ebook img

Patterned Anchorage to the Apical Extracellular Matrix Defines Tissue Shape in the Developing ... PDF

15 Pages·2017·4.76 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Patterned Anchorage to the Apical Extracellular Matrix Defines Tissue Shape in the Developing ...

Article Patterned Anchorage to the Apical Extracellular Matrix Defines Tissue Shape in the Developing Drosophila Appendages of Graphical Abstract Authors RobertP.Ray,AlexisMatamoro-Vidal, PauloS.Ribeiro,...,DavidHoule, IsaacSalazar-Ciudad, BarryJ.Thompson Correspondence [email protected] In Brief Regulationofglobaltensileforcesin epitheliaisonemechanismof determiningtissueshape.Rayand Matamoro-Vidaletal.showthattissue contraction,incombinationwithlocalized anchoragetothecuticlebytheapical extracellularmatrixproteinDumpy,gives risetoanisotropictensionsthatshapethe appendagesintheDrosophilapupa. Highlights d TheapicalextracellularmatrixproteinDumpy(Dp)isrequired forappendageshape d Dpanchorstheepidermistothecuticle,generatingtension duringtissuecontraction d AlterationofthepatternofDpgivesrisetopredictable changesinappendageshape d Narrow(Nw),Tapered(Ta),andLanceolate(Ll)affectshape bymodulatingDp Rayetal.,2015,DevelopmentalCell34,310–322 August10,2015ª2015TheAuthors http://dx.doi.org/10.1016/j.devcel.2015.06.019 Developmental Cell Article Patterned Anchorage to the Apical Extracellular Matrix Defines Tissue Shape Drosophila in the Developing Appendages of RobertP.Ray,1,2,7,*AlexisMatamoro-Vidal,4,5,7PauloS.Ribeiro,2,3NicTapon,2DavidHoule,4IsaacSalazar-Ciudad,5,6,8 andBarryJ.Thompson2,8 1SchoolofLifeSciences,UniversityofSussex,Falmer,BrightonBN19QG,UK 2TheFrancisCrickInstitute,Lincoln’sInnFieldsLaboratory,44Lincoln’sInnFields,LondonWC2A3PX,UK 3CentreforTumourBiology,BartsCancerInstitute,QueenMaryUniversityofLondon,CharterhouseSquare,LondonEC1M6BQ,UK 4DepartmentofBiologicalScience,FloridaStateUniversity,Tallahassee,FL32306,USA 5DepartmentdeGene`ticaiMicrobiologia,Genomics,Bioinformatics,andEvolutionGroup,UniversitatAuto`nomadeBarcelona,Cerdanyola delValle`s08193,Spain 6CenterofExcellenceinExperimentalandComputationalDevelopmentalBiology,DevelopmentalBiologyProgram,Instituteof Biotechnology,UniversityofHelsinki,P.O.Box56,FIN-00014Helsinki,Finland 7Co-firstauthor 8Co-seniorauthor *Correspondence:[email protected] http://dx.doi.org/10.1016/j.devcel.2015.06.019 ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/). SUMMARY mechanismsthatinfluencetissueshape:activeshapechanges arisingfromintrinsicforcesactinglocally,whichareintegrated How tissues acquire their characteristic shape is a overtheentiretissuetogeneratecomplexmorphogeneticmove- fundamental unresolved question in biology. While ments,andpassiveshapechanges,whicharedrivenbyextrinsic geneshavebeencharacterizedthatcontrollocalme- forces thatactglobally toinfluence the behaviors ofindividual chanical forces to elongate epithelial tissues, genes cells(BlanchardandAdams,2011). controlling global forces in epithelia have yet to be Morphogeneticprocessesdrivenbylocallyactingforceshave been characterized in both plants and animals, and typically identified. Here, we describe a genetic pathway that shapes appendages in Drosophila by defining the involvedirectedcellrearrangements,orientedcelldivisions,or acombinationofboth(LecuitandLeGoff,2007).Invertebrate patternofglobaltensileforcesinthetissue.Intheap- embryos, elongation of the anterior-posterior axis is driven in pendages,shapearisesfromtensiongeneratedbycell part by the polarized migration of mesenchymal cells that un- constrictionandlocalizedanchorageoftheepithelium dergoconvergentextensionmovementsundercontrolofplanar tothecuticleviatheapicalextracellular-matrixprotein cell polarity (PCP) genes (Heisenberg et al., 2000; Tada and Dumpy(Dp).AlteringDpexpressioninthedeveloping Smith,2000).Asimilar,PCP-dependentprocesshasbeenimpli- wingresultsinpredictablechangesinwingshapethat catedintheelongationofkidneytubulesinXenopusandmice can be simulated by a computational model that (Lienkamp et al., 2012). In Drosophila, anterior-posterior (A/P) incorporates only tissue contraction and localized axiselongationalsoinvolvesconvergentextensionmovements anchorage. Three other wing shape genes, narrow, that are driven by planar-polarized localization of Myosin II, tapered, and lanceolate, encode components of a which constricts epithelial junctions oriented along the dorsal- ventralaxis.Theresultingstructuresarethenresolvedintonew pathway that modulates Dp distribution in the wing A-P oriented junctions that drive extension of the germ band torefinetheglobalforcepatternandthuswingshape. (Bertet et al., 2004; Blankenship et al., 2006; Irvine and Wie- schaus,1994;ZallenandWieschaus,2004). Local forces can also affect tissue shape by influencing the INTRODUCTION orientationofcelldivisions.Thismechanismisbestcharacter- ized in the Drosophila appendages, where elongation of the Tissuemorphogenesisdependsontheprecisecontrolofbasic proximal-distal(P-D)axisisachievedbyorientatedcelldivisions cellbehaviorssuchascelldivision,celldeath,cellshape,and intheimaginaldiscs(Baena-Lo´pezetal.,2005).P-Delongation cell rearrangement during development (Lecuit and Le Goff, inthediscsresultsfromtheplanar-polarizedlocalizationofthe 2007).Whiletheregulationofcellproliferationandcelldeathin atypical Myosin, Dachs, by the Fat-Dachsous planar polarity determining tissue size have been extensively studied (Edgar, system. Dachs constricts cell junctions where it is enriched, 2006; Halder and Johnson, 2011), the mechanisms underlying alteringcellshape,andthusbiasingtheorientationofthemitotic thecontroloftissueshapeareonlyjustcomingtolight(Lecuit spindle(Maoetal.,2011).Polarizedcelldivisionshavealsobeen and Le Goff, 2007; St Johnston and Sanson, 2011; Zallen, implicated in other developmental processes including germ 2007).Inrecentyears,evidencehasemergedfortwotypesof bandextensioninDrosophila(daSilvaandVincent,2007),shoot 310 DevelopmentalCell34,310–322,August10,2015ª2015TheAuthors apexandpetalmorphogenesisinplants(Reddyetal.,2004;Roll- (Figures1A–1D)(Carlson,1959).RNAisilencingofdpthroughout and-Lagan et al., 2003), and neurulation in zebrafish (Concha thewingbladerecapitulatesthetruncatephenotypewith100% and Adams, 1998), but the molecular mechanisms underlying penetrance (Figure 1E) and the same phenotype is produced theseexamplesremaintobedetermined. withtheDll-Gal4driver,whichisexpressedathighlevelsonly There is also evidence for extrinsic forces acting across tis- atthemargin(Figure1F).Dll-Gal4isalsoexpressedinlegsand suestodrivemorphogenesis.InDrosophila,A-Ptensileforces antennae,anddepletingdpinthesetissuesresultsinretraction arisingfromconvergenceandextensionoftheunderlyingmeso- ofthedistalsegmentsofbothappendages(Figures1Gand1H), dermhavebeenimplicatedindrivingcellshapechangesinthe indicatingthatdpplaysageneralroleindeterminingappendage ectodermthatcontributesignificantlytothefastphaseofgerm shape. band extension (Butler et al., 2009). Similarly, in Xenopus, convergence and extension of deep mesenchymal cells TheDpProteinIsLocalizedtotheApicalExtracellular generateforcesthatpullontheoverlyingepithelialcells,which, MatrixandIsRestrictedtoDistalRegionsofthePupal asaconsequence,undergopassiveintercalation(Keller,2002). Appendages In zebrafish, actomyosin contraction within the yolk syncytial dpencodesagigantictransmembraneproteinthatformspartof layergeneratesanisotropictensionintheenvelopingcelllayer theapicalextracellularmatrix(aECM)andwhoseprimaryfunc- that drives cell shape changes, cell rearrangements, and the tionistoanchorectodermalcellstotheoverlyingcuticle(Bo¨kel orientation of cell divisions (Behrndt et al., 2012; Campinho etal.,2005;Ja(cid:1)zwin(cid:1)skaetal.,2003;Wilkinetal.,2000).Tochar- et al., 2013). These findings highlight the potential importance acterizethedistributionofDpproteinduringappendagedevel- ofglobaltensileforcesinanimalmorphogenesis,yethowthese opment,wehaveusedaproteintrapinsertionintoanN-terminal forcesarecontrolledgeneticallyremainsunknown. intronofdpthatintroducesayellowfluorescentprotein(YFP)tag Here, weexamine the genetic control of global forces using intotheextracellulardomainoftheprotein,butdoesnotaffect the Drosophila pupal wing as a model. Previous studies have proteinfunction(dp-YFP,seeExperimentalProcedures).Inthe shownthatP-Delongationofthewingarisesfrompassiveorien- larvalimaginaldiscs,Dpisfoundinadensemeshworkthatuni- tationofcelldivisionsandcellrearrangementsdrivenbyglobal