Particle Accelerator Physics II Helmut Wiedemann Particle Accelerator Physics II Nonlinear and Higher-Order Beam Dynamics With 118 Figures Springer Professor Dr. Helmut Wiedemann Applied Physics Department and Stanford Synchrotron Radiation Laboratory Stanford University, Stanford, CA 94309-0210, USA ISBN-13: 978-3-642-97552-3 e-ISBN-13: 978-3-642-97550-9 001: 10.1007/978-3-642-97550-9 Library of Congress Cataloging-in-Publication Data. Wiedemann, Helmut, 1938-Particle accelerator physics II: nonlinear and higher-order beam dynamics 1 Helmut Wiedemann. p. cm. Includes bibliographical references and indexes.ISBN-13: 978-3-642-97552-3 I. Beam dynamics. 2. Particle accelerators-Design and construction. I. Title. QC793.3.B4W55 1995 539.7'3- dc20 94-35447 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions ofthe German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1995 Softcover repriot of the hardcover 1st edition 1995 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Camera-ready copy from the author using a Springer TEX macro package SPIN 10070489 54/3144 -5 4 3 2 I 0 -Printed on acid-free paper Preface This text is a continuation of the first volume of "Particle Accelerator Physics" on "Basic Principles and Linear Beam Dynamics". While the first volume was written as an introductory overview into beam dynamics, it does not include more detailled discussion of nonlinear and higher-order beam dynamics or the full theory of synchrotron radiation from relativistic electron beams. Both issues are, however, of fundamental importance for the design of modern particle accelerators. In this volume, beam dynamics is formulated within the realm of Hamil tonian dynamics, leading to the description of multiparticle beam dynamics with the Vlasov equation and including statistical processes with the Fokker Planck equation. Higher-order perturbations and aberrations are discussed in detail, including Hamiltonian resonance theory and higher-order beam dynamics. The discussion of linear beam dynamics in Vol. I is completed here with the derivation of the general equation of motion, including kine matic terms and coupled motion. To build on the theory of longitudinal motion in Vol. I, the interaction of a particle beam with the rf system, in cluding beam loading, higher-order phase focusing, and the combination of acceleration and transverse focusing, is discussed. The emission of syn chrotron radiation greatly affects the beam quality of electron or positron beams and we therefore derive the detailled theory of synchrotron radiation, including spatial and spectral distribution as well as properties of polariza tion. The results of this derivation are then applied to insertion devices such as undulator and wiggler magnets. Beam stability in linear and circular ac celerators is compromized by the interaction of the electrical charge in the beam with its environment, leading to instabilities. Theoretical models of such instabilities are discussed and scaling laws for the onset and rise time of instabilities are derived. Although this text builds upon Vol. I, it relates to it only as a refer ence for basic issues of accelerator physics, which could be obtained as well elsewhere. This volume is aimed specifically at those students, engineers, and scientists who desire to aqcuire a deeper knowledge of particle beam dynamics in accelerators. To facilitate the use of this text as a reference, many of the more important results are emphazised by a frame for quick detection. Consistent with Vol. I we use the cgs system of units. However, for the convenience of the reader used to the system of international units, conversion factors have been added whenever such conversion is necessary, VI Preface e.g. whenever electrical or magnetic units are used. These conversion factors are enclosed in square brackets like [v'471"f 1 and should be ignored by those o who use formulas in the cgs system. The conversion factors are easy to iden tify since they include only the constants c, 71", 10o, fLo and should therefore not be mixed up with other factors in square brackets. For the convenience of the reader, the sources of these conversion factors are compiled in the Appendix together with other useful tools. I would like to thank Joanne Kwong, who typed the initial draft of this text and introduced me to the intricacies of 'lEX typesetting, and to my students who guided me through numerous inquisitive questions. Partial support by the Division of Basic Energy Sciences in the Department of En ergy through the Stanford Synchrotron Radiation Laboratory in preparing this text is gratefully acknowledged. Special thanks to Dr. C. Maldonado for painstakingly reading the manuscript and to the editorial staff of Springer Verlag for support during the preparation of this text. Palo Alto, California Helmut Wiedemann March 1994 Contents 1. Hamiltonian Formulation of Beam Dynamics . . . . . . . . . . . . . . . 1 1.1 Hamiltonian Formalism ............................. 