Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances Matthias Troyer | | 1 Collaborators ▪ Troels Rønnow (ETH) ▪ Sergei Isakov (ETH → Google) ▪ Sergio Boixo (USC → Google) ▪ Joshua Job (USC) ▪ Zhihui Wang (USC) ▪ Bettina Heim (ETH, BSc student) ▪ Damian Steiger (ETH) ▪ Ilia Zintchenko (ETH) ▪ Dave Wecker (Microsoft Research) ▪ John Martinis (UCSB) ▪ Daniel Lidar (USC) Matthias Troyer | | 2 Spin glasses on the D-Wave chimera graph ! Matthias Troyer | | 3 Worst-case complexity and spin glass physics H = ∑ J s s + ∑ h s + const. with s = ±1 ij i j i i i ij i ▪ NP-hard for non-planar lattices (Barahona 1982) ▪ No spin glass phase in finite-D lattices in a magnetic field (Young et al, 2004) no magnetic field with magnetic field polynomial NP-hard 2D planar spin glass phase at T=0 no spin glass phase NP-hard NP-hard 2D non-planar spin glass phase at T=0 no spin glass phase 3D or higher NP-hard NP-hard dimensions spin glass phase with no spin glass phase NP-hard NP-hard Infinite dimensions spin glass phase with spin glass phase with Matthias Troyer | | 4 Average case complexity ▪ In the absence of a spin glass phase correlations are short-ranged. Can we thus solve typical spin glass problems locally? We observe average case polynomial scaling for a new algorithm see tomorrow’s talk by Ilia Zintchenko ▪ Spin glass T =0 in 2D. c Is a 2D lattice the wrong system for realizing hard problems? see following talk by Helmut Katzgraber Katzgraber, Hamze, Andrist, Phys. Rev. X (2014) Matthias Troyer | | 5 ! Annealing Simulated annealing ! Adiabatic quantum optimization Quantum annealing Simulated quantum annealing Matthias Troyer | | 6 Long history of annealing Annealing A neolithic technology Slowly cool metal or glass to improve its properties and get closer to the ground state Simulated annealing Kirkpatrick, Gelatt and Vecchi, Science (1983) A classical optimization algorithm Image credit ANFF NSW node, University of New South Wales Slowly cool a model in a Monte Carlo simulation to find the solution to an optimization problem Matthias Troyer | | 7 Quantum annealing for a transverse field Ising model Kadowaki and Nishimori (1998) Farhi, Goldstone, Gutmann and Sipser (2000) Add a transverse magnetic field (cid:7)(cid:4) to induce quantum fluctuations (cid:7)(cid:3) (cid:23)(cid:18)(cid:8)(cid:9)(cid:8) (cid:22) (cid:10) (cid:24)(cid:18)(cid:8)(cid:9)(cid:8) (cid:22) (cid:10) (cid:7)(cid:1) (cid:22) (cid:21) (cid:20) (cid:19) (cid:6) (cid:18) (cid:17) (cid:16) (cid:15) (cid:14) (cid:5) H (t) = B(t)∑ J σ zσ z − A(t)∑σx (cid:13) (cid:12) (cid:11) ij i j i (cid:4) i<j i (cid:3) Initial time t=0: all spins aligned with the transverse(cid:1) field (cid:1) (cid:1)(cid:2)(cid:3) (cid:1)(cid:2)(cid:4) (cid:1)(cid:2)(cid:5) (cid:1)(cid:2)(cid:6) (cid:7) (cid:8)(cid:9)(cid:8) (cid:10) Final time t=t : ground state of the Ising spin glass f Matthias Troyer | | 8 8 Quantum annealing ▪ Quantum annealing not necessarily stays adiabatic Kadowaki and Nishimori (1998) ▪ Adiabatic quantum optimization is the special case of perfectly coherent adiabatic evolution in the ground state Farhi, Goldstone, Gutmann and Sipser (2000) ▪ Experimental quantum annealing (QA) Quantum mechanical evolution in a material or device, potentially at finite temperatures Brooke, Bitko, Rosenbaum, Aeppli, Science (1999) Matthias Troyer | | 9 Simulated quantum annealing ▪ “Schrödinger” dynamics (unitary) ▪ Exponential complexity on classical hardware ▪ Simulates the time evolution of a quantum system ▪ Unitary evolution in the ground state: U-QA Kadowaki and Nishimori (1998) ▪ Open systems dynamics using master equations: OS-QA ▪ Quantum Monte Carlo dynamics (stochastic) ▪ Classical algorithms with polynomial complexity ▪ QMC samples the equilibrium thermal state of a quantum system ▪ Typically based on path integral Monte Carlo simulations: QMC-QA Apolloni et al (1988), Santoro at al (2002) ▪ Mean-field MC version using coherence but no entanglement: MC-QA Shin, Smolin, Smith, Vazirani, arXiv:1401.7087 Matthias Troyer | | 10
Description: