ebook img

Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin ... PDF

43 Pages·2014·2.74 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin ...

Performance of simulated annealing, simulated quantum annealing and D-Wave on hard spin glass instances Matthias Troyer | | 1 Collaborators ▪ Troels Rønnow (ETH) ▪ Sergei Isakov (ETH → Google) ▪ Sergio Boixo (USC → Google) ▪ Joshua Job (USC) ▪ Zhihui Wang (USC) ▪ Bettina Heim (ETH, BSc student) ▪ Damian Steiger (ETH) ▪ Ilia Zintchenko (ETH) ▪ Dave Wecker (Microsoft Research) ▪ John Martinis (UCSB) ▪ Daniel Lidar (USC) Matthias Troyer | | 2 Spin glasses on the D-Wave chimera graph ! Matthias Troyer | | 3 Worst-case complexity and spin glass physics H = ∑ J s s + ∑ h s + const. with s = ±1 ij i j i i i ij i ▪ NP-hard for non-planar lattices (Barahona 1982) ▪ No spin glass phase in finite-D lattices in a magnetic field (Young et al, 2004) no magnetic field with magnetic field polynomial NP-hard 2D planar spin glass phase at T=0 no spin glass phase NP-hard NP-hard 2D non-planar spin glass phase at T=0 no spin glass phase 3D or higher NP-hard NP-hard dimensions spin glass phase with no spin glass phase NP-hard NP-hard Infinite dimensions spin glass phase with spin glass phase with Matthias Troyer | | 4 Average case complexity ▪ In the absence of a spin glass phase correlations are short-ranged. Can we thus solve typical spin glass problems locally? We observe average case polynomial scaling for a new algorithm
 see tomorrow’s talk by Ilia Zintchenko ▪ Spin glass T =0 in 2D. 
 c Is a 2D lattice the wrong system for realizing hard problems?
 
 see following talk by Helmut Katzgraber 
 Katzgraber, Hamze, Andrist, Phys. Rev. X (2014)
 Matthias Troyer | | 5 ! Annealing Simulated annealing ! Adiabatic quantum optimization Quantum annealing Simulated quantum annealing Matthias Troyer | | 6 Long history of annealing Annealing A neolithic technology Slowly cool metal or glass to improve its 
 properties and get closer to the ground state 
 Simulated annealing Kirkpatrick, Gelatt and Vecchi, Science (1983) A classical optimization algorithm Image credit ANFF NSW node, University of New South Wales Slowly cool a model in a Monte Carlo simulation
 to find the solution to an optimization problem Matthias Troyer | | 7 Quantum annealing for a transverse field Ising model
 
 Kadowaki and Nishimori (1998) Farhi, Goldstone, Gutmann and Sipser (2000) Add a transverse magnetic field 
 (cid:7)(cid:4) to induce quantum fluctuations (cid:7)(cid:3) (cid:23)(cid:18)(cid:8)(cid:9)(cid:8) (cid:22) (cid:10) (cid:24)(cid:18)(cid:8)(cid:9)(cid:8) (cid:22) (cid:10) (cid:7)(cid:1) (cid:22) (cid:21) (cid:20) (cid:19) (cid:6) (cid:18) (cid:17) (cid:16) (cid:15) (cid:14) (cid:5) H (t) = B(t)∑ J σ zσ z − A(t)∑σx (cid:13) (cid:12) (cid:11) ij i j i (cid:4) i<j i (cid:3) Initial time t=0: all spins aligned with the transverse(cid:1) field (cid:1) (cid:1)(cid:2)(cid:3) (cid:1)(cid:2)(cid:4) (cid:1)(cid:2)(cid:5) (cid:1)(cid:2)(cid:6) (cid:7) (cid:8)(cid:9)(cid:8) (cid:10) Final time t=t : ground state of the Ising spin glass f Matthias Troyer | | 8 8 Quantum annealing ▪ Quantum annealing not necessarily stays adiabatic
 Kadowaki and Nishimori (1998) ▪ Adiabatic quantum optimization is the special case of perfectly coherent adiabatic evolution in the ground state
 Farhi, Goldstone, Gutmann and Sipser (2000) ▪ Experimental quantum annealing (QA) 
 Quantum mechanical evolution 
 in a material or device, 
 potentially at finite temperatures
 
 Brooke, Bitko, Rosenbaum, Aeppli, Science (1999) Matthias Troyer | | 9 Simulated quantum annealing ▪ “Schrödinger” dynamics (unitary) ▪ Exponential complexity on classical hardware ▪ Simulates the time evolution of a quantum system ▪ Unitary evolution in the ground state: U-QA
 Kadowaki and Nishimori (1998) ▪ Open systems dynamics using master equations: OS-QA ▪ Quantum Monte Carlo dynamics (stochastic) ▪ Classical algorithms with polynomial complexity ▪ QMC samples the equilibrium thermal state of a quantum system ▪ Typically based on path integral Monte Carlo simulations: QMC-QA
 Apolloni et al (1988), Santoro at al (2002) ▪ Mean-field MC version using coherence but no entanglement: MC-QA
 Shin, Smolin, Smith, Vazirani, arXiv:1401.7087 Matthias Troyer | | 10

Description:
Dave Wecker (Microsoft Research). ▫ John Martinis . 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 93 .. 486. 487. 488. 489. 490. 491. 492. 493. 494. 495. 496. 497. 498. 499. 500. 501. 502.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.