ebook img

Phase transitions in a system of hard rectangles on the square lattice PDF

0.58 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Phase transitions in a system of hard rectangles on the square lattice

Phase Transitions in a System of Hard Rectangles on the Square Lattice Joyjit Kundu and R. Rajesh ∗ † The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India (Dated: May 19, 2014) 4 1 Thephasediagramofasystemofmonodispersedhardrectanglesofsizem×mkonasquarelattice 0 is numerically determined for m=2,3 and aspect ratio k=1,2,...,7. We show theexistence of a 2 disorderedphase,anematicphasewithorientationalorder,acolumnarphasewithorientationaland partial translational order, and a solid-like phase with sublattice order, but no orientational order. y Theasymptoticbehaviorofthephaseboundariesforlargek aredeterminedusingacombinationof a M entropic arguments and a Bethe approximation. This allows us to generalize the phase diagram to largermandk,showingthatfork≥7,thesystemundergoesthreeentropydrivenphasetransitions withincreasingdensity. Thenatureofthedifferentphasetransitionsareestablishedandthecritical 6 exponentsfor thecontinuous transitions are determined using finitesize scaling. 1 ] PACSnumbers: 64.60.De,64.60.Cn,05.50.+q h c e I. INTRODUCTION densitycolumnarphase. Thetransitioniscontinuousfor m m = 2 [24–28], and first order for m = 3 [25]. When - Thestudyofentropy-drivenphasetransitionsinasys- m , keeping k fixed, the lattice model is equiva- t → ∞ a tem of long hard rods has a long history dating back to lent to the model of oriented rectangles in two dimen- st Onsager’s demonstration [1] that the three dimensional sionalcontinuum,alsoknownastheZwanzigmodel[29]. t. systemundergoesatransitionfromanisotropicphaseto For oriented lines in the continuum (k →∞), a nematic a an orientationally ordered nematic phase as the density phase exists at high density [22]. The only theoretical m of the rods is increased [1–5]. Further increase in den- results that exist are when m = 1 and k = 2 (dimers), - sity may result in a smectic phase that partially breaks for which no nematic phase exists [30–33], k 1, when d ≫ translational symmetry, and a solid phase [6, 7]. In two the existence of the nematic phase may be proved rigor- n o dimensional continuum space, the continuous rotational ously[19],andanexactsolutionforarbitraryk onatree c symmetry remains unbroken but the system undergoes like lattice [5, 23]. [ a Kosterlitz-Thouless type transition from a low-density Less is known for other values of m and k. Simula- 3 phase with exponential decay of orientational correla- tions of rectangles of size 2 5 did not detect any phase × v tions to a high-density phase having quasi long range transitionwithincreasingdensity[34],whilethoseofpar- 0 order [8–14]. Experimental realizations include tobacco allelepipeds on cubic lattice show layered and columnar 9 mosaic virus [15], liquid crystals [3], carbon nanotube phases, but no nematic phase [35]. In general, numeri- 5 gels [16], and brownian squares [17]. The phenomenol- calstudies oflargerectanglesareconstrainedbythe fact 5 ogy is, however, much less clear when the orientations that it is difficult to equilibrate the system at high den- . 1 are discrete, and the positions are either on a lattice or sities using Monte Carlo algorithms with localmoves, as 0 inthecontinuum,wheneventheexistenceofthenematic thesystemgetsjammedandrequirescorrelatedmovesof 4 phase has been convincingly seen in simulations only re- several particles to access different configurations. 1 cently [18, 19]. : Inadditiontobeingthelatticeversionofthehardrods v Consider hard rectangles of size m mk on a two- problem, the study of lattice models of hard rectangles i dimensionalsquarelattice whereeachre×ctangleoccupies X is useful in understanding the phase transitions in ad- m (mk) lattice sites along the short (long) axis. The r sorbed monolayers on crystal surfaces. The (100) and a limiting cases when either the aspect ratio k = 1 or (110) planes of fcc crystals have square and rectangular m=1 are better studied. When m=1 and k 7, there symmetryandmaybetreatedwithlatticestatisticsifthe ≥ are, remarkably, two entropy-driven transitions: from a adsorbate-adsorbateinteractionisnegligiblewithrespect low-density isotropic phase to an intermediate density to the periodic variation of the corrugation potential of nematic phase, and from the nematic phase to a high- the underlying substrate [36]. For example, the critical density disordered phase [18, 20]. While the first transi- behavior of a monolayer of chlorine (Cl) on Ag(100) is tion is in the Ising universality class [21, 22], the second well reproduced by the hard square model (k = 1) and transitioncouldbenon-Ising[20],anditisnotyetunder- the highdensity c(2 2)structureof the Cl-adlayermay stood whether the high density phase is a re-entrantlow × be mapped to the high density phase of the hard square densityphaseoranewphase[20,23]. Whenk =1(hard problem [37]. Structures such as p(2 2), c(2 2) and squares), the system undergoes a transition into a high × × (2 1)areorderedstructures. Latticegasmodelwithre- × pulsiveinteractionuptoforthnearestneighborhasbeen