Downloaded from orbit.dtu.dk on: Feb 17, 2023 Particle Methods in Bluff Body Aerodynamics Rasmussen, Johannes Tophøj Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Rasmussen, J. T. (2011). Particle Methods in Bluff Body Aerodynamics. DTU Mechanical Engineering. DCAMM Report No. S146 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Particle Methods in Bluff Body Aerodynamics s i s e h T D h P Johannes Tophøj Rasmussen DCAMM Special Repport No. S146 October 2011 Particle Methods in Bluff Body Aerodynamics Johannes Tophøj Rasmussen A dissertation submitted for the degree of Doctor of Philosophy Section of Fluid Mechanics Department of Mechanical Engineering Technical University of Denmark October 2011 ii Preface This dissertation is submitted in partial fulfilment of the requirements for obtaining the Ph.D. degree in mechanical engineering at the Technical Uni- versity of Denmark (DTU). The Ph.D. Project was funded by the Danish Research Council of Independent Research (Grant. No. 274-08-0258) and carried out at the Department of Mechanical Engineering (MEK), section of Fluid Mechanics at DTU in the period September 1st 2008 - November 1st 2011. Supervisor on the project was Associate Professor Ph.D. Jens Honor´e Walther from the department. There is much and many people to appreciate. In the context of the last three years of Ph.D work at DTU: First and foremost I owe a special thanks to my tough but supportive ’boss’ Jens Honor´e Walther from whom I have learned very much. For making me ’keep digging’ and keeping me on track. I am very grateful for being able to work with you. For our collaboration I would like to thank Mads M. Hejlesen, Allan Larsen and George-Henri Cot- tet. I would like to express my gratitude towards my co-workers in building 403, in particular the other Ph.D. students, for the pleasant atmosphere and the academic discussions. And Laust for our talks on vortices and beyond. I would furthermore like to thank the following: Ole Christensen for his pointers on series expansions. Petros Koumoutsakos for my visit to the CSE lab at ETH. Ivo Sbalzarini and the MOSAIC group at ETH for our collaboration and in particular I would like to thank Omar Awile for his support on PPM. I would like to thank George-Henri Cottet and his team for the pleasant stay at Laboratoire Jean Kuntzmann at UJF. And of course Bennos Hvile for all the love. In this dissertation no nomenclature is given but variables are declared when mentioned. Parts of the work in the present dissertation have been published in Journal of Wind Engineering & Industrial Aerodynamics [84] and Journal of Computational Physics [83]. A third paper is being prepared [43]. iii Resum´e (in Danish) Interaktionen mellem strømninger og strukturer studeres ved hjælp af nu- meriske metoder b˚ade i industrielt og akademisk regi. Strømningers kom- plekse dynamik ved højeReynolds talkanikke aleneomsættes med r˚abereg- ningskraft, hvorfor det er nødvendigt med mere effektive og specialiserede beregningsalgoritmer. Denne afhandling fokuserer p˚a brugen af hvirvelme- toder ogeffektiv udnyttelse af beregningsressourcer oger inddelt i treemner. Først præsenteres en ny metode til bestemmelse af den aerodynamiske admitans gennem numerisk simulering. Metoden bygger p˚a generingen af turbulente hvirvelpartikler der indsættes opstrøms i strømningen. Turbu- lensen generes før afviklingen af simuleringen og bygger p˚a atmosfæriske turbulensspektra og en rummelig korrelationsfunktion. Metoden er valideret ved simulering af turbulente strømninger forbi en flad plade og Storebælts- broen, Øresundsbroen og Busan-Geoje broen. Afhandlingen introducerer endvidere en ny vortex-in-cell algoritme med varierenderummeligopløsning. Poissonligningensombeskriver forbindelsen mellem strømningens vorticitet- og hastighedsfelter løses ved hjælp af fast Fourier transforms i ubegrænsede domæner. Faste legemer p˚atrykkes ved hjælp af Brinkman penalisering i en semi-implicit formulering. Det vises at penaliseringen kan p˚atrykkes som en enkel interpolation. Implementeringen ertodimensionelogsekventiel. Implementeringen valideresmodenanalytisk løsning til Perlman vorticitetsfeltet, impulsivt startede strømninger omkring statiske og roterende cylindre samt strømning omkring en brosektion. Til slut præsenteres en tredimensionel vortex-in-cell implementering som bygger p˚aet eksisterende opensourcesoftware-biblioteksommuliggørerpar- allelle tredimensionelle strømningssimuleringer baseret p˚a hvirvelpartikler. Enhøjere-ordensFourier-baseretPoisson-løser præsenteres ogvalideres. Ved hjælp af regulariseringsteknikker opn˚as formelt en arbitrært høj rummelig konvergensrate. Implementeringen er forberedt den udviklede algoritme til varierendeopløsninghvilket dogikkeerfærdigimplementeret idetunderstøt- tende softwarebibliotek. Simuleringen af deformerende og bevægende objek- ter er demonstreret ved hjælp af Brinkman-penalisering og vortex-in-cell al- goritmen. Modellen er afprøvet p˚a strømning omkring kugler, en brosektion i opførelsesfasen samt vandmanden Aurelia aurita’s fremdrift. iv Abstract Fluid-structure interaction is studied numerically in academics and the in- dustry. Shear computational power alone is insufficient to accurately resolve the complex dynamics of high Reynolds number fluid flow. Therefore the development of more efficient and applicable computational algorithms is important. This dissertation focuses on the use of vortex particle methods and computational efficiency. The work is divided into three parts. A novel method for the simulation of the aerodynamic admittance in bluff body aerodynamics is presented. The method involves a model for describing oncoming turbulence in two-dimensional discrete vortex method simulations by seeding the upstream flow with vortex particles. The turbu- lence is generated prior to the simulations and is based on analytic spectral densities of the atmospheric turbulence and a coherence function defining the spatial correlation of the flow. The method is validated by simulating the turbulent flow past a flat plate and past the Great Belt East bridge, the Øresund bridge and the Busan-Geoje bridge. The dissertation introduces a novel multiresolution vortex-in-cell algo- rithm using patches of varying resolution. The Poisson equation relating the fluid vorticity and velocity is solved using fast Fourier transforms subject to free-space boundary conditions. Solid boundaries are implemented using the semi-implicit formulation of Brinkman penalization and it is shown that the penalization can be carried out as a simple interpolation. The implemen- tation is two-dimensional and sequential. The implementation is validated against the analytic solution to the Perlman test case and by free-space sim- ulations of the onset flow around fixed and rotating circular cylinders and bluff body flows around bridge sections. Finally a three-dimensional vortex-in-cell algorithm is implemented into an existing open source library that enables large scale, three-dimensional particle-vortex simulations. A high order Fourier based Poisson solver is presented using novel use of regularization in the vortex-in-cell algorithm which formally enables arbitrarily high order convergence. The implementa- tion is prepared for multiresolution though it is currently not supported by the parallel framework. The simulation of deformable and moving objects is demonstrated using Brinkman penalization and the vortex-in-cell algo- rithm. The model is applied to flow around spheres, a bridge section during the construction phase and the swimming motion of the medusa Aurelia aurita. v vi Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Resum´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction 1 Dissertation structure . . . . . . . . . . . . . . . . . . . . . . . . 2 1 Fluid-structure interaction 3 1.1 Vortex shedding . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Aerodynamic Admittance . . . . . . . . . . . . . . . . . . . 5 1.3 CFD and fluid-structure interaction . . . . . . . . . . . . . . 8 1.3.1 Computational scaling . . . . . . . . . . . . . . . . . 9 1.3.2 Solid boundaries . . . . . . . . . . . . . . . . . . . . 12 1.3.3 Implementations . . . . . . . . . . . . . . . . . . . . 13 2 Admittance 15 2.1 The discrete vortex method . . . . . . . . . . . . . . . . . . 15 2.2 Synthesizing turbulence . . . . . . . . . . . . . . . . . . . . 18 2.3 Validation, numerical parameters and results . . . . . . . . . 23 2.4 Validation of power spectral density of the velocity . . . . . 25 2.4.1 Sensitivity to upper cutoff and spectral resolution . . 25 2.4.2 Effects of frequency discretisation and circulation in- tegration . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.3 Influence of circulation correction . . . . . . . . . . . 28 2.4.4 Spatial dependency . . . . . . . . . . . . . . . . . . . 29 2.4.5 Dependency of grid height . . . . . . . . . . . . . . . 31 2.4.6 Dependency of inter-particle spacing . . . . . . . . . 32 2.5 Aerodynamic admittance of a flat plate . . . . . . . . . . . . 34 2.5.1 Comparison with analytic solution . . . . . . . . . . 34 2.5.2 Influence of Reynolds number and turbulence intensity 37 2.6 Aerodynamic admittance of bridge sections and comparison to experimental results . . . . . . . . . . . . . . . . . . . . . 38 vii
Description: