MNRAS000,1–19(2017) Preprint3January2017 CompiledusingMNRASLATEXstylefilev3.0 Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets E. V. Kravchenko1,2⋆, Y. Y. Kovalev1,3 and K. V. Sokolovsky1,4 1LebedevPhysicalInstitute,AstroSpaceCenter,Profsoyuznaya84/32,Moscow117997,Russia 2PushchinoRadioAstronomyObservatoryASCLebedev,Pushchino142290,Moscowregion,Russia 3Max-Planck-Institutfu¨rRadioastronomie,AufdemHu¨gel69,BonnD-53121,Germany 7 4SternbergAstronomicalInstitute,MoscowStateUniversity,Universitetskypr.13,Moscow119991,Russia 1 0 2 n Accepted2016December29.Received...;inoriginalform... a J 1 ABSTRACT Weperformpolarimetryanalysisof20activegalacticnuclei(AGN)jetsusingtheVeryLong ] Baseline Array (VLBA)at 1.4,1.6,2.2,2.4, 4.6,5.0,8.1,8.4,and15.4GHz. The study al- E lowedustoinvestigatelinearlypolarizedpropertiesofthejetsatparsec-scales:distributionof H theFaradayrotationmeasure(RM)andfractionalpolarizationalongthejets,Faradayeffects . andstructureofFaraday-correctedpolarizationimages.Wavelength–dependenceofthefrac- h tionalpolarizationandpolarizationangleisconsistentwithexternalFaradayrotation,while p somesourcesshowinternalrotation.TheRMchangesalongthejets,systematicallyincreas- - o ingitsvaluetowardssynchrotronself-absorbedcoresatshorterwavelengths.Thehighestcore r RMreaches16,900 radm 2 inthesourcerestframeforthequasar0952+179,suggestingthe t − s presenceofhighlymagnetized,densemediaintheseregions.ThetypicalRMoftransparent a jetregionshasvaluesofanorderofahundred radm 2.Significanttransverserotationmea- [ − sure gradients are observed in seven sources. The magnetic field in the Faraday screen has 1 nopreferredorientation,andisobservedtoberandomorregularfromsourcetosource.Half v of the sources show evidence for the helical magnetic fields in their rotating magnetoionic 1 media.Atthesametimejetsthemselvescontainlarge–scale,orderedmagneticfieldsandtend 7 to align its direction with the jet flow. The observed variety of polarized signatures can be 2 explainedbyamodelofspine–sheathjetstructure. 0 0 Keywords: galaxies:jets–radiocontinuum:galaxies–radiationmechanisms:non-thermal . 1 –polarization–magneticfields 0 7 1 : v 1 INTRODUCTION length (e.g. Udomprasertetal. 1997; Zavala&Taylor i 2003; O’Sullivan&Gabuzda 2009a; Hovattaetal. 2012; X Magnetic fields play an important role in launching, accelera- O’Sullivanetal. 2012; Farnesetal. 2014; Pasettoetal. 2016), r tion and collimation of relativistic jets of active galactic nuclei a together with relativistic and opacity effects complicate direct (Blandford&Znajek 1977). Theoretical models and numerical analysis of the jet properties. Multiwavelength full-Stokes very simulations suggest that a rotating accretion disk and ergosphere long baseline interferometric (VLBI) observations are needed to aroundasupermassiveblackholewillproducemagnetizedplasma considerandaccountfortheseeffects. outflows. Twisted magnetic fields will thread these flows (e.g. ComplexlinearpolarizationΠisdefinedas Meieretal. 2001; Vlahakis&Ko¨nigl 2004). While these models predict strong, ordered magnetic fields close to the central en- Π=Q+iU =Pe2iχ=mIe2iχ, (1) gine(e.g.Blandford&Znajek1977;Nishikawaetal.2005),down- stream in the jet these fields may be randomized, dissipated or where I, Q and U are the measured Stokes parameters, P is tangled by different types of instabilities (e.g. Istomin&Pariev the modulus of Π, χ is the observed electric vector position an- 1994; Hardee 2004). Despite numerous theoretical and observa- gle (EVPA), and m is observed degree of polarization, m = tional studies, the exact geometry and main properties of the jet Q2+U2/I2. The depolarization and Faraday rotation change magneticfieldsarestillnotknown. tphe