used to study the phase behavior of selenium adsorbed ∗ [email protected] on Ni(100) [38]. The results in this paper show that dif- † [email protected] ferentphaseswithorientationalandpositionalordermay 2 brftameoiorseoroasdALnelodsapatmbyctlohtnltbalawaaiaylcsivyemdmnesetieotisomodcipfbrnfsoeeenbgdhoreayqsnfeoaneulfrolsdoiduanrnolosplesiyceftdyaaodahsrsrhrttta[eiataie4vrcormdd1elldaes]so,osrtlcbeetrto[oivcobt3crnatea9eemalit,,nmneego4gxsdaodr0lcis[enees]l4a,sulco2mlrlsaait,aeisnooloyt4tsddenieo3cder.]uelm.fsspans[clohd3lordsae4fiesbr]iesdnlesatiaffndtoohndeirfaedrigeethgsnhnraeeatterlnamlrfdy---- (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) Before evaporation After evaporation shaped particles. The study of these models also have (a) been of continued interest in Statistical Physics as min- lgisaaMeamhffonntoaIregdatninpciultctttehleieematsvmsthreCrosi[otsd[2aai4umne0rr7pdll,eiso,ainse5tp4doafdu1oe8eel]dgrrs]si.n,oyc[atrrci3Twhnniil4btueghdeh]ed.emdtmesahhqdeseiwauanqltraiphuidtrndthaaegerrractdeelanlastcuritdtrl[satao4tinndi4cienmsger–i(sl4tpmeSmi6ol[ee]4omnc,mv9=.sohe].e,dIsen1Ixett.t)TlrahigWhpaaaaoertnnnenogdwdbsleoeialffitoffebsshnmescev[eri5teeera0orvnnrli]nyett--, (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) four distinct phases at different densities: isotropic, ne- Before Flip After Flip (b) matic, columnar, and sublattice phases. These phases, suitableorderparameterstocharacterizethem,andother FIG.1. (Color online) An illustration of theMonte Carlo al- thermodynamic quantities are defined in Sec. III. From gorithm. (a) Configurations before andafter theevaporation extensive large scale simulations, we determine the rich of horizontal rectangles with head on a particular row (de- phase diagram for m = 2,3, and k = 1,...,7. The noted by an arrow). Sites denoted by cross symbols cannot phasediagramform=2 isdiscussedinSec.IV.We find beoccupiedbyhorizontalrectanglesinthenewconfiguration. that all transitions except the isotropic-columnar tran- (b) An example of the flip move for rectangles of size 2×6. sition for k = 6 are continuous. The critical exponents A rotatable or flippable plaquette of size 6×6, consisting of and universality classes of the continuous transitions are three aligned rectangles, is shown by the dashed line. After determined. Section V contains the details about the theflip move, thehorizontal rectangles become vertical. phase diagram and the nature of the phase transitions for m = 3. In Sec. VI, we use a Bethe approximation and estimates of entropies for the different phases to de- moves that was introduced in Refs. [20, 51] to study the termine the phase boundaries for large k, allowing us problem of hardrods (m=1). We describe the algorithm to generalize the phase diagram to arbitrary m and k. below. Givenavalidconfigurationofrectangles,inasin- In particular, it allows us to take the continuum limit gle move, a row or a column is chosen at random. If a m , thus obtaining predictions for a system of ori- → ∞ rowischosen,then allhorizontalrectangleswhose heads ented rectangles in the continuum. Sec. VII contains a (bottom,leftcorner)lieinthatrowareremoved,leaving summary and a discussion of possible extensions of the the rectangles with heads in other rows untouched. The problem. emptiedrownowconsistsoftwokindsofsites: forbidden sites that cannot be occupied with horizontal rectangles duetothepresenceofverticalrectanglesinthesamerow II. THE MODEL AND MONTE CARLO orduetorectangleswithheadsintheneighboring(m 1) ALGORITHM − rows,and sites that may be occupied by horizontalrect- angles in a valid configuration. An example illustrating We define the model on a square lattice of size L L the forbidden sites is shown in Fig. 1(a). It is clear that × with periodic boundary conditions. Consider a mono- the sites that may be occupied are divided into intervals dispersed system of rectangles of size m mk such that ofcontiguous empty sites. The problemof occupationof × theaspectratioisk. Arectanglecanbeeitherhorizontal theemptiedrowwithanewconfigurationnowreducesto orvertical. Ahorizontal(vertical)rectangleoccupiesmk the problem of occupying the empty intervals. However, sitesalongthex(y)-axisandmsitesalongthey(x)-axis. theemptyintervalsmaybeoccupiedindependentofeach No two rectangles may overlap. An activity z = eµ is other,astheoccupationofoneisnotaffectedbythecon- associated with each rectangle, where µ is the chemical figurationofrectangles in the remaining ones. Thus, the potential. re-occupation of the emptied row reduces to a problem We study this system using constant µ grand canon- of occupying a one dimensional interval with rods. This ical Monte Carlo simulations. The algorithm that we problem is easily solvable and the equilibrium probabili- implementisanadaptationofthealgorithmwithcluster ties of each new configuration may be easily calculated. 3 WerefertoRefs.