ebook img

PDF(915K) PDF

14 Pages·2012·0.89 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview PDF(915K)

ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2012.01723.x INTEGRATING FOSSILS WITH MOLECULAR PHYLOGENIES IMPROVES INFERENCE OF TRAIT EVOLUTION GrahamJ.Slater,1,2 LukeJ.Harmon,3,4 andMichaelE.Alfaro1 1DepartmentofEcologyandEvolutionaryBiology,UniversityofCalifornia,610CharlesEYoungDriveSouth,LosAngeles, California90095–1606 2E-mail:[email protected] 3DepartmentofBiologicalSciences,UniversityofIdaho,Moscow,Idaho83844 4InstituteforBioinformaticsandEvolutionaryStudies(IBEST),UniversityofIdaho,Moscow,Idaho83844 ReceivedFebruary1,2012 AcceptedMay24,2012 DataArchived:Dryadrepository:doi:10.5061/dryad.q96d7 Comparativebiologistsoftenattempttodrawinferencesabouttempoandmodeinevolutionbycomparingthefitofevolutionary modelstophylogeneticcomparativedataconsistingofamolecularphylogenywithbranchlengthsandtraitmeasurementsfrom extant taxa. These kinds of approaches ignore historical evidence for evolutionary pattern and process contained in the fossil record.Inthisarticle,weshowthroughsimulationthatincorporationoffossilinformationdramaticallyimprovesourabilityto distinguishamongmodelsofquantitativetraitevolutionusingcomparativedata.WefurthersuggestanovelBayesianapproach thatallowsfossilinformationtobeintegratedevenwhenexplicitphylogenetichypothesesarelackingforextinctrepresentatives ofextantclades.Byapplyingthisapproachtoacomparativedatasetcomprisingbodysizesforcaniformcarnivorans,weshow thatincorporationoffossilinformationnotonlyimprovesancestralstateestimatesrelativetothosederivedfromextanttaxa alone, but also results in preference of a model of evolution with trend toward large body size over alternative models such asBrownianmotionorOrnstein–Uhlenbeckprocesses.Ourapproachhighlightstheimportanceofconsideringfossilinformation whenmakingmacroevolutionaryinference,andprovidesawaytointegratethekindofsparsefossilinformationthatisavailable tomostevolutionarybiologists. KEY WORDS: Ancestralstates,Brownianmotion,Caniformia,modelselection,phylogeneticcomparativemethods. “Iamtryingtopursueasciencethatisbeginningtohaveagood tionsofmacroevolutionaryprocesses.Thestructureofphyloge- many practitioners but that has no name: the science of four- nies when combined with models of continuous trait evolution dimensional biology or of time and life. Fossils are pertinent to now allows biologists to address hypotheses about the manner thisfieldwhentheyaretreatedashistoricalrecords...”(Simpson in which standing phenotypic diversity was generated by test- 1953) ing for shifts in rates of trait evolution (O’Meara et al. 2006; The last decade has witnessed a revolution in evolutionary Thomas et al. 2006; Eastman et al. 2011; Revell et al. 2012) biology. Fueled by the increased availability of time-calibrated or adaptive trait optima (Butler and King 2004; Beaulieu et al. molecularphylogenies(DrummondandRambaut2007)andnew 2012). Trait-dependent diversification models can also be used analytical tools for analyzing trait data, comparative biologists todeterminetheimpactofthosetraitsonlineagediversification have increasingly switched their attention from describing evo- (Maddisonetal.2007;FitzJohnetal.2009;FitzJohn2010).Tests lutionarypatternsandcorrelationstotestingfundamentalpredic- for early bursts (EBs) of phenotypic and lineage diversification (cid:2)C 2012TheAuthor(s).Evolution(cid:2)C 2012TheSocietyfortheStudyofEvolution. 3931 Evolution66-12:3931–3944 G. J. SLATER ET AL. consistentwithclassicadaptiveradiationtheory(Simpson1944, nodepriorswhenperformingmacroevolutionaryanalysesonex- 1953; Schluter 2000; Harmon et al. 2003; Gavrilets and Losos tanttaxa.Weshowthatthisapproachperformswell,evenwhen 2009)havebeenaparticularlyrichareaofresearch(e.g.,Pybus prior distributions are not exactly centered on the true values, andHarvey2000;RaboskyandLovette2008a,b;Harmonetal. as might be the case when sampling from the incomplete fossil 2010;BurbrinkandPyron2010;Mahleretal.2010;Slateretal. record. We finally apply this new approach to the case of body 2010). sizeevolutionincaniformcarnivores(FinarelliandFlynn2006), Ashistoricalrecordsoftheevolutionaryprocess,fossiltaxa andshowusingamodestnumberofinformativenodepriorsthat potentiallyprovideatremendoussourceofinformationregarding incorporation of fossil information using our approach not only thetempoandmodeoflineagediversificationandtraitevolution. improvesparameterestimates,butalsoresultsintheselectionof However,thecombiningofpaleontologicalandneontological(es- a model with an evolutionary trend toward large body size that peciallymolecular)dataintophylogeneticcomparativemethods otherwise could not be detected with data derived from extant hasbeenslowandthefullimpactoffossilinformationonanalyses taxa. ofextanttaxaremainsrelativelyunexplored.Afewstudieshave notedexplicitconflictbetweeninferencesaboutlineagediversi- Methods ficationratesderivedfrommolecularphylogeniesandthosede- rivedfromthefossilrecord(QuentalandMarshall2009;Quental MODELS OF TRAIT EVOLUTION andMarshall2010;Simpsonetal.2011;Rosenblumetal.2012; Inthisarticle,weconsiderfourcommonmodelsthathavebeen seealsoLiowetal.2010forasimulation-baseddemonstration). appliedtoquantitativetraitdata.Thefirstandmostbasicevolu- Becausepaleobiologistsandneontologistsusedifferentkindsof