formlycoverstheapicalsurfaceoftheepithelium(Figure2A).In anisotropictensionimposedbycellconstrictionintheproximal thepupalwing,however,Dpisrestricted.Attheonsetofhinge partofthewing(Aigouyetal.,2010).Weshowthatagroupof contraction (18 hr After Puparium Formation, APF), apically well-known Drosophila mutants that affect wing shape disrupt localized Dp is only found at the wing margin and to a lesser components in a genetic pathway that acts to determine the extentalongthetrajectoriesoftheL3andL5veins(Figures2B pattern of global tensile forces in the wing. Central to this and2E),whileinthepupallegandantenna,Dpisfoundatthe pathway is the apical extracellular matrix protein Dumpy (Dp) extremedistaltipoftheappendage(Figures2Jand2K).Astis- thatlinksthepupalwingepitheliumtotheoverlyingpupalcuticle. suecontractionproceeds,denovoexpressionofDpaccumu- ThepatternofDplocalizationatthecrucialtimeofhingecontrac- lates throughout the tissue (Figures 2C and 2D) such that, at tion determines the ultimate shape of the wing. Our findings 30hrAPF,itappearsasadiaphanousnetworkofenmeshedfi- revealageneralmechanismforthecontroloftissueshapedeter- bers thatissimilar inappearance to theaECMfoundin verte- minationthathasimportantimplicationsforunderstanding the brates(Figures2F–2I)(Jovineetal.,2002). evolutionofshapedeterminationinanimalsystems. DpAnchorstheWingMargintothePupalCuticleto RESULTS DefinethePatternofGlobalForces OurresultssuggestamechanismwherebythelocalizationofDp ThedumpyGeneIsRequiredtoShapetheDrosophila at 18 hr APF defines the pattern of attachment to the pupal Appendages cuticle. In support of this view, we find that in wild-type, the Wesoughttoidentifygenesinvolvedindefiningthepatternof wing margin is attached to the overlying pupal cuticle during tensileforcesinthepupalwing.Wereasonedthathingecontrac- theearlyphaseofhingecontraction,ashasbeenobservedpre- tioncouldonlyresultinanisotropictensionifthewingepithelium viously for wings cultured in vitro (Turner and Adler, 1995). By isanchoreddistallytoprovidethemechanicalresistanceneces- contrast,indpmutants,thewingisnotattached andappears sary to give rise to the tension. Mutants that disrupt this tofloatfreelywithinthepupalcuticle(Figures3Aand3B,arrows). anchoring should have the normal pattern of veins and inter- Furthermore,thewingshapeofdpmutantsdivergesfromwild- veins,butshowaretractionofthewingbladetowardthehinge. typeonlyduringpupaldevelopment,asreportedbyWaddington Suchaphenotypeisassociatedwithallelesofthedumpy(dp)lo- (1940).At18hrAPF,thesizeandshapeofdpmutantwingsare cus. Classical genetic studies on dp mutants revealed three not substantially different from wild-type (Figures 3C and 3D). phenotypic states for the locus: an oblique truncation of the However, over the course hinge contraction, the dp mutant wing(‘‘o’’),pitsonthethoraxknownasvortices(‘‘v’’),andhomo- wingbladepullsawayfromthecuticle,andthetissuecontracts zygous lethality (‘‘l’’). While the null phenotype of the locus is intoaroundedcup-shapethatprefigurestheshapeoftheadult lethality,dpoallelesashomozygotesorincombinationwithother wing(Figures3Cand3D,bottom;cf.Figures1Aand1E). alleles produce a continuous spectrum of wing phenotypes Tofurthertestthenotionthatfinalwingshapearisesfromthe rangingfromamildflatteningofthedistaltipofthewing(the‘‘ob- combination of tissue contraction and patterned anchorage of lique’’phenotype),toacollapseofthedistaltip(theeponymous the wing margin, we developed a vertex model of the pupal ‘‘dumpy’’phenotype),and,inthemostextremecase,toacom- wingepitheliumthatincorporatescontractionofthehingeregion plete retraction of the wing blade (the ‘‘truncate’’ phenotype) with patterned attachment of the margin to a fixed cuticle DevelopmentalCell34,310–322,August10,2015ª2015TheAuthors 311 Figure1. ThedpGeneIsRequiredtoShape theDrosophilaWing,Leg,andAntenna (A–F)Wingphenotypesassociatedwithwild-type (A) or dp loss of function (B–F). The dpo alleles produce wing phenotypes of differing severity: oblique (B), dumpy (C), and truncate (D). The silencingofdpbytheexpressionofaUASRNAi transgeneintheentirewingbladewithnub-Gal4 (E)oralongthewingmarginwithDll-Gal4(F)re- capitulatesthetruncatephenotype(E). (G and