[20,51]forthecalculationoftheseprob- horizontal (vertical), then their heads, or bottom left abilities. If a column is chosen instead of a row, then a corners, preferably lie in rows (columns) that are sep- similar operationis performed for the verticalrectangles aratedbym. Thus,itbreaksthetranslationalsymmetry whose heads lie in that column. in the direction perpendicular to the orientationbut not In additionto the aboveevaporation-depositionmove, parallel to the orientation. Clearly, there are 2m sym- we find that the autocorrelation time is reduced con- metric C phases. In this phase the rectangles can slide siderably by introducing a flip move. In this move, a muchmorealongone lattice direction. The fourthphase site (i,j) is picked at random. If it is occupied by the is the crystalline sublattice (S) phase with no orienta- head of a horizontal rectangle, then we check whether tional order [see Fig. 2(f)]. We divide the square lattice (i,j+m),(i,j+2m),...,(i,j+[k 1]m) sites are occu- into m2 sublattices by assigning to a site (i,j) a label (i − pied by the heads of horizontal rectangles. If that is the mod m)+m (j mod m). The sublattice labeling for × case, we call this set of k aligned rectangles a rotatable the casem=2 is showninFig.2(a). Inthe S phase,the plaquette of horizontal rectangles. In the flip move such heads of the rectangles preferablyoccupy one sublattice, a rotatable plaquette of size mk mk, containing k hor- breakingtranslationalsymmetryinboth the directions. × izontalrectangles,is replacedby a similar plaquette of k From the symmetry of the system we would expect verticalrectangles. Anexampleoftheflipmoveisshown up to 7 phases. The orientational symmetry could be inFig.1(b). If(i,j)is occupiedby the headofa vertical presentorbrokenwhilethetranslationalsymmetrycould rectangleanda rotatableplaquette ofverticalrectangles beunbroken,brokenalongonlyoneorbothx-andy-di- is present, then it is replacedby a plaquette of k aligned rections. If the orientational symmetry is broken, then horizontal rectangles. A Monte Carlo move corresponds thetranslationalsymmetrycouldbebrokeneitherparal- to 2L evaporation–deposition moves and L2 flip moves. lelorperpendicular tothe preferredorientations. Outof Itiseasytocheckthatthealgorithmisergodicandobeys the 7 possibilities, we do not observe (i) a phase with no detailed balance. orientational order but partial translational order, (ii) a Weimplementaparallelizedversionofthe abovealgo- phasewithorientationalorderandcompletetranslational rithm. In the evaporation-deposition move, we simulta- order (iii) a smectic like phase in which orientationalor- neously update all rows that are separated by m. Once deris presentandtranslationalsymmetry parallelto the allrowsareupdatedinthismanner,the columnsareup- orientation is broken. dated. We also parallelize the flip move. The lattice is dividedintoL2/(m2k2)blocksofsizemk mk. Theflip- To distinguish among the four different phases we de- × ping of each of these blocks is independent of the other fine the following order parameters: and may therefore be flipped simultaneously. We flip a rotatableplaquettewithprobability1/2. Theparalleliza- tionandefficiency ofthe algorithmallowsus to simulate N N large systems (up to L = 810) at high densities (up to Q1 =m2kh h− vi, (1a) N 0.99). We check for equilibration by starting the simulations Q =m2kh| jm=20−1nje2mπi2j|i, (1b) with two different initial configurationsand making sure 2 P N tthiaaltctohnedifitnioanl.eOqunielibcroinufimgusrtaattieonisiisnadefpuellnydneenmtaotfitchsetaintei-, Q =m2kh| mj=−01rje2πmij|−| mj=−01cje2πmij|i, (1c) 3 P N P where all rectangles are either horizontal or vertical and n n n +n the other is a random configuration where rectangles of Q =m2kh 0− 1− 2 3i, (1d) 4 bothverticalandhorizontalorientationsaredepositedat N random. whereN andN arethe totalnumberofhorizontaland h v vertical rectangles respectively, n is the number of rect- III. THE DIFFERENT PHASES i angles whose heads are in sublattice i = 0,...,m2 1, − r are the number of rectangles whose heads are in row Snapshots of the different phases that we observe in j (j mod m), and c are the number of rectangles whose simulations are shown in Fig. 2. First is the low density j heads arein column (j mod m). All four orderparame- isotropic (I) phase in which the rectangles have neither ters are zero in the I phase. Q is non-zero in the N and orientational nor translational order [see Fig. 2(c)]. Sec- 1 C phases, Q is non-zero in the C and S phases, Q is ond is the nematic (N) phase in which the rectangles 2 3 non-zeroonly in the C phase, andQ is non-zeroonly in have orientational order but no translational order [see 4 the S phase. Q in Eq. (1d) has been defined for m=2. Fig. 2(d)] . In this phase, the mean number of horizon- 4 Its generalization to m 3 is straightforward. tal rectangles is different from that of vertical rectan- ≥ gles. The third phase is the columnar (C) phase, having We now define the thermodynamic quantities that are orientational order and partial translational order [see useful to characterize the transitions between the differ- Fig. 2(e)]. In this phase, if majority of rectangles are ent phases. Q ’s second moment χ , compressibility κ i i 4 SL0 (H) ν defined by Q ( ǫ)β, ǫ < 0, χ ǫ−γ, κ ǫ−α, 2 3 2 3 SL1 (H) and ξ ǫ−ν, wh∼ere−ξ is the correlat∼ion| |length,∼ǫ| | 0, ∼| | | |→ SL2 (H) and Q representsany of the orderparameters. Only two 0 1 0 1 SL3 (H) exponents areindependent, others being relatedto them SL0 (V) through scaling relations. 2 3 2 3 SL1 (V) The critical exponents α, β, γ and ν are obtained by SL2 (V) finite sizescalingofthe differentquantitiesnearthe crit- 0 1 0 1 SL3 (V) ical point: (a) (b) U f (ǫL1/ν), (3a) u ≃ Q L β/νf (ǫL1/ν), (3b) − q ≃ χ Lγ/νf (ǫL1/ν), (3c) χ ≃ κ Lα/νf (ǫL1/ν), (3d) κ ≃ where f , f , f , and f are scaling functions. u q χ κ IV. PHASE DIAGRAM AND CRITICAL BEHAVIOR FOR m=2 (c) (d) In this section, we discuss the phase diagram for the case m = 2 and aspect ratio k = 1,2,...7. The critical exponents characterizing the different continuous transi- tions are determined numerically. A. Phase Diagram Thephasediagramobtainedfromsimulationsform= 2 and integer k are shown in Fig. 3. The low density phase is an I phase for all k. The case k =1 is different fromotherk. Inthiscase,theproblemreducestoahard (e) (f) square problem and orientational order is not possible as there is no distinction between horizontal and verti- FIG. 2. (Color online) Snapshots of different phases (at dif- cal rectangles. The hard square system undergoes only ferent densities) in a system of 2×14 hard rectangles. (a) onetransitionwithincreasingdensity,itbeingacontinu- The four sub lattices when m = 2. (b) The color scheme: ous transitionfrom the I phase to a C phase [24, 44–46]. eightcolorscorrespondingtotwoorientations,horizontal(H) This transition belongs to the Ashkin Teller universality and vertical (V),and heads of rectangles beingon oneof the class(seeRefs.[25–28]forrecentnumericalstudies). For four sublattices, denoted by SL0 to SL3. (c) The isotropic k = 2,3, we find that the system undergoes one contin- phase where all 8 colors are present. (d) The nematic phase, dominatedby4colorscorrespondingto4sublatticesandone uous transition directly from the I phase to a crystalline orientation. (e) The columnar phase, dominated by 2 colors S phase. On the other hand, the system with k =4,5,6 correspondingtotwosublatticesandoneorientation. (f)The may exist in I, C, or S phases. With increasing density, sublatticephase,dominatedby2colorscorrespondingtoone the system undergoes two phase transitions: first from sublattice and 2 orientations. the I to a C phase which could be continuous or first or- der,andsecond,fromtheCtoaSphasewhichiscontin- uous. For k =7, we observethree continuoustransitions and the Binder cumulant U are defined as i with increasing density: first from the I to the N phase, χi =hQ2iiL2, (2a) second into the C phase and third into the S phase. By κ=[ ρ2 ρ 2]L2, (2b) confirmingtheexistenceoftheNandCphasesfork =8, h i−h i we expect the phase behavior for k 8 to be similar to U =1 hQ4ii . (2c) that for k =7. ≥ i − 3 Q2 2 h ii The system undergoes more than one transition only The transitions are accompanied by the singular be- for k k = 4. We now present some supporting min ≥ havioroftheabovethermodynamicquantitiesatthecor- evidence for this claim. In Fig. 4 (a) we show the prob- responding critical densities. Let ǫ=(µ µ )/µ , where ability distribution of the nematic order parameter Q , c c 1 − µ is the critical chemical potential. The singular be- when k = 4, for different values of µ and fixed L, close c havior is characterizedby the critical exponents α, β, γ, totheI-Candthe C-Stransitions. Forlowervaluesofµ, 5 8 12 10 (a) L=120 (b) N L=240 9 L=360 7 8 C )1 8 µ=6.30 )1 Q µ=6.45 Q 6 P( 7 µ=6.50 P( µ=6.60 4 6 µ=6.75 µ=6.85 5 5 µ=7.00 0 k -0.1 -0.05 0 0.05 0.1 -0.4 -0.2 0 0.2 0.4 Q Q 4 1 1 I HD FIG.4. (Coloronline)(a)Theprobabilitydistributionofthe 3 orderparameterQ1 fork=4atdifferentµvalues,whenL= 416. (b) The same for different system sizes when µ=6.55. 2 B. Critical behavior for the isotropic-sublattice 1 (I-S) phase transition 0.7 0.75 0.8 0.85 0.9 0.95 1 ρ The system of rectangles with m = 2 undergoes a di- rect I-S transition for k = 2,3. At this transition, the translationalsymmetrygetsbrokenalongbothx- andy- FIG. 3. (Color online) Phase diagram for rectangles of size directionbuttherotationalsymmetryremainspreserved. 2×2k. I, N, C and HD denote isotropic, nematic, columnar We study this transition using the order parameter Q 2 and high density phases respectively. The HD phase is a C [see Eq. (1b)]. Q is non-zero in the S phase and zero 2 phase for k = 1 and a S phase for k > 1. The data points in the I phase. In this case Q and Q remains zero for 1 3 are from simulation, while the continuous lines and shaded all values of µ. The data collapse of U , Q , and χ for 2 2 2 portions are guides to the eye. The shaded portion denotes different values of L near the I-S transition are shown in regions of phase coexistence. Fig.5fork=2andinFig.6fork =3. Fromthecrossing of the Binder cumulant data for different L, we estimate the critical chemical potential µ 5.33 (ρ 0.930)for c c ≈ ≈ k = 2 and µ 6.04 (ρ 0.925) for k = 3. The order c c ≈ ≈ parameter increases continuously with µ from zero as µ c iscrossed,makingthetransitioncontinuous. SincetheS the distribution is peaked around zero corresponding to phase has a four fold symmetry due to the four possible the Iphase. With increasingµ, thedistributionbecomes sublattices,weexpectthetransitiontobeintheAshkin- flat and two symmetric maxima appear at Q = 0 (Q Teller universality class. Indeed, we find a good collapse 1 3 6 also becomes nonzero simultaneously), corresponding to with β/ν = 1/8 and γ/ν = 7/4. Numerically, we find a C phase. On increasing µ further, the two maxima ν =1.18 0.06 for k =2 and ν =1.23 0.07 for k =3. ± ± continuously merge into a single peak at Q =0, corre- ν being larger than 1, we do not observe any divergence 1 sponding to the S phase (Q also becomes zero and Q in κ. This transition could have also been studied using 3 4 becomes nonzero). Fig. 4 (b) shows the distribution of the order parameter Q . 4 Q forthreedifferentsystemsizesatafixedvalueofµfor 1 whichP(Q )hastwosymmetricmaximaatQ =0. The 1 1 6 two peaks become sharper and narrower with increasing C. Critical behavior of the isotropic-columnar L. We find the similar behavior for P(Q ) also. From 3 phase (I-C) transition the above,we conclude that the C phase exists for k =4 albeit for a very narrow range of µ. For k = 2 and 3 The I-C transition is seen for k = 4,5,6. When for wedo notobservethe existenceofa columnarphase and k = 4, µ for the I-C and the C-S transitions are close find that the probability distributions of Q and Q are c 1 3 to each other, making k =4 unsuitable for studying the peaked around zero for all µ. Hence, we conclude that criticalbehavior. We, therefore,study the I-C transition k =4. min fork =5(2 10rectangles)andk =6(2 12rectangles). × × The critical behavior is best studied using the order The N phase exists only for k 7. This is also true parameter Q [see Eq. (1c)]. Q is non-zero only in the 3 3 ≥ form=1[18]. Toseethis,noticethattheI-Ctransition Cphase. First,wepresentthecriticalbehaviorfork =5. for k = 6 is first order (see Fig. 3). If a nematic phase The simulation data for different system sizes are shown existsfork =6,thenthefirsttransitionwouldhavebeen in Fig. 7. From the crossing of the Binder cumulant continuous and in the Ising universality class [21]. curves, we obtain µ 4.98 (ρ 0.876). The transi- c c ≈ ≈ 6 0.7 0.6 (a) 0.6 (b) 0.6 0.6 (b) (a) 0.4 0.4 2 2 3 3 U 0.5 U 0.5 U 0.2 U 0.2 L=120 L=120 L=400 L=400 0.4 L=240 L=240 0 L=600 L=600 L=360 0.4 L=360 L=800 0 L=800 -0.2 4 4.5 5 5.5 6 6.5 -2 -1 0 1 2 3 4 4.8 4.9 5 5.1 1 2 3 4 5 µ ln |ε L1/ν| µ ln |ε L1/ν| 2 L=120 3 L=120 1.6 L=240 L=240 1.6 (c) 3 (d) L=360 (c) L=360 (d) βν/QL2 01..82 γν-/χ L2 1.5 βν/Q| L3 01..82 γν-/χ L3 1.5 | L=400 L=400 0.4 0.4 L=600 L=600 L=800 L=800 0 0 0 -2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4 1 2 3 4 5 1 2 3 4 5 ln |ε L1/ν| ln |ε L1/ν| ln |ε L1/ν| ln |ε L1/ν| FIG. 5. (Color online) Data collapse for different L near the FIG. 7. (Color online) The data for different L near the I-C I-S transition for rectangles of size 2×4 (m=2, k=2). We transition collapse when scaled with exponents β/ν = 1/8, find µc ≈ 5.33 (ρc ≈ 0.93). The exponents are β/ν = 1/8, γ/ν = 7/4, and ν = 0.82. We find µc ≈ 4.98 (ρc ≈ 0.876). γ/ν =7/4 and ν ≈1.18. Data are for rectangles of size 2×10. class. The data for different L collapse with β/ν = 1/8, 0.6 (a) 0.6 (b) γ/ν = 7/4 and ν = 0.82 0.06 (see Fig. 7), confirming ± the same. Unlike the I-S transition for k = 2,3, ν < 1 U2 U2 0.5 0.5 and lies between the Ising and q=4 Potts points. At the L=120 L=120 I-C transition partial breaking of translational symme- 0.4 L=240 L=240 try and complete breaking of rotationalsymmetry occur 0.4 L=360 L=360 simultaneously. 5.2 5.6 6 6.4 -2 0 2 4 µ L0/ν ln |ε L1/ν| The I-C transition for k = 4 is also continuous [see 1.6 Fig.4(a)],andisthereforeexpectedtobeintheAshkin- 2 Teller universality class. However, there is no reason to (c) (d) 1.2 expect that ν will be the same as that for k =5. ν ν 1.5 β/Q L2 0.8 γ-/χ L2 1 FigF.or8(ka)=s6h,owthsetIh-Ce ttirmanespitrioofinleisosfurdpernissiitnyglnyefiarrstthoerdIe-Cr. L=120 L=120 transition. ρ alternates between two well defined densi- 0.4 L=240 0.5 L=240 ties, one corresponding to the I phase and the other to L=360 L=360 0 the C phase. This is also seen in the probability distri- -2 0 2 4 -2 0 2 4 ln |ε L1/ν| ln |ε L1/ν| butionfordensity[seeFig.8(b)]. NeartheI-Ctransition it shows two peaks corresponding to the I and the C FIG. 6. (Color online) Data collapse for different L near the phases. Thus, at µ = µIcC, the density has a disconti- I-S transition for rectangles of size 2×6 (m=2, k=3). We nuity, which is shown by the shaded region in the phase find µc ≈ 6.04 (ρc ≈ 0.925). The exponents are β/ν = 1/8, diagram(see Fig. 3). The probability distribution of the γ/ν =7/4 and ν ≈1.23 orderparameterQ showssimilarbehavior[seeFig.8(c)]. 