intrinsicpolarization properties of asource: theobserved po- Faraday rotation and depolarization at radio wave- larization angle is rotated with respect to the intrinsic one (χ ) 0 by an amount RM = dχ/d(λ2), while the degree of polariza- tion undergoes depolarization or even repolarization and become ⋆ Contacte-mail:[email protected] wavelength–dependent. Here RM denotes Faraday rotation mea- c 2017TheAuthors (cid:13) 2 E. V. Kravchenko,Y. Y. KovalevandK. V.Sokolovsky Table1.TargetsourcesandRMfrequencyranges. IAUname Other Redshift Optical Observational Observationalfrequencies(GHz) (B1950.0) name class epoch 1.4 1.6 2.2 2.4 4.6 5.0 8.1 8.4 15.4 0148+274 1.260 QSO 2007–03–01 L L L L H H H H H 0342+147 1.556 QSO 2007–06–01 L L L L M M MH MH H 0425+048 OF42 0.517a AGN 2007–04–30 L L L L M M MH MH H 0507+179 0.416 AGN 2007–05–03 L L L L M M MH MH H 0610+260 3C154 0.580 QSO 2007–03–01 - - - - - - - - - 0839+187 1.272 QSO 2007–06–01 L L L L H H H H - 0952+179 1.478 QSO 2007–04–30 L L L L M M MH MH H 1004+141 2.707 QSO 2007–05–03 L L L L H H H H - 1011+250 1.636 QSO 2007–03–01 - - - - M M M M - 1049+215 1.300 QSO 2007–06–01 L L L L M M MH MH H 1219+285 WComae 0.161b BLL 2007–04–30 L L L L H H H H H 1406 076 1.493 QSO 2007–05–03 L L LM LM M MH H H H − 1458+718 3C309.1 0.904 QSO 2007–03–01 L L L L M M MH MH H 1642+690 0.751 QSO 2007–04–30 L L L L M M MH MH H 1655+077 0.621 QSO 2007–06–01 L L L L H H H H H 1803+784 0.680 QSO 2007–05–03 L L L L M MH MH MH H 1830+285 0.594 QSO 2007–03–01 - - M M M M - - - 1845+797 3C390.3 0.056 AGN 2007–06–01 - - - - - - - - - 2201+315 0.298 QSO 2007–04–30 L L L L - - H H H 2320+506 1.279 QSO 2007–05–03 L L L L - H H H H ThevalueofRMwasestimatedatdifferentfrequencyintervalsseparatelyduetotheconsideredlineardependenceofEVPAvs.λ2,namelyLow(1.4GHz to2.4GHz),Middle(2.2GHzto5.0GHz)andHigh(4.6GHzto15.4GHz).RedshiftsandopticalclassesarefromVe´ron-Cetty&Ve´ron(2010).VLBI positioncanbefoundinSokolovskyetal.(2011).ObservationalfrequenciesaregiveninGHz.a–SpectroscopicredshiftobtainedbyAfanas’evetal.(2003). b–Photometricredshift,seeFinkeetal.(2008). sure(Burn1966)inradianspersquaredmetre.RMisproportional from a decrease in electron density and magnetic field strength tothemagneticfieldcomponentparalleltothelineofsight(LoS), with distance from the central engine. Another sign of the outer B,andtotheparticlevolumedensityn alongthepathdl: jet media to be responsible for Faraday rotation is observed RM e k gradients across the jets (Asadaetal. 2002; Go´mezetal. 2008; RM n B dl. (2) O’Sullivan&Gabuzda 2009a; Zamaninasabetal. 2013), which ∝Z e k· can be a signature of the helically-shaped jet magnetic field LoS (Blandford1993;Broderick&McKinney2010).Somesourcesex- Inthesimplestcase,whentheFaradayrotationoccursexternalto hibit RM variability during their active state, accompanied by thejetmagneto-ionicmedium,thedegreeofpolarizationdoesnot emergence of a new jet feature (Taylor 2000; Licoetal. 2014; experiencedepolarizationandRMcanbedefinedas: Girolettietal. 2015; Kravchenkoetal. 2016). In this aspect, RM χ=χ +RMλ2. (3) variationsmayreflectchangesintheaccretionrate,thusaretightly 0 connectedwiththejet.RapidvariationsinRMdownstreaminthe Meanwhile,observedsignificantwavelength–dependentbehaviour jet(Asadaetal.2008a)alsofavourthissuggestion. of the fractional polarization in the AGN jets (e.g. Conwayetal. Despiteavastamountofobservedstudies,itisnotclearpre- 1974) suggests presence of a depolarization and various Faraday ciselywhat isthesourceof FaradayrotationinAGN jets.Inthis effects, e.g. differential Faraday rotation and Faraday dispersion work we investigate the Faraday effects and study the magnetic (Sokoloffetal. 