tionarymodelforcontinuoustraitsusedbycomparativebiologists data to infer different aspects of net diversification rates (Foote isBrownianmotion(BM),whichreasonablyapproximatesevo- 1996;Wagner2000;Ricklefs2007;QuentalandMarshall2010), lutionunderdriftoradaptiveevolutiontrackingarandomlyfluc- this discordance is, perhaps, unsurprising and has primarily led tuatingoptimum(Cavalli-SforzaandEdwards1967;Felsenstein toeffortstodevelopmathematicalmodelsthatcanbetteraccount 1973, 1985; Hansen and Martins 1996). Under BM, the vector forunobservedoriginationsandextinctionsinmolecularphylo- of trait values, X, for a clade of n species follow a multivariate geniesofextanttaxa(e.g.,EtienneandApol2009;Rabosky2009; normaldistribution, Morlonetal.2011;Etienneetal.2012). Formodelsoftraitevolution,dataintegrationistheoretically X(1,2,...n) ∼ N(a,σ2C), morestraightforward.Iffossilspecieswithmeasuredtraitscanbe placedinaphylogeny,modelsoftraitevolutioncaneasilybefitted whereaisann×1vectorinwhicheachelementistheexpected to data comprising fossil and extant taxa. It has long been rec- valueofthetrait(which,underBM,istherootstatea),σ2 isthe ognizedthatincorporatinginformationfromfossiltaxainphylo- Brownian rate parameter and C is an n × n covariance matrix, geneticreconstructionbasedonmorphologicaldata(Felsenstein referredtoasthephylogeneticvariance–covariancematrix.The 1978;Donoghueetal.1989;Gauthieretal.1988;Huelsenbeck off-diagonalelementsofC,C ,representthesharedpathlength ij 1991)andinancestralstatereconstructionsofquantitativetraits fromtherootofthephylogenetictreetothemostrecentcommon (OakleyandCunningham2000;FinarelliandFlynn2006;Alberts ancestor of the ith and jth taxa, whereas diagonal elements C ii etal.2009)canimproveparameterestimatesandoverallmethod representthedistancefromtherootnodetotheithterminaltaxon, performance. The same should be true when comparing the fit whichmaybeextantorextinct.Mostalternativemodelsoftrait ofdifferentmodelsofquantitativetraitevolutiontocomparative evolution,includingthethreethatweconsiderinthisarticle,are data, but this has not yet been thoroughly explored. Adapting variants on this basic BM model that involve a transformation current methods would require knowing both where the fossil of a, σ2C (also referred to as V), or both. Under BM with a connectstothetreeandthebranchlengthleadingfromthetreeto directionaltrend(Trend:Hunt2006),variancesandcovariances thefossil.Asignificantbarriertoincorporatingfossilinformation remainthesamebuttheexpectedvalueofthetraitchangesthrough inanalysesofphenotypicevolution,however,isthatweoftenonly timeasfunctionofatrendparameter,M,thatcanbepositiveor have very general ideas about their relationships to extant taxa. negative. Under a Brownian process with time-dependent rates, Inthesecases,integratingfossilinformationrequiresadifferent alsoreferredtoasAC/DC(Accelerating/Deceleratingevolution: approach. Blombergetal.2003),therateofphenotypicevolutionincreases Inthisarticle,weexplore,viasimulation,theimpactoffossil (AC)ordecreases(DC)exponentiallythroughtimeasafunction taxaonmodelselectionwhenfittingmodelsofquantitativetrait of a parameter r that can vary between –∞ and ∞. The DC evolutiontocomparativedata.WethenpresentanovelBayesian part of this model has also been called EB by Harmon et al. approachthatallowsfossildatatobeusedtodefineinformative (2010).Finally,underanOrnstein–Uhlenbeck(OU)process,the 3932 EVOLUTION DECEMBER2012 FOSSILS, PHYLOGENIES, AND MODELS OF TRAIT EVOLUTION Table 1. Parametervaluesandsampledrangesusedforsimula- tiontests.UnderTrend,theparameterismu,thetrendparameter. Under SSP, the parameter is α, the strength of selection. Under AC/DC,theparameterisr,theexponentialchangeparameter. Model A σ2 non-BMparameter BM 0 U[0,0.5] – Trend 0 0.1 U[00.2] SSP 0 0.1 U[0.01,10] AC 0 0.0013 U[0,0.1] DC 0 0.13 U[–0.1,0] 60 50 40 30 20 10 0 Time before present fossils improve model selection more when extinction rates are Figure 1. Phylogenetic tree used for simulations. The tree was higher(seeAppendixS1forfulldetails).Wenextsimulatedtrait generatedunderabirth–deathprocesswithbirthrate=0.1and evolutiononthecomplete377-taxontreeunderthefourmodels deathrate=0.09.Thereare100extanttaxaand277fossiltaxa. of trait evolution: BM, Trend, AC/DC, and SSP. To explore the effectsofvaryingmodelparametersonmodelselectionwithor elements of V are transformed according to their distance from withoutfossilinformation,wesimulated500datasetsundereach thebasalsplitinthephylogenyandbyaso-called“rubber-band” model, with model parameters drawn at random from uniform parameter,α(Hansen1997;ButlerandKing2004).UnderOU, ranges (Table 1). The root state was fixed at a = 0 for simula- as a trait evolves away from its optimal value, it is pulled back tionsunderallmodels.ForBM,wevariedtherateparameterσ2. towardtheoptimumwithastrengthcorrespondingtoα.Although Forallothermodels,wefixedσ2 andvariedthemodel-specific itispossiblefortherootstateandtraitoptimumtodiffer,orfor parameterasspecifiedinTable1.Tofullyexploremodel-fitting multipletraitoptima(ButlerandKing2004)orαvalues(Beaulieu performance,wetreatedAC/DCastwoseparatemodels(ACand etal.2012)toexist,comparativemethodsoftenassumethatthe DC)forsimulationpurposes. root state and optimum are the same, reducing OU to a single Foreachsetofsimulations,weinitiallyfitthefourmodels stationary peak (SSP) model (Harmon et al. 2010) that we will to datasets comprising extant taxa only using maximum likeli- consider here. Useful summaries of these models and how they hood(ML).Wethenrepeatedthisprocedurefivetimes,eachtime relate to BM can be found in Hunt (2006) and Harmon et al. randomly adding 5%, 10%, 25%, 50%, and 100% of the total (2010). numberoffossiltaxatothedataset.Modelfittingwasdoneus- ing the fitContinuous function in geiger (Harmon et al. 2008). THE EFFECT OF FOSSIL TAXA ON MODEL SELECTION For each level of fossil sampling, we compared support for the Wefirstassessedtheimpactofincludingfossiltaxawithknown fourmodelsusingsmall-samplecorrectedAkaikeweights(AIC ; c phylogenetic placement and branch lengths on model selection BurnhamandAnderson2002),wherethesamplesizeequalsthe performance. We generated a phylogenetic tree containing 100 numberofsampledterminalsinthephylogeny,includingfossils extant taxa under a time-homogeneous, bifurcating birth–death whenapplicable.Iffossilshaveapositiveeffectonmodelselec- processusingthegeigerpackage(Harmonetal.2008)forR(R tion,thenAkaikeweightsforthetruemodelshouldincreaseas DevelopmentCoreTeam2011).Atreeofthissizeislargeenough morefossiltaxaareadded. to potentially allow for differentiation of models of trait evolu- Theadditionoffossiltaxatoadatasetcomprisingextanttaxa, tion (FitzJohn et al. 2009; FitzJohn 2010; Harmon et al. 2010; asdescribedabove,increasesthetotalnumberoftaxa.Thus,any Boettiger et al. 2012) and is comparable to one that might be improvementinmodel-fittingperformancecouldbeattributable used in a typical empirical analysis of extant taxa. To generate toalargernetsamplesize,ratherthanjusttheinclusionoffossil atreewithalargenumberofextincttips,wesimulatedundera taxa.Wethereforealsoinvestigatedwhether,givenafixedsam- birth–death process with high relative extinction rate (λ = 0.1, plesizeoftaxa,weshouldprefertosamplefossilsorextanttaxa. μ=0.09).Theresultingtreehadatotalof377taxa,witharoot Werepeatedthemodel-fittingproceduredescribedabovebutran- ageof60.95timeunits(Fig.1).Toavoidconfoundingvariation domlysubstitutedproportionsofextanttaxaforfossiltaxa,rather duetofossilinclusionwithvariationassociatedwithphylogenetic than adding them, thus maintaining a total of 100 taxa. We re- treeshape,wefocushereonanalysesfromasinglesimulatedtree. peated this procedure for proportions of 5%, 10%, 25%, 50%, Resultsfromfittingmodelstoalternativephylogenetictreeswere and95%ofthetotalnumberofextantspecies,using95%rather always qualitatively consistent, although we note that overall, than100%inthefinalstepsothattheresultingtreemaintained EVOLUTION DECEMBER2012 3933 G. J. SLATER ET AL. the same root-tip distance without rescaling of branch lengths. Wesubsequentlyperformedrunswhereinformativenormalprior ModelsupportwasagainassessedusingAIC weights. distributionswereappliedtorandomsamplesof5%,10%,25%, c and50%ofnodesinthetree,excludingtherootnode.Foreach USING FOSSILS AS NODE PRIORS node,themeanofthepriorwassettothetruenodevaluetaken Formostcomparativebiologists,phylogeneticinformationistyp- fromthesimulateddata,andthestandarddeviation(SD)wasset ically lacking for fossil members of their study clade. In these atanarbitrarilysmallvalueof0.01.InAppendixS1,wepresent cases,integratingavailablefossilinformationrequiresadifferent resultsfromanadditionaltestofourapproachusingnodepriors approachtoML.Underthemultivariatenormaldistribution,the sampledfromasimulatedfossil.Inthesetests,informativenode log-likelihoodforasetofobservedtraitvaluesXiscomputedas priorsweredefinedbasedonfossiltaxathat(1)weredescendents ⎛ (cid:5) (cid:6)⎞ oftheimmediateparentnodetothenodeofinterestand(2)went 1 ⎜exp [X−E(X)](cid:5)(V)−1[X−E(X)] ⎟ extinctwithina10millionyearwindowcenteredonthatnode.As ln(L)=ln⎜⎝ 2 (cid:7) ⎟⎠, aresultofthissamplingscheme,notallnodespossessedinforma- (2π)n·det(V) tivepriors,andthosethatdidhadpriorsthatwerenotnecessarily centered exactly on their true values. Furthermore, some priors where E(X) is a n × 1 vector of expected trait values, prime were defined based on only a few fossils with distant phyloge- specifiesthatthetransposeistaken,andVisthemodel-specific neticrelationshipstothefocalnode(seeAppendixS1formore variance–covariancematrix(O’Mearaetal.2006;Harmonetal. details).Forbothsetsofanalyses,nodesweresampledatrandom 2010).Normally,onlytraitvaluesfortheterminaltaxaarerepre- amongsimulationsandsamplingschemes.Wesetuninformative sentedinthisexpression;likelihoodapproachestofittingmodels priorsofU[–∞,∞]ona,ln(σ2)andtheremainingnodesforeach of trait evolution avoid explicit reconstruction of trait values at model,andonMfortheTrendmodel.ForSSP,weusedauniform nodesotherthantherootbyintegratingparameterestimatesover prioronαof[10−5,∞].ForAC/DC,weappliedauniformprior all possible ancestral states (Pagel 1994, 1997; Schluter et al. U[–0.5,0.5]totheexponentialchangeparameter,r.Eachanalysis 1997).InaBayesianframework,thisisequivalenttoassuminga wasrunfor200,000generations,samplingfromthechainevery uniformpriordensityoneachancestralstate,withtheresultthat 100steps,withthefirst25%ofsamplesdiscardedasburn-in.For theirposteriordensitiesaredirectlyproportionaltothelikelihood eachfossilsamplingregime,thethreenon-Brownianmodelswere surface (Maddison 1991; Schluter et al. 1997). However, if we compared to BM using Bayes factors computed from harmonic lack precise phylogenetic information regarding the placement means of the sampled likelihoods (Newton and Raftery 1994; fossil taxa butthey canbe associatedwith particular nodesin a Kass and Raftery 1995). To assess false-positive rates, that is, molecular phylogeny, then their traits could be used to inform casesinwhichweselectanincorrectmodelwithstrongsupport, priordistributionsplacedonthosenodeswhenfittingmodelsto weassumedthatavaluefor2∗Ln(Bayesfactor)of2orgreater datasetscomprisingextanttaxa. indicatedpositivesupportforthatmodeloverthenull,BMmodel WeimplementedaMarkovchainMonteCarlo(MCMC)al- (KassandRaftery1995;Raftery1996). gorithmtosampletraitevolutionarymodelparametersandnode valuesfromtheirposteriordistributionswhileallowinginforma- tivepriordistributionstobeplacedonnodeswithassociatedfossil Results taxa.AteachstepinourMCMCsampler,weproposemodelpa- rametersandancestralstates,andassesstheposteriorprobability THE EFFECT OF FOSSIL TAXA ON MODEL SELECTION ofthemodelastheproductofthelikelihoodandpriorprobabili- Adding fossil taxa with known phylogenetic placement and tiesofproposedparametersandancestralstates.Thedecisionto branch lengths had a great impact on model selection perfor- acceptorrejectproposedparametersaremadeusingthestandard mance, but only when the true model deviated from pure BM. Metropolis–Hastingsalgorithm(Metropolisetal.1953;Hastings When BM was the true model, we found low power to favor it 1970).Rcodetoperformtheseanalysesiscontainedinthefunc- over other candidate models based on extant taxa only. Adding tionfitContinuousMCMC(·),whichwillbeavailableviaCRAN fossils had no effect on model selection for any value of σ2 inaforthcomingreleaseofthegeigerlibrary,andisavailablein (Figs. 2A, S6A; Table S3). For the other models, adding fossil theshorttermasapackagedownloadfromLJH’ssoftwarepage taxaincreasedboththeoverallpowertodetectthetruemodeland (http://www.webpages.uidaho.edu/∼lukeh/software/index.html). thepowertodosoatsmallparametervalues(i.e.,thoseresulting Totestthisapproach,weperformedfiveMCMCrunswith in a model most similar to BM) compared to fits using extant eachsetofsimulations(seeabove)undereachofthefourmodels taxaonly.Aparticularlystrikingresultwasrecoveredwhenthe ofevolution.Inthefirstsetofruns,thefourmodelswerefitted true model was accelerating evolution. Here, AC was never fa- tothesimulateddatawithuninformativepriorsonallnodestates. voredoverothermodelsusingextanttaxaonly(Figs.2D,S6M; 3934 EVOLUTION DECEMBER2012 FOSSILS, PHYLOGENIES, AND MODELS OF TRAIT EVOLUTION ght1.0 A 1.0 B 1.0 C 1.0 D 1.0 E ei W5 5 5 5 5 e 0. 0. 0. 0. 0. k ai k0 0 0 0 0 A0. 0. 0. 0. 0. 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 proportion of available fossils sampled ght 1.0 F 1.0 G 1.0 H 1.0 I 1.0 J ei W 5 5 5 5 5 e 0. 0. 0. 0. 0. k ai k 0 0 0 0 0 A 0. 0. 0. 0. 0. 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 proportion of 100 taxa that are fossils BM Trend ACDC SSP Figure 2. Median Akaike weights for the four evolutionary models fitted by maximum likelihood to 500 datasets. Datasets were simulatedunderBM(A,F),Trend(B,G),DC(C,H),AC(D,I)andSSP(E,J).Inthetoprow(A–E),increasingproportionsofthe277available fossils were randomly added to the 100-tip ultrametric tree. In the bottom row (F–J), proportions of extant taxa were replaced with fossils. TableS3).Instead,BMwasfavoredatlowincreasesinrateand USING FOSSILS AS NODE PRIORS SSPathigherincreases(Fig.S6M).Theadditionoffossilsdra- WhenBMwasthetruemodel,therewasverylittlepowertodis- maticallyincreasedsupportforthecorrectmodelofAC/DCwhile tinguish it from the three alternative models using Bayes factor simultaneously reducing support for SSP and BM (Figs. 2D, comparisonwithuninformativepriorsonallnodestates.Aswith S6N–P). MLestimates,BMcouldnotberejectedhowever(Fig.3A).There Wefoundthatswappingextanttaxaforfossilswhilemain- wasstillpowertodistinguishthethreeothermodelsfromBMus- tainingaconstanttotalnumberoftaxaalsoresultedinimproved inguninformativenodepriors,particularlywhenparametervalues model selection performance, relative to analyses based on ex- werelarge(Fig.3G,J,M).WhenSSPwasthetruemodel,itcould tant taxa only. This result suggests that on a per-taxon basis, bereadilydistinguishedfromBMatallvaluesofα,althoughAC fossilscontainmoreinformationregardingthemodeoftraitevo- alsoreceivedpositive,albeitlowersupportoverBM.WhenAC lutionthandoextanttaxa.WhenBMwasthetruemodel,Akaike wasthetruemodel,wefoundittobeindistinguishablefromSSP, weights for BM remained slightly higher than those for the al- evenatlargevaluesofr,althoughbothreceivedpositivesupport ternative models, but still ambiguous under all levels of fossil relativetoBM. swapping (Figs. 2F, S7A–D; Table S4). For all other models, Addition of informative priors on node values improved swapping fossils for extant taxa both increased support for the modelselectionperformanceinallcasesexceptwhereBMwas truemodelrelativetoothermodelsandthepowertodiscernthem thetruemodel(Fig.3B,C).BMremainedindistinguishablefrom atlowparametervalues(Figs.2H–J,S7E–T;TableS4).Oneno- thealternativemodelsatallvaluesofnodesampling,andfalse- tableexceptionwasfoundwhenthetruemodelwasSSP.Inthis positive rates did not decrease appreciably, except for compar- case,weightsforSSPdecreasedfromamedianweightof1when isonsofSSPtoBM(Table2).Fortheothermodels,additionof nofossilsweresampledtoamedianweightof0.59with5%re- priorsonnodevaluesincreasedpowertoidentifythetruemodel, placementofextanttaxabyfossils(Fig.2J;TableS4).Thisresult withincreasingnumbersofpriorsmarkedlyincreasingpowerat mayreflecttheobservationsthat:(1)SSPandACaredifficultto lowparametervalues(Fig.3).Themostnotableresultwasrecov- distinguishwithoutfossilinformation,and/or(2)withoutfossils, eredwhenthetruemodelwasAC.AlthoughACandSSPwere SSPtendstobefavoredoverAC,regardlessofwhichisthetrue equallyfavoredoverBMbasedonextanttaxaalone,additionof model. Reducing the number of extant taxa and adding a few fossilinformationintheformofnodepriorsresultedinincreased fossilsseemstohavetheeffectofaccentuatingthisuncertainty. supportforthetruemodel(AC),whilesupportforSSPdecreased. However, increasing the proportion of fossils swapped to 10% Similarly,increasingthenumberofnodeswithinformativepriors increased median weights for SSP to 0.99, suggesting that high increasedsupportforSSPwhiledecreasingsupportforACwhen levelsoffossilsamplingarenotnecessarytoincreaseconfident SSPwasthetruemodel.InAppendixS1,weshowthatourap- identificationofthetruemodel. proachalsoperformswellusinginformativepriorsderivedfrom EVOLUTION DECEMBER2012 3935 G. J. SLATER ET AL. A B C 3 3 3 F) 2 2 2 B n( 1 1 1 2 * l 0 0 0 1 1 1 - - - 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 2 2 2 60 D 60 E 60 F F) 0 0 0 B 4 4 4 n( 2 * l 20 20 20 0 0 0 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0 0 0 2 G 2 H 2 I 1 1 1 BF) 80 80 80 n( 2 * l 40 40 40 0 0 0 -0.08 -0.04 -0.08 -0.04 -0.08 -0.04 r r r 0 J 0 K 0 L 3 3 3 F) B 0 0 0 n( 2 2 2 2 * l 10 10 10 0 0 0 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 r r r M N O F) 0 0 0 n(B 15 15 15 2 * l 0 0 0 5 5 5 0 0 0 2 4 6 8 2 4 6 8 2 4 6 8 Figure 3. Median Bayes factors for candidate models fitted to 500 simulated datasets with informative node value priors on 0, 10, and50%oftotalnodesinthetree.Ineachcase,candidatemodelsarecomparedtoanullmodelofBrownianmotion.Rowsrepresent simulations under BM (A–C), Trend (D–F), DC (G–I), AC (J–L), and SSP (M–O). In each panel, the x-axis represents the range of model parametervaluessimulatedunder,whereasplottedlinesrepresentedthemediansofbinnedBayesfactors.LinecolorsareTrend(gray), AC/DC(blue),andSSP(black),allcomparedtoBM.ThedashedredlineindicatestheBayesFactorrequiredtoachievepositiveevidence infavorofagivencandidatemodel. asimulatedfossilrecord,despitethefactthatpriorswerederived iformcarnivores(FinarelliandFlynn2006).Morphologicaland fromasmallnumberoffossilsthatwereoftenyoungerthatthe ecologicaldiversitywithintheCaniformiaisparticularlystriking; nodeofinterest. caniformsrangefromexclusiveherbivorestospecialistcarnivores (Figueiridoetal.2010)andspantheentirerangeofbodysizesen- BODY SIZE EVOLUTION IN CANIFORM compassedbyextantCarnivora(overfourordersofmagnitude). CARNIVORANS FinarelliandFlynn(2006)demonstratedthatunreasonablylarge ToillustratetheapplicationofourBayesianapproachtoanem- estimates(∼25kg)fortheancestralbodysizeofcaniformswere piricaldataset,werevisitedthecaseofbodysizeevolutionincan- obtained when only extant taxa are considered. However, when 3936 EVOLUTION DECEMBER2012 FOSSILS, PHYLOGENIES, AND MODELS OF TRAIT EVOLUTION Table 2. False-positiveratesforBayesianmodelselectionusingnodevaluepriorscenteredonthetruenodevalue.Falsepositivesunder threeBayesfactorcut-offsaregiven. 2×lnBF=2 2×lnBF=6 2×lnBF=10 Prop.nodes Trend AC/DC SSP Trend AC/DC SSP Trend AC/DC SSP 0 0.00 0.11 0.11 0.01 0.01 0.01 0 0 0 0.05 0.09 0.11 0.07 0.01 0.01 0.01 0 0 0 0.1 0.09 0.12 0.07 0.01 0.01 0.01 0 0 0 0.25 0.09 0.11 0.07 0.01 0.01 0.01 0 0 0 0.5 0.10 0.12 0.07 0.01 0.01 0.01 0 0 0 fossil taxa were included in their phylogeny, more reasonable Procyonidae ancestral size estimates of ∼5 kg were obtained. Finarelli and Flynn (2006) suggested that this might be the result of an evo- Mustelidae lutionary trend toward large body size (Cope’s rule, e.g., Alroy 1998;PurvisandOrme2005)insomeextantfamilies.Wethere- Ailuridae fore asked whether the incorporation of fossil information into Mephitidae acomparativedatasetderivedfromextantcaniformcarnivorans Phocidae couldprovidesupportforthismodeloverothercandidatemodels Otariidae ofbodysizeevolution. Odobenidae Ursidae CANIFORM METHODS Canidae Bodymassdataforextantcaniformspecieswereobtainedfrom thepanTHERIAdatabase(Jonesetal.2009),withmissingspecies addedfromtheliteraturewherepossible.Weinitiallyattemptedto 50 40 30 20 10 0 1 100 2000 Millions of Years Ago body mass usethecarnivoranportionofthemammaliansupertree(Bininda- (kg) Emondsetal.2007).However,attemptstoidentifyfossiltaxathat couldbephylogeneticallyandtemporallyassociatedwithnodes Figure 4. Time-calibratedphylogenyof135speciesofextantcan- iformsandassociatedbodymasses(notethatbarlengthsarerep- in that tree revealed some significant discrepancies in topology resented on a log scale). Colors indicate caniform families. Gray and divergence times compared with current understanding of circlesatnodesindicatelocationsoffossilpriorsusedforfitting carnivoranphylogeny(Bardelebenetal.2005;Flynnetal.2005; modelsofbodysizeevolution.Theblacknodelabelindicatesthe Koepflietal.2007;Koepflietal.2008;Krauseetal.2008;Eizirik rootprior. etal.2010;FultonandStrobeck2010a,b;Meredithetal.2011). We therefore constructed a new time-calibrated phylogeny for caniforms by grafting published and new time-calibrated phy- The final set of priors spanned 11 internal nodes, plus the root logenies for caniform clades onto a family-level backbone tree node(Fig.4;Table3).Bodymassesforindividualfossiltaxaused (Eiziriketal.2010).Fulldetailsofphylogenyreconstructionare todefineinformativenodepriorsareprovidedinTableS7. providedinAppendixS2and.xmlfileshavebeendepositedon Wefirst comparedthefit ofthree modelsoftrait evolution Dryad.Afterremovingnonoverlappingspeciesfromthetreeand (BM,AC/DC,SSP)withuninformativepriorsplacedonallnode bodysizedata,weretainedafinalsampleof135taxa,approxi- values.Twochainswererunfor500,000generationseach,sam- mately82%ofextantcaniformdiversity(Fig.4).Wesubsequently plingfromthechainevery100steps,andthefirst10%ofsamples surveyedtheliteratureforfossiltaxathatcouldbeassociatedwith fromeachrunasburn-inbasedoninspectionoflikelihoodtrace nodes in the caniform phylogeny, where possible giving prefer- plots.Marginallikelihoodsandparametervalueswerecomputed encetofossilsthathadbeensubjecttophylogeneticanalyses.We from the retained sample. We then re-ran analyses using the usedpublishedestimatesofbodymasswhenavailable,butother- same MCMC procedures but with informative normal prior wiseestimatedbodymassesforfossiltaxafromlowerfirstmolar distributionsplacedonthe11internalnodeswithassociatedfossil lengths,usingregressionequationsprovidedinVanValkenburgh information.Fortheseanalyses,theTrendmodelwasaddedtothe (1990).Informativenodevaluepriorswerederivedfrommeans suite of models fitted. Because fossil information was available and SDs computed from natural log-transformed fossil masses. for the root node of caniform phylogeny, we performed a third EVOLUTION DECEMBER2012 3937 G. J. SLATER ET AL. Table 3. Priorsusedforfittingmodelsoftraitevolutiontothe HPD:–0.002–0.063),whichisapproximatelyequivalenttoanet caniformdataset.Meansandstandarddeviationsareinunitsof expectedincreaseinsizeof∼7kgoverthe50millionyearhis- naturallog(Ln)kilogram. tory of extant caniforms. Based on simulations, a trend of this magnitude is difficult to favor with positive evidence or greater Node Mean SD withinformativepriorsononly10%ofnodes(Fig.3E;Appendix Rootnode 0.749 0.485 S1).ThefactthatwefindpositiveevidenceinfavorofTrendwith MRCACaninae 1.451 0.487 only8%ofavailablenodessampledisthereforeencouraging.It MRCAVulpini 1.974 0.29 is also worth noting that the Trend model used here assumes a MRCAVulpes 1.831 0.211 homogenous directional trend across all lineages through time MRCACanini 2.225 0.184 (Hunt2006).Thismightbeexpectedunderaphenomenonsuch MRCAArctoidea 0.615 0.336 as Cope’s rule where an active trend drives all clade members MRCAUrsinae/Tremarctinae 4.293 0.129 MRCAUrsinae 4.406 0.028 toward larger size (Alroy 1998; Van Valkenburgh et al. 2004; MRCAcrownMustelidae 1.296 0.4645 Purvis and Orme 2005). However, it is possible that the evolu- MRCAcrownProcyonidae 0.417 0.172 tionofcaniformbodysizesisbetterexplainedbyapassivetrend, MRCAPinnipedimorpha+Musteloidea 1.14 0.33 suchasdiffusionawayfromareflectiveorabsorbinglowerbound MRCAcrownPinnipedia 4.111 0.957 (Stanley 1973; Gould 1988; Alroy 2000). Although such an ar- gumentmakessenseonphysiologicalgrounds(Tracy1977;West etal.2002),itcannotcurrentlybetestedusingphylogeneticcom- setofanalyseswithpriorsonthe11internalnodesplustheroot parativemodels. node. Discussion CANIFORM RESULTS Fossilshadasignificantimpactonrootstateestimation(Fig.5). Fittingmodelsofquantitativetraitevolutiontophylogeneticcom- With uninformative priors on all internal nodes, we estimated parativedataprovideapowerfulwayoftestingfundamentalhy- a large body mass (∼18.5 kg) for the ancestral caniform under potheses about macroevolutionary pattern and process (Hansen allmodels,albeitwithwide95%highestposteriordensityinter- 1997; Blomberg et al. 2003; Butler and King 2004; O’Meara vals (HPD: 1.85–171 kg; Fig. 5). Fitting the same models with et al. 2006; Thomas et al. 2006; Thomas et al. 2009; FitzJohn informative prior distributions on 11 internal nodes resulted in 2010;Harmonetal.2010;Eastmanetal.2011;Revelletal.2012; substantially smaller modal estimates (∼2.5 kg) and narrower Slateretal.2012).Alltoofrequentlyhowever,analysesarelim- 95% HPD intervals for the root state (0.34–10 kg; Fig. 5). Ad- itedtoextanttaxa,neglectingthehistoricalinformationthatfossil dition of a root node prior unsurprisingly resulted in narrower datacanprovide(Simpson1944,1953;Losos2011).Theresults still95%HPDintervals(0.89–4.5kg),althoughthemodedidnot presentedinthisstudysuggestthatinclusionofjustafewfossil shift.Overall,theseresultsareconsistentwiththoseofFinarelli taxanotonlyincreasesthestatisticalpoweroftheseapproaches, and Flynn (2006) and appear to suggest a non-Brownian model butcanalsoleadtodifferentiationofmodelsthatsimplycannot ofbodysizeevolutionincaniformcarnivorans. be distinguished based on extant taxa data alone. Furthermore, Fossilsalsohadanimpactonmodelselectionforthecani- althoughmanycladeslackawell-sampledfossilrecord(apoint form body size dataset. With uninformative priors on all nodes, wewillreturntoattheendofthisarticle),wehaveshownhow BM,AC/DC,andSSPwerebroadlyindistinguishable(Table4). sparsefossilinformationwithoutphylogeneticresolutioncanbe