3 . Nearµ=µIC the distributionshowsthreepeaks: oneat c Q = 0 corresponding to the I phase and the other two 3 at Q = 0, corresponding to the C phase. At µIC the 3 6 c tion is found to be continuous. There are four possible three peaks become of equal height and the order pa- columnar states: majority of heads are either in even rameter Q jumps from zero to a non-zero value. These 3 or odd rows (when horizontal orientation is preferred), peakssharpenwithincreasingsystemsize[seeFig.8(d)]. or in even or odd columns (when vertical orientation is These are typical signatures of a first order transition. preferred). Due to this four fold symmetry, we expect Hence, we conclude that the I-C transition may be con- the I-C transitionto be in the Ashkin-Teller universality tinuous or first order depending on k. 7 (a) µ=3.02 120 (b) µµ==33..0012 0.6 0.82 µ=3.03 0.6 ρ 0.81 ρP() 80 U1 0.4 (a) U1 0.4 (b) L=448 L=448 40 L=560 0.2 L=560 0.8 0.2 L=672 L=672 L=784 L=784 0 0 3e+07 4e+07 5e+07 0.8 0.81 0.82 1.6 1.7 1.8 1.9 -2 -1 0 1 2 3 4 5 t ρ µ ln |ε L1/ν| µ=3.01 4 L=240 6 µµ==33..0023 (c) 3 (d) L=576 2 3.6 LL==454680 1.6 L=672 P(Q)3 4 P(Q)3 2 βν/Q| L1 01..82 L=448 (c) γν-/χ L1 2.4 L=784 (d) 2 1 | L=560 1.2 0.4 L=672 L=784 0 0 -0.8 -0.4 0 0.4 0.8 -0.8 -0.4 0 0.4 0.8 0 0 -2 -1 0 1 2 3 4 5 -2 -1 0 1 2 3 4 5 Q3 Q3 ln |ε L1/ν| ln |ε L1/ν| FIG. 8. (Color online) Data for the density ρ and the order FIG. 9. (Color online) The data for different L near the I- parameter Q3 for rectangles of size 2×12. (a) Equilibrium N transition collapse when scaled with the Ising exponents time profile of ρ near the I-C transition, for µ = 3.02 and L = 720. Probability distribution, near the I-C transition, β/ν = 1/8, γ/ν = 7/4, ν = 1 and µc ≈ 1.77. The critical of (b) ρ for different values of µ when L = 576, (c) Q3 for density ρc ≈0.746. Data are for rectangles of size 2×14. different values of µ when L = 576, and (d) Q3 for L = 240 (µ=2.99) and L=576 (µ=3.02). orientationalsymmetrygetsbroken. Ifthenematicphase consists of mostly horizontal (vertical) rectangles, then D. Critical behavior of the isotropic-nematic phase thereisnopreferenceoverevenandoddrows(columns). (I-N) transition In the columnar phase the system chooses either even or odd rows (columns), once the orientationalsymmetry is broken. Due to the two broken symmetry phases we We find that the nematic phase exists only for k ≥ expectthistransitiontobeintheIsinguniversalityclass. 7. We study the I-N phase transition for k = 7 using We indeed find gooddata collapsewhen U , Q andχ the order parameter Q [see Eq. (1a)]. Q is non-zero 3 3 3 1 1 | | for different system sizes are scaledwith Ising exponents in the N and C phases and zero in the I phase. We (see Fig. 10). The critical chemical potential or critical confirmthattheorderedphaseisanNphasebychecking density is obtained from the crossing point of the binder that Q , which is non-zero only in the C phase, is zero. 3 cumulant U for different L. We find µ 1.92 (ρ In the nematic phase the rectangles may choose either 3 c c ≈ ≈ 0.766)forthistransition. Weexpectthecriticalbehavior horizontal or vertical orientation. Thus, we expect the to be same for k >7. transition to be in the Ising universality class. When m=1,thishasbeenverifiedusingextensiveMonteCarlo simulations [21]. Here, we confirm the same for m = 2. ThedataforU , Q andχ fordifferentLcollapseonto F. Critical behavior of the columnar-sublattice 1 1 1 | | one curve when scaled with the two dimensional Ising phase (C-S) transition exponents β/ν =1/8,γ/ν =7/4,andν =1 (see Fig.9). We find µc 1.77 (ρc 0.746). We note that the value The C-S transition exists for k 4. This transitions ofU2atthe≈pointwher≈ethecurvesfordifferentLcrossis is studied by choosing k = 5. W≥e characterize the C- slightlysmallerthanthe Isingvalue0.614. This suggests S transition using the order parameter Q which is non 4 that larger system sizes are necessary for better collapse zero only in the S phase. In the C phase the system of the data. choosesoneparticularorientationandeitherevenorodd rowsorcolumns,dependingontheorientation. Thiscor- responds to two sublattices being chosen among four of E. Critical behavior of the nematic-columnar phase them. In the C-S transition the translational symme- (N-C) transition try gets brokencompletely by choosing a particularsub- lattice, but along with that the orientational symmetry The N-C transition is also studied for k = 7, using gets restored. This transition is found to be continuous. the orderparameterQ . Q is zeroin the nematic phase The data of U , Q and χ for different L near the C-S 3 3 4 4 4 | | butnonzerointhecolumnarphase. AttheI-Ntransition transition collapse well when scaled with the exponents 8 L=300 0.6 0.6 0.6 L=400 0.6 (a) (b) L=600 0.4 0.4 0.4 0.4 3 3 4 (a) 4 (b) U U 0.2 U U 0.2 L=448 L=448 0.2 0.2 L=560 L=560 L=300 0 L=672 L=672 L=400 0 L=784 L=784 0 0 L=600 -0.2 1.8 1.85 1.9 1.95 2 -1 0 1 2 3 4 8.8 9.2 9.6 10 0 1.5 3 4.5 µ ln |ε L1/ν| µ L0/ν ln |ε L1/ν| L=448 L=300 L=300 1.6 3 L=560 1.2 L=400 1.5 L=400 (c) L=672 (d) L=600 L=600 βν/Q| L3 01..82 L=448 γν-/χ L3 1.5 L=784 βν/Q| L4 0.8 (c) γν-/χ L4 1 (d) | L=560 | 0.5 0.4 0.4 L=672 L=784 0 0 -1 0 1 2 3 4 -1 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 ln |ε L1/ν| ln |ε L1/ν| ln |ε L1/ν| ln |ε L1/ν| FIG. 10. (Color online) The data for different L near the FIG.11. (Coloronline)ThedatafordifferentLneartheC-S N-Ctransition collapse whenscaled withtheIsingexponents transition collapse when scaled with exponents β/ν = 1/8, β/ν = 1/8, γ/ν = 7/4, ν = 1 and µc ≈ 1.92. The critical γ/ν = 7/4, ν = 0.83 and µc ≈ 9.65. The critical density ρc density ρc ≈0.766. Dataare for rectangles of size 2×14. ≈0.958. Data are for rectangles of size 2×10. belonging to the Ashkin-Teller universality class. The estimated critical exponents are β/ν = 1/8, γ/ν = 7/4 matches with that for m=1 [18]. and ν = 0.83 0.06 (see Fig. 11). Binder cumulants for ± different system sizes cross at µ 9.65 (ρ 0.958). c c ≈ ≈ We expect similar behavior for k=4 and 6 but possibly with different ν. The C-S transition occurs at very high density. With increasing k, the relaxation time becomes B. The isotropic-columnar phase (I-C) transition increasingly large, making it difficult to obtain reliable data for the C-S transition when k 6. ≥ The I-C transition exists when k 6. We study the ≤ this transition for k = 6, using the order parameter Q . 3 NowtherearesixpossiblechoicesfortheCphase: heads V. PHASE DIAGRAM AND CRITICAL are predominantly in one of the rows 0,1 or 2 (mod 3) BEHAVIOR FOR m=3 with all the columns equally occupied (if horizontal ori- entation is preferred) or in one of the columns 0,1 or 2 A. Phase diagram (mod 3) and all the rows are equally occupied (if ver- tical orientation is preferred). Making an analogy with Thephasediagramthatweobtainform=3,isshown the six state Potts model, we expect the I-C transition in Fig. 12. When k = 1, the corresponding hard square tobefirstorder. Theprobabilitydistributionoftheden- system has a single, first order transition from the I sity ρ and the order parameter Q for k = 3 near the 3 | | phase into the C phase [25]. The shaded region between I-C transition is shown in Fig. 13. The distributions are two points denotes a region of phase coexistence. For clearly double peaked at and near the transition point, 2 k 6, the system undergoes two first order transi- one corresponding to the I phase and the other to the ≤ ≤ tions with increasing density: first an I-C transition and C phase. We find that these peaks become sharper with second a C-S transition. This is unlike the case m = 2, increasing system size. This is suggestive of a first order where for k = 2 and 3 we find only one transition. For phasetransitionwithadiscontinuityinbothdensityand k = 7, we find three transitions as in the m = 2 case. orderparameterasµcrossesµ . Thediscontinuityinthe c ThefirsttransitionfromItoNphaseiscontinuouswhile density is denoted by the shaded regions of Fig. 12. The the second from N to C phase appears to be first order. chemical potential at which the I-C transition occurs is Although we cannot obtain reliable data for the third given by, µ 3.93. Similar behavior is seen near the ∗IC ≈ transitionintotheSphase,weexpectittobefirstorder. I-Ctransitionforrectanglesofsize3 3kwithk =2,3,4 × We note that the minimum value of k beyond which the and 5. We observe that the discontinuity in the density nematicphaseexistsis 7forbothm=2andm=3,and increases with k. 9 2.5 (a) (b) N 0.6 7 2 6 C P(Q)1 1 .15 U1 0.4 L=420 µ=2.72 L=630 5 0.5 µµ==22..7860 0.2 L=756 µ=2.84 0.614 0 -0.8 -0.4 0 0.4 0.8 2.7 2.8 2.9 3 k 4 Q1 µ I H FIG. 14. (Color online) The I-N transition for rectangles of 3 D size 3×21. (a) Distribution of the order parameter Q1 near the I-N transition. The data are for L = 420. (b) Binder 2 cumulantfordifferentsystemsizescrossesatµc ≈2.92(ρc≈ 0.79). Valueof U at µc is ≈0.61. 1 Isinguniversalityclass. InFig.14(a),thedistributionof 0.75 0.8 0.85 0.9 0.95 1 theorderparameterQ1 nearthe I-Ntransitionisshown. ρ Thetwosymmetricpeaksofthedistributioncomecloser with decreasingµ and merge to a single peak, this being a signature of a continuous transition. The Binder cu- FIG. 12. (Color online) Phase diagram for rectangles of size mulant U for different system sizes cross at µ 2.92 1 c 3×3k. HDdenoteshighdensity. TheHDphaseisaCphase (ρ 0.79)[seeFig.14(b)]. ThevalueofU atµ=≈µI N for k =1 and a S phase for k>1. The data points are from c ≈ c− is very close to the U value (0.61) for the Ising univer- simulationwhilethecontinuouslineandshadedportionsarea c sality class. guidetotheeye. Theshadedportionsdenoteregionsofphase coexistence. ExcepttheI-Ntransition, allthetransitionsare found to be first order. D. The nematic-columnar phase (N-C) transition 20 100 (a) µ=3.91 (b) µ=3.91 The N-C transition is studied for k = 7 using the or- µ=3.93 µ=3.93 80 µ=3.94 15 µ=3.94 der parameter Q3. Contrary to our expectation that the N-C transition should be in the q=3 Potts univer- ρ) 60 Q|)3 10 sality class, we observe a first order transition. The P( 40 P(| temporaldependence ofthe density nearthe N-C transi- 5 tion is shown in Fig. 15(a). Density jumps between two 20 well separated values corresponding to the two different 0 0 0.8 0.82 0.84 0.86 0 0.3 0.6 0.9 phasesnearthe coexistence. Fig 15(b) showsthe discon- ρ |Q3| tinuity in the order parameter Q3 near the transition. | | P(Q ) shows two peaks of approximately equal height 3 | | FIG.13. (Coloronline)Distributionof(a)thedensityρnear nearµ 3.12. However,wearelimitedinourabil- ∗N C the I-C transition, (b) the order parameter |Q3| near the I- ity to obt−ain≈reliable data for 3 21 rectanglesfor larger C transition. The data are for rectangles of size 3×18 and system sizes, and the observed×first order nature could L=432. be spurious. C. Critical behavior of the isotropic-nematic phase E. The columnar-sublattice phase (C-S) transition (I-N) transition The C-S transition is studied by choosing k = 2. We Asform=2,form=3wefindtheexistenceofthene- use the order parameter Q which is nonzeroonly in the 4 matic phase only for k 7. We study the I-N transition S phase. The probability distribution of the density ρ ≥ for k = 7 with the order parameter Q . It is expected and the order parameter Q for 3 6 rectangles near 1 4 | | × to be in the Ising universality class since there are two the C-S transitions is shown in Fig. 16. The distribu- possible choices of the orientation: either horizontal or tions are againdouble peaked at and near the transition vertical. We are unable to obtain good data collapse for point,makingtheC-Stransitionfirstorder. Thesepeaks Q , χ and U as the relaxation time increases with becomesharperwithincreasingsystemsize. Thediscon- 1 1 1 | | increasing m and k. Instead, we present some evidence tinuityinthedensityneartheC-Stransitionisverysmall for the transition being continuous and belonging to the and can also be seen in the shaded portions of Fig. 12. 10 (a) µ=3.16 8 (b) µ=3.10 B. The nematic–columnar phase boundary 0.84 µ=3.12 6 µ=3.16 To obtain the asymptotic behavior of the N-C phase ρ 0.83 Q|)3 4 boundary, we use an ad hoc Bethe approximation P(| scheme for rods due to DiMarzio [53], adapted to other 2 shapes [54]. To estimate the phase boundary of the 0.82 nematic–columnar transition of m mk rectangles on × 0 the square lattice with M = L L sites, we require 0 5e+07 1e+08 0 0.4 0.8 × the entropy as a function of the occupation densities t |Q | 3 of the m types of rows/columns. The calculations be- come much simpler, if we consider a fully oriented phase FIG.15. (Coloronline)(a)Temporalvariationofdensitynear with only horizontalrectangles. Now, the nematic phase the N-C transition, (b) distribution of the order parameter |Q3| near the N-C transition. The data are for rectangles of corresponds to the the phase where there is equal occu- size 3×21 and L=756. pancyofeachofthemtypesofrows,whilethecolumnar phase breaks this symmetry and preferentially occupies one type of row. For this simplified model with only one 1000 (a) µ=9.30 5 (b) µ=9.30 orientation, we estimate the entropy within an ad hoc µ=9.33 µ=9.33 800 µ=9.36 4 µ=9.36 Bethe approximation as detailed below. We present the calculation for m = 2, classifying the rows as even and ρ) 600 Q|)4 3 oddrows. Generalizationtohighervaluesofmisstraight P( 400 P(| 2 forward. 200 1 LettherebeNe(No)numberofrectangleswhoseheads (left bottom site of the rectangle) occupy even (odd) 0 0 0.978 0.98 0.982 0 0.2 0.4 0.6 0.8 rows. We firstplace the Ne rectangles one by one on the ρ |Q4| even rows. Given that je rectangles have already been placed,thenumberofwaysinwhichthe(j +1)th rectan- e FIG.16. (Coloronline)Distributionof(a)thedensityρnear glecanbeplacedmaybe estimatedasfollows. Thehead theC-S transition and (e) theorder parameter |Q4| near the of the (j +1)th rectangle has to be placed on an empty e C-S transition. The data are for rectangles of size 3×6 and siteofanevenrow. WedenotethissitebyA(seeFig.17). L=720. ThesiteAcanbechosenatrandomin(M/2 2kj )ways, e − M/2beingthenumberofsitesinevenrowsand2kj be- e ing the number of occupied sites in the evenrows by the Weestimateµ 9.33. SimilarbehaviorneartheC-S transitions is a∗Cls−oSo≈bserved for k >2, but the relaxation je rectangles. Wenowrequirethatthe2k−1consecutive sites to the right of A are also empty. The probability time increases with k. of this being true is [P (B A)]2k 1, where P (B A) is x − x | | the conditionalprobability thatB (see Fig. 17) is empty given that A is empty. In terms of M and j , P (B A) e x | VI. ESTIMATION OF THE PHASE is given by BOUNDARIES USING ANALYTICAL METHODS M 2kj P (B A)= 2 − e . (4) x | M 2kj +j In this section we obtain the asymptotic behavior of 2 − e e the phase diagram for large k using theoretical argu- To place the (j +1)th rectangle, we also require that ments. e the site C (see Fig. 17) and the 2k 1 consecutive sites − to the right of C are also empty. The probability of this being true is P (C A) P (D B C)2k 1, where y xy − | × | ∩ A. The isotropic–nematic phase boundary Py(C A) is the conditional probability that C is empty | given A is empty, and P (D B C) is the conditional xy | ∩ probabilitythatD (seeFig.17)isemptygiventhatboth The critical density for the I-N phase transition, for BandC areempty. SitesCandDbelongstoanoddrow. fixed m and k 1 may be determined by making an ≫ SincebothAandBareempty,CandDcanbe occupied analogywith the continuumproblem. The limit k , →∞ onlybyrectangleswithheadsinthe sameoddrow. But, keeping m fixed corresponds to the system of oriented there are no such rectangles. Therefore, P (C A) = 1, l5i2n]e.sTinhethceocnosntatinntuAum1 .isFeosrtitmhiastepdrotbolebmeρ≈c ≈6.0A[11/8k, 5[128]., ahnavdePbxeye(nDp|Blac∩edC,)th=e (1j. +Th1u)tsh, rgeivcteanntghleatmjyaeyrbe|ectpalnagcleeds Thus, we expect ρI N A /k, where A is independent e c− ≈ 1 1 in of m. For k = 7, we observe only a weak dependence of ρI N on m with the critical density being 0.745 0.005 M (mc−=1),0.744 0.008(m=2)and0.787 0.010(m±=3). νje+1 =(cid:18) 2 −2kje(cid:19)×[Px(B|A)]2k−1 (5) ± ±

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.