H) The phenotypes associated with Dll- Gal4>dpRNAiinthesecondleg(G)andantenna (H)comparedwiththewild-type(top).Asinthe wing,dpknockdownresultsinacontractionofthe distalpartoftheappendage. down of dp in the intervein between L3 andL4withdpp-Gal4resultsinaretrac- tion of the distal tip of the wing, where this intervein intersects with the margin (Figures4Band4G).Asimilarretraction of the distal tip of the wing is seen with sal-Gal4>dp-RNAi, but the phenotype is more severe, reflecting the broader expressionofthedriver(Figures4Cand 4H).Notably,thisphenotypeissimilarto the dumpy phenotype associated with classical dp alleles (Figure 1C). RNAi depletion of dp in the complementary patternwithbrk-Gal4resultsinanarrow- ingofthewingbladeconsistentwithloss ofanchoragealongtheanteriorandpos- terior margins (Figures 4D and 4I), whereas silencing dp in the posterior compartment with hh-Gal4 results in a contraction of the posterior part of the blade (Figures 4E and 4J). To address whether these phenotypes can arise as a result of alterations in the anchorage of the tissue, we incorporated the pre- substrate (Figures 3E and S5 and Movie S1). In the wild-type dictedpatternsofDpfromeachofourexperimentsintoourcom- simulation, the hinge undergoes a contraction comparable to putermodel.Theresultingsimulatedwingshapesresemblethe whatisobservedinvivo,andthebladerespondsbyelongating corresponding in vivo phenotypes (Figures 4K–4O and Movie alongtheP-Daxisviaorientedcelldivisionsandcellrearrange- S2). These results indicate that the pattern of Dp attachment, ments,asdescribedpreviously(Aigouyetal.,2010).Ifthereisno coupled with contraction of the tissue, can account for the attachment,theentirebladecontracts,producingawingshape wingshapephenotypesobservedinvivo. thatsimulatesthenub-Gal4>dp-RNAiphenotype(Figure3Fand MovieS1).Theseresultsindicatethatthefinalshapeofthewing Narrow,Tapered,andLanceolateAffectWingShape canarisesimplybythepatternoftensileforcesresultingfromtis- The tapered wing phenotypes we have observed with brk- suecontractionandpatternedanchorage. Gal4>dp-RNAi and hh-Gal4>dp-RNAi are reminiscent of the wing phenotypes produced by three other loci, narrow (nw), AlteringtheExpressionPatternofDpPredictably tapered(ta),andlanceolate(ll),thatwerefirstidentifiedearlyin AffectsWingShape the last century (Meyer and Edmondson, 1949; Morgan et al., If the localization of Dp determines tissue shape during hinge 1925).Inactivationofthesegenesproducesarangeofpheno- contraction,thenchangingthepatternofDplocalizationinthe types that can be generalized as a narrowing and lengthening wing should result in predictable changes in shape. To test of the wing. The phenotypes associated with nw alleles are this, we silenced dp in defined patterns in the wing with the dosage sensitive. Dominant antimorphic alleles (e.g., nwD/+, driversdpp-Gal4,sal-Gal4,brk-Gal4,andhh-Gal4,thusgener- nwB/+) and weak hypomorphs produce a mild tapering of the ating novel patterns of dp anchorage (Figures 4A–4J). Knock- distalpartofthewing(Figures5Aand5B),whilerecessivealleles 312 DevelopmentalCell34,310–322,August10,2015ª2015TheAuthors Figure2. TheDpProteinIsanaECMComponentthatIsSpecificallyLocalizedduringMorphogenesis (A–G)ImmunolocalizationofDpinthewild-typethirdinstarwingdisc(A),pupalwingsduringhingecontraction(B–E),inpupallegs(J),andantennae(K). (A–GandJ–K)Dp-YFPisshowningreen,actininred,andthenucleiinblue. (A,E,andI)Insetsshowazstackofthemainimagealongtheplaneindicatedbythearrowhead. (A)Inlarvalimaginaldiscs,Dpisexpresseduniformlythroughouttheepitheliumandislocalizedapically. (B–E)Inthepupalwing,expressionisdynamic:at18hrAPF,Dpisonlyfoundapicallyatthewingmargin,withweakexpressionalongthetrajectoriesofL3andL5 (BandE).Overthenext10hr,Dpaccumulatesuniformlyovertheapicalsurfaceoftheepithelium,sothatby30hrAPF,theproteinappearsinadiaphanous networkoverlyingtheactin-richapicalmembrane(C,D,andI). (F–H)SEMimagesrevealthedevelopmentoftheaECMnetworkbetween18–30hrAPF(thescalebarrepresents5microns).At30hrAPF,theaECMissimilarin appearancetotheaECMthathasbeendescribedinvertebratesystems.Inthelegsandantennae,Dpisalsolocalizedintheearlystagesoftissuecontraction, withhighlevelsoftheproteindetectedattheextremetipoftheleg(J)andattheequivalentpositionintheantenna(K).(F)–(H)showSEMimagesofthepupalwing surfaceatthestagesindicated. giverisetothedramaticnarrowingoftheentirewingbladeafter ures1A–1Dand4).Thus,forbothdpandnwphenotypes,alter- whichthegeneisnamed(Figure5C).Thesamerangeofpheno- ations in blade shape are associated with changes in hinge typescanberecapitulatedbyRNAiknockdownusingnub-Gal4 shape, suggesting that the cells of these two domains feed or Tub-Gal4 (Figures 5D and 6A) to drive hairpin constructs back on one another according to the pattern of tensile force directed toward different exons of the nw transcript (see Fig- onthetissue(seeDiscussion). ureS2).Allelesoftaandll,whicharehypomorphicfortheloci (see below), produce the weaker phenotype characteristic of nwEncodesaSecretedC-typeLectinDomain thedominantallelesofnw(Figures5Eand5F). ContainingProtein Morphometricanalysisrevealsthatallofthesephenotypesare To investigate the function of these loci, we genetically and associated with a simple shape warp that is, in essence, a molecularly characterized the affected genes. Using standard stretchofthewingalongtheP-Daxis.Dependingonthegeno- deficiencymapping,nwwaslocalizedtoasmallregionincyto- typesincluded intheanalysis,between75%–85%ofthevari- logicaldivision54A(FigureS2).RNAiofcandidategenesinthe anceisassociatedwithasingleprinciplecomponentthatconsti- interval identified a single gene, CG43164, that produced the tutes an inward shift of landmarks along the anterior and nwphenotypewhenknockeddownwiththewing-specificdriver posteriormarginsandanoutwardshiftoflandmarksatthedistal nub-Gal4(Figure5D).Confirmingthisresult,twoP-elementin- tip of the wing (Figures S1A–S1D). Significantly, the change in sertions, G18887 and KG02048, that lie in the 50 UTR of blade shape is also associated with a contraction of the land- CG43164 (Figure S2) fail to complement nw alleles, and marks associated with the hinge. These data suggest that the sequencing of nwB, nwD, and nwDrS5 revealed lesions in the stretchofthewingbladeisassociatedwithfurthercontraction CG43164codingsequence,whichwerefertohereafterasnw ofthewinghingethanwhatisobservedinwild-type.Notably, (TableS1,seealsoFigureS2). a corresponding deformation of the hinge is observed for any The nw gene encodes a number of different mRNA species phenotypeforwhichthepatternofDphasbeenaltered(seeFig- producedbydifferentialinitiationfromapairofnestedpromoters DevelopmentalCell34,310–322,August10,2015ª2015TheAuthors 313 Figure 3. Dp Anchors the Wing Margin to the Pupal Cuticle to Define the Pattern of GlobalForcesthatShapetheWing (AandB)Brightfieldimagesoffrontalsectionsof wild-type(A)andnub-Gal4>dp-RNAi(B)wingsat 18hrAPF,justafterthepupalapolysis.Inthewild- type,theanteriorandposteriormarginofthewing blade(wb),butnotthedorsalandventralsurfaces, are attached to the overlying pupal cuticle (pc) (A,arrows),whileinthedp-RNAi,theepitheliumis fullydetached(B,arrows).Consequently,phalloi- dinstaining(red)revealsthatthewild-typewing remainsapposedtothecuticleduringtheperiod from18–24hrAPF(C),while thedp-RNAiwing retractsproximally(D). (CandD)Thepositionofthecuticleisindicatedin thefinalpanelbyadashedwhiteline. (E and F) Epithelial vertex model of pupal wing morphogenesis.Thestartingpointofthesimula- tionistheearlypupalwingshape,withthehinge regionshowninlightblueandthebladeinred.The wingveinsareshownindarkblue.Thecontraction ofthetissue,moststronglyinthehinge region, combined with anchorage of the wing margin (green lines) are sufficient to simulate wild-type wingmorphogenesis.Whentheanchorageofthe marginisabsentinthecomputermodel,theentire wingretracts,simulatingthedpmutantwing(see MovieS1). C-TypeLectinDomain(CTLD).Thecore CTLDconsistsoffourCysteine(Cys)res- idues that are laid out with respect to a characteristic arrangement of a helices andbsheets.TheseCysresiduesformin- tramolecular disulfide bridges that give risetothedouble-loopfoldcharacteristic of the domain (Zelensky and Gready, 2003) (Figure 5G). Additional Cys resi- duesmayalsobepresentand,generally, ifthenumberiseven,allformintramolec- ular bonds, while if the number is odd, oneoftheCyswillformanintermolecular bondeitherwithanotherCTLDproteinor an unrelated protein (Drickamer and Dodd, 1999). The Nw CTLD contains five Cys residues, implying that one will form an intermolecular disulfide bridge, and given the placement of these resi- dueswithrespecttothesecondarystruc- ture, the final Cys is most likely to be involvedinthisbond(seeFigure5G). WefindthatNw-SandNw-Laresolu- ble,secretedproteinsandeitherisoform canbeimmunoprecipitatedfromthecul- ture medium when the nw gene is ex- pressedinDrosophilaS2cells(Figure5H). andbydifferentialsplicingandterminationofthefinalexon.The Undernon-reducingconditions,theproteinsrunpredominantly varioustranscriptsencodetwoproteinisoforms,whichwerefer as higher molecular weight complexes that are approximately toasNw-Short(Nw-S)andNw-Long(Nw-L)(FigureS2).Thetwo twice the size of the respective monomers, suggesting that isoformsshareacommonN-terminalmotifwithhomologytothe they can form dimers. Additionally, when Nw-S and Nw-L are 314 DevelopmentalCell34,310–322,August10,2015ª2015TheAuthors Figure4. AlteringthePatternofDpGivesRisetoPredictableChangesinWingShape (A–E)Adultwingphenotypesforwild-type(A),localizedsilencingofDpwithdpp-Gal4(B),sal-Gal4(C),brk-Gal4(D),hh-Gal4(E)(top),diagramsshowingthe regionofthewingwhereDpissilenced(green),andthecorrespondingpatternofDpanchorage(redasterisks)(bottom). (F–J)Developmentaltimecourseofpupalwingdevelopmentrevealedbyphalloidinstaining(red)showingtheontogenyoftheshapechangefrom18to24hrAPF. Thepositionofthepupalcuticlewithrespecttothewingisshowninthefinalpanel(dashedwhiteline). (K–O)Thefinalimagesfromthecomputationalsimulationsofthegenotypescorrespondingto(A)–(E),usingtheepithelialvertexmodel(seeMovieS2).Thewing bladecellsareshadedred,thehingecellsareshadedlightblue,andtheveincellsareshadeddarkblue.Thedashedwhitelinesmarkthewingoutlineatthe beginningofthesimulation.TheDpanchoragetothecuticleisshownasgreenlinesendingwithgreendotsandtheanchorageinthehingeasgreendots. co-expressed, they form complexes corresponding to all Monooxygenase(PAM).Furthercharacterizationofthetwoloci possiblehomodimericandheterodimericcombinations.Thefor- confirmedthisidentification.Thetwollallelesfailtocomplement mation of these higher molecular weight complexes is depen- Phmk07623(Figure5E),aP-elementinsertionintothePhmopen dent on the presence of the final Cys, as when this residue is reading frame, and they are associated with the same 10 bp mutated only the monomeric form is observed (Figure 5H). deletionattheCterminusofthePhmproteinthatremovesthat Finally, when FLAG-tagged Nw-S is co-expressed with HA- final26aminoacids(aa)andappends79aaor80aafromthe taggedNw-SorNw-L,immunoprecipitationwithanti-FLAGan- secondframe(FigureS3;TableS1).Theta1alleleisassociated tibodies co-precipitates the HA-tagged proteins (Figure 5H). withanonsensemutationinthesecondcodingexonofPal1(Fig- Furthermore,ifthefinalCysismutated(Cys>Ala),themodified ureS3),andRNAiofPal1inthedevelopingwingphenocopies proteinisexpressed,butcannotdimerizeeitherwithitselforthe thetamutantphenotype(Figure5F;TableS1). wild-typeprotein(Figure5H). The a-amidation catalyzed byPAM isspecific for a terminal glycineresidue(Eipperetal.,1992),andconsistentwithNwbe- taandllAreRequiredtoActivatenw ing a target for this modification, the short form of Nw (Nw-S) Giventhesimilaritybetweenthemutantphenotypesof nw,ta, ends with a glycine residue that is universally conserved in all andll,itwaslikelythatthegenesarepartofacommonbiochem- Nworthologs.Furthermore,themodificationistypicallyassoci- ical pathway. Initial characterization of ta and ll by deficiency ated with small proteins, such as neuropeptides, whose func- mapping, localized the loci to small intervals containing eight tionmaybedisruptedbytheionizationoftheterminalcarboxyl andninegenes,respectively(FigureS3).Consideredseparately, group(Eipperetal.,1992).ThefactthatNw-Sisasmallprotein neitherintervalcontainedanobviouscandidateforaproteinthat (194 aa), that is predicted to make a tight fold (Zelensky and mightinteractwithNw.Consideredtogether,however,twocan- Gready, 2005), makes it a likely target for a-amidation, and didateswereimmediatelyapparent:thetaintervalincludesthe the mutant phenotypes of ta and ll indicate that thismodifica- Drosophila ortholog of Peptidyl-a-hydroxyglycine a-Amidating tionisessentialforNwfunction.Takentogether,ourdatasug- Lyase(Pal1),andthellintervalincludestheorthologofPeptidyl- gestthatNw,Ta,andLlworkin acommonpathway,withthe glycinea-HydroxylatingMonooxygenase(Phm),thetwocompo- modifying enzymes being required for the maturation of Nw nents of the widely conserved Peptidylglycine a-Amidating (Figure5I). DevelopmentalCell34,310–322,August10,2015ª2015TheAuthors 315 (legendonnextpage) 316 DevelopmentalCell34,310–322,August10,2015ª2015TheAuthors Figure 6. Localization of Nw in the Devel- oping Wing and the Ontogeny of the Nw Phenotype (A–E)LocalizationofNw-GFPthathasbeenex- pressedundercontrolofthenub-Gal4driver.The Nw-GFPisshowningreen,actininred,andthe nucleiinblue.Throughoutwingdevelopment,Nw followsthepatternofDplocalization:inthewing disc,itisfoundapicallythroughouttheepithelium, butat18hrAPF,itislocalizedtothewingmargin and the trajectories of L3 and L5 (B), as wing contractionproceeds,Nwaccumulatesuniformly throughout the wing blade in a diaphanous networkoverlyingtheactin-richapicalmembrane andbristles(C–E;seealsoFigureS4). (F–I)(F)Adultwingshowingthephenotypeasso- ciated with Tub-Gal4>nw-RNAi (A), which is similartothatproducedbystronglossoffunction allelesofnw(seeFigure5C).Likethedpmutant phenotype(seeFigure3),theshapedefectasso- ciatedwithnwmutantsarisesbetween18–24hr APF,concomitantwithhingecontraction(G–I;cf. Figures3Cand3D). (J) Computational simulation of the nw mutant phenotypeusingtheepithelialvertexmodel. duringhingecontraction(Figures6A–6D), aswehaveobservedforthedpmutations (cf. Figures 3C and 3D). In addition, the expressionofaNw-GFPfusiondrivenby the nub-Gal4 driver precisely follows the patternofDpexpressionthroughoutwing development,despitethefactthatfusion protein is expressed in all cells of the wingblade.Inthewingdisc,Nwislocal- ized apically, in the pupal wing at 18 hr APF,itislocalizedtothewingmarginand subsequentlyitaccumulatesuniformlyin a fibrous network over the entire epithe- lium(Figures 6F–6J).Moreover, Nw-GFP doesnotlocalizetotheaECMindpmutant nwAffectstheLocalizationofDptoControlWing wings,inwhichtheaECMfailstoformproperly(FigureS4).Finally, Morphogenesis nwanddpinteractgenetically,withtransheterozygotesproducing Themolecularcharacterizationofnw,ta,andll,andthemutant wingsthatareeitheracutelytaperedorretractedtowardthehinge, phenotypetheyproduce,suggestthattheymightbeinvolvedin similartodpmutants(Figures7A–7G).Theseresultssuggestthat definingthelocalizationofDpinthedevelopingwing.Consistent nw mutants affect wing shape by influencing the pattern of withthisidea,theshapedefectassociatedwithnwmutantsarises anchorageofthewingepitheliumtotheoverlyingcuticle. Figure5. Thenw,ta,andllGenesControlWingShape (A–F)Adultwingsshowingshapephenotypesassociatedwithnw,ta,andllmutants.Comparedtowild-type(A),thenwDheterozygote(nwD/+)ismildlytapered distally(B),whiletherecessivehemizygote(nw2/Df)isnarrowerandlonger(C),similartowhatisobservedwithnub-Gal4>nw-RNAi(D).Thesephenotypesare associatedwithasingleshapewarpconsistingofastretchofthewingbladealongtheP-Daxis(seeFigureS1).Thelossoffunctionofll(orPhm)ortabyRNAi knockdownresultsinamildnarrowingofthewing,similartothephenotypeproducedbynwD/+(EandF). (G)MolecularcharacterizationofnwrevealedthatitencodesaCTLDprotein(seealsoFigureS2),andsecondarystructureoftheNw-Sproteincomparedtothe canonicalCTLDstructureshowsthetwodisulfidebridges(reddottedlines)thatstabilizethecharacteristicfoldofthemotif,plusanadditionalCysattheC terminus(bluedottedline),whichisinvolvedindimerization. (H)BiochemicalanalysisofNwshowsthatbothproteinisoformsaresecretedintothemediumwhenexpressedintissueculturecells(left)andthatundernon- reducingconditionstheyarepredominatelyfoundashomo-orhetero-dimers(right).Dimerization,butnotsynthesisorsecretion,dependsonthefinalCysshown in(G):mutationofthisCysblocksboththeformationofdimersandtheabilityofthemutantformtocoIPthewild-typemonomer(right). (I)Molecularcharacterizationoftaandll(seeFigureS3)revealsthattheyencodethetwoenzymes,Pal1andPhm,thatcatalyzea-amidation,apost-translational modificationthatconvertsaC-terminalglycineresidueintoana-amide.Nw-Sterminateswithaglycineand,giventhephenotypesoftaandll,a-amidationofthis residuemustbeessentialforNwfunctioninvivo. DevelopmentalCell34,310–322,August10,2015ª2015TheAuthors 317 ToinvestigatewhetherNwhasaneffectonDp,weexamined the distribution of Dp-YFP in nw mutant wings. Given the nw phenotype,andtheresultsfromoursimulations,wewouldpre- dictthatDpislocalizedtotheverydistaltipofthewing.Indeed, innwmutantwingsat18hrAPF,Dp-YFPisrestrictedtoanarrow crescentattheextremedistaltipofthewingandisabsentfrom therest of thewing margin (Figures7Hand 7I).Moreover,the shapeofthenwmutantwingcanbesimulatedinourepithelial vertex model simply by restricting the anchorage of the wing margintothedistaltip(Figure6E).Together,ourdatasupport amodelwherenwaffectswingshapebyalteringtheprofileof the Dp localization at the onset of hinge contraction. The nw, ta,ll,and dpgenesthusacttogetherto definewing shapeby controlling the pattern of global forces acting across the wing duringpupalmorphogenesis. DISCUSSION AGeneticMechanismthatDefinesTissueShape Here,wehaveidentifiedagroupofgenesthatdefinetheglobal forcepatternsthatshapetheappendagesinDrosophila.During pupaldevelopment,shapeisdeterminedbyageneralcontrac- tion of the tissue in combination with localized anchorage to the pupal cuticle, which is mediated by the aECM protein Dp. Inthedevelopingwing,Dpislocalizedtothewingmarginsuch that, as tissue contraction proceeds, tension along the P-D axiselongatesthewingandalsodrawsthetwowingsurfaces together.Indeed,manipulatingthepatternofDplocalizationat thisstageleadstodramaticchangesinwingshapethatreflect the underlying change in tissue anchorage. In the legs and antennae,Dpisfoundinadenseplaqueatthedistaltipofthe appendage, and, as in the wing, tissue contraction results in taperingandelongationofthestructure.Thus,wehaveidentified a genetic mechanism that determines shape by regulating the patternofglobaltensileforcesthattheepitheliumexperiences duringtissuecontraction. EstablishingthePatternofDpLocalization Whilethemechanismwehaveuncoveredisclearlyimportantfor properanchorageofthewingepitheliumtothecuticle,itisonly onepartoftheregulatorymechanismthatleadstothelocalized attachment.Indeed,inanwmutant,whilethedistributionofDp isaltered,itisstilllocalizedtothemargin,thusotherinputsmust beinvolvedindefiningwhereDpislocalizedduringpupaldevel- opment.Inthewing,thelocalizationofDptothemarginisremi- niscentoftheexpressionofgenescontrolledbytheNotchand Figure7. GeneticandMolecularInteractionsbetweennwanddp Winglesspathwaysthatdefinethedorsal-ventralcompartment (A–F)Thedosagesensitivityofnwmakesitidealfortestinggeneticinteractions boundary.Indeed, the geneDllisadownstream target ofWg, withotheraECMproteins.nwshowsastronginteractionwithdp,butnotwith andknockingdowndpinthecellsthatexpressDllphenocopies otheraECMcomponents(datanotshown).Adpnullheterozygote(dpolvR/+) the dp loss-of-function phenotype (Figure 1F). Moreover, the producesawild-typewing(A),whilethenwD(ornwB)heterozygoteexhibitsa mildlytaperedwing(B).Inthetransheterozygouscombination,dpolvR+/+nwD,a notchingassociatedwithmutationsintheNotchandWgpath- spectrumofphenotypesisproduced,rangingfromsharplytaperedtoacomplete ways,aswellastheirtargetssuchascut,are,inessence,de- retractionofthewingbladeresemblingthedplossoffunctionphenotype(C–F). fectsintheanchorageofthemarginduringpupaldevelopment: (G) Distinct phenotypic classes from this spectrum of phenotypes were thefailuretospecifythemarginresultsinagapintheexpression defined to quantitate the enhancement, shown as percent of total wings of Dp which produces a phenotype not unlike that which we showingthephenotype. observeindpp-Gal4>dpRNAi(Figure4B).Consistentwiththis, (HandI)LocalizationofDpproteininwild-type(H)andnwmutantwings(I).In ithaspreviouslybeenshownthatthenotchingassociatedwith thewild-type,Dpproteinisdetectablethroughoutthewingmargin,withhigher levelsatthedistaltip(H).Inthenwmutantwings,theexpressionisreducedto cutarisesduringpupaldevelopmentduringtheperiodofhinge asmallcrescentofexpressionatthedistaltip(I). contraction (Jack et al., 1991). Thus, it may be that these 318 DevelopmentalCell34,310–322,August10,2015ª2015TheAuthors

Description:
constriction and localized anchorage of the epithelium to the cuticle namics cell model of space-filling polyhedra simulating cell behavior in a cell.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.