Theadditionoffossil-derivedpriorson11internalnodeshadlittle integratedintomacroevolutionaryanalysisinawaythatcanstill effect on comparisons between these three models, but did lead improvemodelselectionoverestimatesbasedonextanttaxaonly. topositive(2×lnBF>2)supportforTrendoverBM.Addition of a prior on the root state had little impact on model selection DO FOSSILS IMPROVE ESTIMATES OF TRAIT compared with results obtained using internal node priors only EVOLUTION? (Table4). We found that fossils had little effect on model selection when Although we find positive evidence for a trend toward in- BM was the generating model of evolution. Instead, the great- creasingbodysizeincaniformevolution,supportforthismodel est impact of fossils is realized when the generating model is a over BM is relatively low. One possible reason for this is the time-heterogeneousprocesses.Onepossibleexplanationforthis interactingeffectofthestrengthofthetrendandtheproportion resultisthatourmodelcomparisonmetric,Bayesfactorsderived of nodes for which we had available prior information. Our es- fromtheharmonicmeanestimator(HME)ofthemarginallikeli- timates for the Trend parameter were low (M = 0.0296, 95% hood,isapoormodelselectiontool.Recentworkindemographic 3938 EVOLUTION DECEMBER2012 FOSSILS, PHYLOGENIES, AND MODELS OF TRAIT EVOLUTION A B sity 0.6 sity 0.6 n n e e D D 0 0 0. 0. -2 0 2 4 6 8 -2 0 2 4 6 8 Ln(Mass) Ln(Mass) C D extant fossils sity 0.6 sity 0.6 fossils + root n n e e D D 0 0 0. 0. -2 0 2 4 6 8 -2 0 2 4 6 8 Ln(Mass) Ln(Mass) Figure 5. PosteriordistributionsfortherootnodestateinthecaniformexampleestimatedunderBM(A),Trend(B),AC/DC(C),andSSP (D).ColorsrepresentMCMCanalyseswithandwithoutfossilinformationincorporatedasinformativenodepriors. Table 4. Resultsofmodelfittingforthecaniformdatasetwithnopriors,withnodepriors,andwithnodeandrootpriors.Marginal likelihoodsaregivenforallmodelsexceptTrendwithnopriors,whichcannotbedistinguishedfromBM.Bayesfactorsarecomputedfor modelsrelativetoBM.AsterixindicatespositiveevidenceinfavorofthecandidatemodeloverBM. Nopriors Nodepriors,norootprior Nodepriors,rootprior MarginalLk 2×LnBF MarginalLk 2×LnBF MarginalLk 2×LnBF BM −169.61 – −178.72 – −178.36 – Trend – – −177.33 2.77∗ −177.02 2.69∗ SSP −169.54 0.13 −178.74 −0.05 −178.64 −0.55 ACDC −169.83 −0.44 −179.17 −0.90 −178.73 −0.74 andphylogeneticmodelselectionhasdemonstratedthatthiscan fossilinformation(itshouldbenotedhoweverthatastrongprior sometimes be the case (Xie et al. 2011; Baele et al. in press). on the root state would be sufficient to allow this model to be Alternative metrics, such as AICM (Raftery et al. 2007), and fitted;OakelyandCunningham2000;seealsoFelsenstein1988). pathsampling(thermodynamicintegration:LartillotandPhillipe Theimprovedpowerfortheothermodelsfittedhereissimilarlya 2006) and stepping-stone (Xie et al. 2011) algorithms can out- functionoftheirtimedependency.Itwouldbeinterestingtofur- perform HME estimators in many cases (Baele et al. in press). therinvestigatetheimpactoffossilswhenfittingmodelsallowing The integration of Bayesian approaches into phylogenetic com- forcomponentsofpunctuated(i.e.,speciational)andgradual(i.e., parativemethodsisstillinitsinfancy,butfurtherworkonmodel Brownian)evolution(Hunt2007b,2008;Bokma2008). selection procedures has the potential to greatly increase power Wefoundthatwithoutfossils,thepowertodiscerndecelerat- todiscernamongmodelsofquantitativetraitevolution(seealso ingevolutionwasgreaterthanthatforacceleratingevolution.This Boettigeretal.2012). makes sense given the differing expectations of these opposing The most obvious impact of adding fossil data was for the processes.Deceleratingevolutionresultsinphenotypicdisparity caseoftheTrendmodel,wheretheexpectedvalueofatraitin- beingpartitionedamongratherthanwithinclades,apatternthat creasesordecreasesasafunctionoftime.Identificationofatrend canbereadilyidentifiedfromextanttaxadatawhenthedifference isthereforeexplicitlydependentonknowledgeofboththestart- betweeninitialandendratesislargeenough(Harmonetal.2003). ing and end states. If a directional trend exists in comparative Adding fossils provides additional information about the tempo data,ourabilitytoaccuratelyinfertheancestralstateforthetrait atwhichdisparityevolvesandthusfurtherallowsfordifferenti- fromdataderivedfromextanttaxaonlyislostasthetraitevolves ationofslowdecelerationfromaconstantratesprocess(Figs.2, away from its initial state (e.g., Oakley and Cunningham 2000; 3, S3, S6, S7). Under accelerating evolution, in contrast, faster Finarelli and Flynn, 2006; Albert et al. 2009). As a result, we evolutiontowardthetipsresultinincreasedwithin-cladedispar- completelylacktheabilitytofittheTrendmodelwithoutsome ity relative to among clade disparity—a pattern also seen under EVOLUTION DECEMBER2012 3939 G. J. SLATER ET AL. theSSPmodel.Ourresultssuggestthatacceleratingevolutionis usedhere,incontrast,makesexplicituseofsynapomorphy-based difficulttodistinguishfromBMwithafastratebasedonextant assessmentoffossilplacementthatismorefamiliartoevolution- taxaaloneunlessthemagnitudeofaccelerationisrelativelylarge. arybiologistsfromdivergencetimeestimation(Drummondand Insuchcases,however,acceleratingevolutionbecomesdifficult Rambaut2007),andhasmoreincommonwithapproaches,such todistinguishfromSSP. as ancestor-descendent