1 1.1.1 Lagrange Equations .......................... 1 1.1.2 Hamiltonian Equations ....................... 4 1.1.3 Canonical Transformations .................... 6 1.1.4 Action-Angle Variables ....................... 10 1.2 Hamiltonian Resonance Theory ...................... 12 1.2.1 Nonlinear Hamiltonian ....................... 12 1.2.2 Resonant Terms ............................. 16 1.2.3 Resonance Patterns and Stop-Band Width ...... 18 1.2.4 Third-Order Resonance ....................... 25 1.3 Hamiltonian and Coupling ........................... 29 1.3.1 Linearly Coupled Motion ..................... 29 1.3.2 Higher-Order Coupling Resonances ............ 38 1.3.3 Multiple Resonances ......................... 39 1.4 Symplectic Transformation .......................... 39 Problems ............................................... 41 2. General Electromagnetic Fields ... . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1 General Transverse Magnetic-Field Expansion .......... 43 2.2 Third-Order Differential Equation of Motion ........... 51 2.3 Periodic Wiggler Magnets ........................... 57 2.3.1 Wiggler Field Configuration ................... 57 2.3.2 Focusing in a Wiggler Magnet ................. 61 2.3.3 Hard-Edge Model of Wiggler Magnets .......... 64 2.4 Superconducting Magnet ............................ 66 Problems ............................................... 71 3. Dynamics of Coupled Motion ............................. 73 3.1 Conjugate Trajectories .............................. 73 3.2 Particle Motion in a Solenoidal Field . . . . . . . . . . . . . . . . . 75 3.3 Transverse Coupled Oscillations ...................... 80 3.3.1 Equations of Motion in Coupling Systems ....... 80 3.3.2 Coupled Beam Dynamics in Skew Quadrupoles .. 80 3.3.3 Equations of Motion in a Solenoid Magnet ...... 82 3.3.4 Transformation Matrix for a Solenoid Magnet .. , 83 VIII Contents 3.3.5 Betatron FUnctions for Coupled Motion ........ 86 Problems ............................................... 92 4. Higher-Order Perturbations .............................. 93 4.1 Kinematic Perturbation Terms ....................... 93 4.2 Control ofthe Central Beam Path .................... 95 4.3 Dipole Field Errors and Dispersion FUnction ........... 102 4.4 Dispersion FUnction in Higher Order .................. 105 4.4.1 Chromaticity in Higher Approximation ......... 107 4.4.2 Nonlinear Chromaticity ....................... 110 4.5 Perturbation Methods in Beam Dynamics ............. 114 4.5.1 Periodic Distribution of Statistical Perturbations. 115 4.5.2 Statistical Methods to Evaluate Perturbations ... 121 Problems ............................................... 126 5. Hamiltonian Nonlinear Beam Dynamics .................... 127 5.1 Higher-Order Beam Dynamics.. .... . .... .. .. .. . .. . . . . 127 5.1.1 Multipole Errors ............................. 127 5.1.2 Nonlinear Matrix Formalism .................. 131 5.2 Aberrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2.1 Geometric Aberrations ....................... 137 5.2.2 Filamentation of Phase Space ................. 143 5.2.3 Chromatic Aberrations ....................... 147 5.2.4 Particle Tracking ............................ 149 5.3 Hamiltonian Perturbation Theory .................... 152 5.3.1 Tune Shift in Higher Order ................... 158 Problems ............................................... 160 6. Charged Particle Acceleration .. . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.1 Accelerating Fields in Resonant rf Cavities ............. 163 6.1.1 Wave Equation .............................. 164 6.1.2 Waveguide Modes. . . .. .. . . . .. . . . . . . . . . .. ... . . 165 6.1.3 rf Cavities .................................. 170 6.1.4 Cavity Losses and Shunt Impedance ............ 175 6.1.5 Determination of rf Parameters ................ 179 6.2 Beam-Cavity Interaction ............................ 181 6.2.1 Coupling Between rf Field and Particles ........ 181 6.2.2 Beam Loading and rf System .................. 187 6.2.3 Higher-Order Mode Losses in an rf Cavity 192 6.2.4 Beam Loading in Circular Accelerators ......... 197 6.3 Higher-Order Phase Focusing ........................ 208 6.3.1 Path Length in Higher Order .................. 208 6.3.2 Higher-Order Phase Space Motion ............. 210 6.3.3 Stability Criteria ............................ 214 6.4 FODO Lattice and Acceleration ...................... 220 Contents IX 6.4.1 Transverse Beam Dynamics and Acceleration .... 222 6.4.2 Adiabatic Damping .......................... 225 Problems ............................................... 227 7. Synchrotron Radiation ................................... 229 7.1 Theory of Synchrotron Radiation ..................... 229 7.1.1 Radiation Field .............................. 229 7.2 Synchrotron Radiation Pow:er and Energy Loss ......... 236 7.3 Spatial Distribution of Synchrotron Radiation .......... 241 7.4 Synchrotron Radiation Spectrum ..................... 245 7.4.1 Radiation Field in the Frequency Domain ....... 246 7.4.2 Spectral Distribution in Space and Polarization .. 251 7.4.3 Angle-Integrated Spectrum ................... 260 Problems ............................................... 267 8. Hamiltonian Many-Particle Systems ....................... 269 8.1 The Vlasov Equation ............................... 269 8.1.1 Betatron Oscillations and Perturbations ........ 275 8.1.2 Damping ................................... 277 8.2 Damping of Oscillations in Electron Accelerators ....... 279 8.2.1 Damping of Synchrotron Oscillations ........... 279 8.2.2 Damping of Vertical Betatron Oscillations ...... 285 8.2.3 Robinson's Damping Criterion ................. 287 8.2.4 Damping of Horizontal Betatron Oscillations .... 290 8.3 The Fokker-Planck Equation ......................... 291 8.3.1 Stationary Solution of the Fokker-Planck Equation 294 8.3.2 Particle Distribution Within a Finite Aperture .. 298 8.3.3 Particle Distribution in the Absence of Damping. 301 Problems ............................................... 302 9. Particle Beam Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 9.1 Particle Distribution in Phase Space .................. 305 9.1.1 Diffusion Coefficient and Synchrotron Radiation . 305 9.1.2 Quantum Excitation of Beam Emittance ........ 308 9.1.3 Horizontal Equilibrium Beam Emittance ........ 308 9.1.4 Vertical Equilibrium Beam Emittance .......... 309 9.2 Equilibrium Energy Spread and Bunch Length ......... 311 9.3 Phase-Space Manipulation ........................... 313 9.3.1 Exchange of Transverse Phase-Space Parameters. 313 9.3.2 Exchange of Longitudinal Phase-Space Parameters 314 9.4 Polarization of Particle Beam ........................ 320 Problems ............................................... 323 10. Collective Phenomena 325 10.1 Statistical Effects 325 X Contents 10.1.1 Schottky Noise .............................. 326 10.1.2 Stochastic Cooling ........................... 328 10.1.3 Touschek Effect ............................. 328 10.1.4 Intra-Beam Scattering ........................ 330 10.2 Collective Self Fields ................................ 332 10.2.1 Transverse Self Fields ........................ 332 10.2.2 Fields from Image Charges .................... 334 10.2.3 Space-Charge Effects ......................... 338 10.2.4 Longitudinal Space-Charge Field .............. 343 10.3 Beam-Current Spectrum ............................. 345 10.4 Wake Fields and Impedance ......................... 350 10.4.1 Definitions of Wake Field and Impedance ....... 353 10.4.2 Impedances in an Accelerator Environment ..... 361 10.5 Coasting-Beam Instabilities .......................... 368 10.5.1 Negative-Mass Instability ..................... 368 10.5.2 Dispersion Relation .......................... 372 10.5.3 Landau Damping ............................ 378 10.5.4 Transverse Coasting-Beam Instability .......... 380 10.6 Longitudinal Single-Bunch Effects .................... 382 10.6.1 Potential-Well Distortion ..................... 382 10.7 Transverse Single-Bunch Instabilities .................. 390 10.7.1 Beam Break-Up in Linear Accelerators ......... 390 10.7.2 Fast Head-Tail Effect ......................... 392 10.7.3 Head-Tail Instability ......................... 397 10.8 Multi-Bunch Instabilities ............................ 399 Problems ............................................... 404 11. Insertion Device Radiation ............................... 406 11.1 Particle Dynamics in an Undulator ................... 407 11.2 Undulator Radiation ................................ 409 11.3 Undulator Radiation Distribution ..................... 412 11.4 Elliptical Polarization ............................... 429 Problems ............................................... 434 Appendix .................................................. 435 References ................................................. 445 Author Index 453 Subject Index 457 Contents to Volume I 1. Introduction 1.1 Short Historical Overview 1.2 Particle Accelerator Systems 1.2.1 Basic COJIlPonents of Accelerator Facilities 1.2.2 Applications of Particle Accelerators 1.3 Basic Definitions and Formulas 1.3.1 Units and Dimensions 1.3.2 Basic Relativistic Formalism 1.3.3 Particle Collisions at High Energies 1.4 Basic Principles of Particle-Beam Dynamics 1.4.1 Stability of a Charged-Particle Beam Problems 2. Linear Accelerators 2.1 Principles of Linear Accelerators 2.1.1 Charged Particles in Electric 2.1.2 Electrostatic Accelerators 2.1.3 Induction Linear Accelerator 2.2 Acceleration by rf Fields 2.2.1 Basic Principle of Linear Accelerators 2.2.2 Waveguides for High Frequency EM Waves 2.3 Preinjector Beam Preparation 2.3.1 Prebuncher 2.3.2 Beam Chopper Problems 3. Circular Accelerators 3.1 Betatron 3.2 Weak Focusing 3.3 Adiabatic Damping 3.4 Acceleration by rf Fields 3.4.1 Microtron 3.4.2 Cyclotron 3.4.3 Synchro Cyclotron 3.4.4 Isochron Cyclotron
Description: