,6186(1996). NewYork,1985). [7] L.FrachebourgandP.L.Krapivsky,J.Phys.A31,L287(1998). [15] P.Grassberger,Z.Phys.B47,365(1982). [8] J. Marro and R. Dickman, Nonequilibrium Phase Transitions [16] I.Jensen,Phys.Rev.Lett.70,1465(1993). in Lattice Models (Cambridge University Press, Cambridge, [17] H.Hinrichsen,Adv.Phys.49,815(2000). 1999). [18] G.Szabo´,J.Phys.A:Math.Gen.38,6689(2005). [9] G.Szabo´,A.Szolnoki,andR.Izsa´k,J.Phys.A:Math.Gen.37, [19] G.Szabo´ andG.A.Sznaider,Phys.Rev.E69,031911(2004). 2599(2004). [20] G. Szabo´, A. Szolnoki, and G. A. Szanider, Phys. Rev. E 76, [10] K. Sato, N. Konno, and T. Yamaguchi, Mem. Muroran Inst. 051921(2007). Tech.47,109(1997). [11] K.Tainaka,Phys.Lett.A176,303(1993).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.