comparison, that have been traditionally Fossilinformationdramaticallyimprovedourabilitytodis- beenusedinpaleobiologicalinference(Gingerich1987;Hulbert tinguishSSPandAC.Acceleratingevolutionresultsinrapidevo- 1993; Wagner 1996; Alroy 1998; Van Valkenburgh et al. 2004; lutionarychangealongbranchesclosertothetipsofaphylogeny, Honeetal.2005).Ourresultsshowthatmostpowerisobtained withthenetresultthatrecentspeciespossessmarkedlydifferent when fossils are placed in as precise a phylogenetic context as traitvaluesthantheirsisterspecies.Lookingatextanttaxaonly, possible. If this is not possible, then using fossils as priors on theoutcomeofthisprocessisverysimilartoanOUprocess,as node states is still preferable over approaches that ignore fossil bothtendtoerasephylogeneticsignal(Revelletal.2008).Thein- informationentirely. corporationofdatafromfossiltaxaprovidesasourceofhistorical A pervasive concern in the use of Bayesian approaches is information regarding character change toward the root the tree that inappropriate or incorrect priors can dominate theanalysis, andthusenablesthesetwomodelstobedistinguished.Thisresult leadingtomisleadingsignal.Carefulselectionoffossilstempo- isparticularlyinterestinggiventhatHarmonetal.(2010)found rallyspanningeithersideofanodeofinterestshouldameliorate aprevalenceofsignalforSSPoverBMandDC(or“EB”)ina any tendency toward biased or incorrect priors (see Supporting large number of comparative datasets. Those authors suggested Information).Itshouldalsobenotedthatourapproachallowsfor thattheEBpatternexpectedunderadaptiveradiationhypotheses the same fossil to be used in defining more than one prior. For (Simpson1944,1953)mightberareincomparativedataandthat example,afossilmightbetheoldestmemberofacrowngroup stabilizing selection might be a more pervasive pattern. Adding whilealsobeingastemrepresentativeofamoreinclusiveclade. fossilinformationisunlikelytoswingapreferredSSPmodelto Inthiscase,thesamefossilcouldbeusedwhendefiningthedistri- DC; however,weare unabletorule outthat a pervasivepattern butionsplacedonbothnodes.Alogicalextensionofourmethod of accelerating evolution is obscured in these datasets. Acceler- wouldbetousethetemporalproximityofafossilorsetoffossils ating evolution might occur in adaptively radiating clades that todeterminethestrengthofthepriorplacedonanode.Usingin- have yet to saturate ecomorphospace, for example, as a young formationinthiswayshouldleadtomoreappropriatepriorsand claderadiatestoreplaceawaning,ecologicallyequivalentclade makesmorecompleteuseofpotentiallysparseavailabledata. (e.g., Van Valkenburgh 1999). If diversifying clades are charac- One limitation of our approach is that fossil diversity from terizedbythesekindsofpatterns,thenfossilinformationisofan radiationsalongstemlineageswillbemostlyunusableiftheentire evengreatersignificanceinprovidinginsightintothedynamics stemgrouphasgoneextinct.Forexample,althoughwewereable ofadaptiveradiation. toassociatefossiltaxawith12nodesinthephylogenyofextant caniforms, we were unable to include information from the ex- USING FOSSILS AS NODE PRIORS tinct canidsubfamilies HesperocyoninaeandBorophaginae,the Wealsoshowedthattraitdatafromfossiltaxacanbemeaning- entire family Amphicyonidae, and the majority of fossil mem- fullyincorporatedintocomparativeanalysesasinformativeprior bers of the extant, monotypic families Odobenidae (walruses) distributionsonnodevalues.Thisisparticularlyappealingasfos- andAiluridae(redpanda),despitethefactthatallpossessgood- silrepresentativesofextantcladesareinfrequentlyplacedinan to-excellentfossilrecords(Deme´re´1994;Wang1994;Hunt1998; explicit phylogenetic context. Moreover, even when fossils can Wang et al. 1999; Morlo and Peigne´ 2010). Given that biologi- beplacedinaphylogeny,branchlengthsaretypicallynotavail- callyreasonablevaluesformostevolutionarymodelparameters able (but see Pyron 2011), rendering fitting of time-dependent arelikelytobeatthelowerendoftheirrespectivescales,wepo- processesdifficult.Felsenstein(2002)suggestedanapproachby tentiallysurrendertremendousstatisticalpowerbynotincluding whichfossiltaxacouldbeplacedinamolecularphylogenyand thisavailableinformation.Reassuringly,bothoursimulationsand theirbranchlengthsinferredusingtheircontinuoustraitvalues.In ourempiricalexampledemonstratethatifatrendintraitvalues thisscheme,fossilswouldbeplacedbymaximizingthelikelihood or time-dependency of rates actually exists, we retain substan- of the BM process given knowledge of the phylogeny of extant tial power to detect this with a sample of extant taxa and a set taxa,asmightbeinferredfrommoleculardata.AlthoughFelsen- ofinformativenodepriorsderivedfromsuitablefossildata.For stein described this algorithm with a view toward phylogenetic more complex models of trait diversification however, explicit inferenceratherthanmodelfitting(aformof“TotalEvidence”: phylogenetic hypotheses or alternative approaches for integrat- Felsenstein 2002, p. 32), it could potentially be applied to the ing phylogenetically uncertain fossil radiations are likely to be problemthatwehaveattemptedtosolve.Theapproachwehave necessary. 3940 EVOLUTION DECEMBER2012

Description:
molecular phylogenies (Drummond and Rambaut 2007) and new .. PHYLOGENIES, AND MODELS OF TRAIT EVOLUTION. BM. Trend. ACDC. SSP.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.