1998). Thus, multiwavelength observations allow field structure in 20 AGN jets at parsec-scales using full polar- thedeterminationofFaradayeffectsandRM,andhenceenableone izationVeryLongBaselineArray(VLBA)observationsconducted tostudyintrinsicorientationofthejetmagneticfield. inthefrequency range from1.4to15.4GHz.Thestudycomple- The most likely source of Faraday rotation is the ion- mentsthe works byFarnesetal.(2014),Pasettoetal. (2016) and ized medium, located in close proximity to the jet. It might be Andersonetal.(2016)whoinvestigatedsourcesatkpc–scaleina dense gas clouds, surrounding AGN jets and producing large comparable frequency range of 1 GHzto15 GHz, as wellas the observed RMs (Junoretal. 1999; Mantovanietal. 2010). How- numerous individual sources (e.g. Asadaetal. 2008a, 2010) and ever, outer jet layers (Zavala&Taylor 2004) or the jet sheath samplestudies(e.g.Zavala&Taylor2003;O’Sullivan&Gabuzda (Asadaetal.2002;Mizunoetal.2007)aremoreplausible.Many 2009a;Hovattaetal.2012).ApplicationoftheVLBItechniqueal- pieces of observational evidence favour this suggestions. One of lowsus(i)tominimizethelevelofdepolarizationwithinthetele- these is the tendency for opaque VLBI cores increase their RM scopebeamcomparedtosingle-dishandconnected-interferometer values towards shorter wavelengths (e.g. Zavala&Taylor 2004; observations(e.g.O’Sullivanetal.2012)and(ii)studyseparately Jorstadetal. 2007; O’Sullivan&Gabuzda 2009a; Algaba 2013). jetregionswithdifferentsynchrotronopacity. Owing to the opacity effects (known as “core shift”), this be- haviour is expected, since the τ 1 surface moves towards Thispaperisstructuredasfollows:observationsanddatare- ≈ thecentral engine withincreasing frequency, wherethe magnetic ductionaredescribedinSection2.InSection3wegiveourresults field is more ordered and stronger (Tchekhovskoyetal. 2011; of Faraday effects study and Faraday rotation measurements, the Zamaninasabetal.2014).Assumingtheouterjetlayerisasource description of the proposed method for the reconstruction of the of Faraday rotation, lower RMs at longer wavelengths may arise spatialmagneticfieldgeometryandresultsofitsapplication.Sec- MNRAS000,1–19(2017) FaradayRM andpolarizationof20 AGNjets 3 N Table2.Galacticrotationmeasures. jet components Source NVSS Optically Averaged 15 thinregions overmap 0148+274 82 3 90 4 91 5 − ± − ± − ± 0342+147 6 8 14 4 13 4 ± ± ± 0425+048 35 11 42 4 42 4 ± ± ± 10 0507+179 29 6 65 4 53 4 − ± − ± − ± 0610+260 44 7 ± − − 0839+187 38.2 1.7 35 4 32 5 ± ± ± 0952+179 5.5 1.0 8 4 9 5 5 − ± − ± − ± 1004+141 12 2 3 4 7 5 ± ± ± 1011+250 36 12 − ± − − 1049+215 8.8 1.9 2 4 0 5 ± − ± ± 1219+285 15 13 1 4 2 4 0 ± − ± ± 0 5 10 15 20 1406 076 10 7 2 4 2 5 m (per cent) − − ± − ± − ± 1458+718 63.1 0.9 66 4 40 5 N ± ± ± 1642+690 11.5 1.3 5 4 5 5 − ± − ± − ± core components 1655+077 14.0 1.9 41 4 40 5 40 ± ± ± 1803+784 66.5 0.9 62 4 65 6 − ± − ± − ± 1830+285 30 3 19 8 ± − ± 1845+797 5 2 30 − ± − − 2201+315 96 3 108 5 103 7 − ± − ± − ± 2320+506 78 5 55 5 57 10 − ± − ± − ± 20 RMvaluesarequotedin radm 2.NVSSRMareobtainedbyTayloretal. − (2009).RMsgiveninthethirdcolumnareestimatedunderassumptionthat theelectricvectorpositionanglemaintainsitsdirectionintheopticallythin 10 regionsoverthewholefrequencyrange.Valuesinthelastcolumnareaver- agedoverthewholeRMmapsacross1.4GHzto2.4GHzrange. 0 0 5 10 15 20 tion4summarizesourfindings.Throughthepaperthemodelofflat m (per cent) ΛCDMcosmologywasusedwithH =68kms 1,Ω =0.3,and 0 − M Ω = 0.7 (PlanckCollaborationetal. 2015). The position angles Figure1.Distributionofmeasuredpolarizationdegreeforallsourcesinthe Λ coreandjetcomponents.Thenumberofappearanceofeachsourceinthe aremeasuredfromnorththrougheast.Thespectralindexαisde- Figurecorrespondstothenumberoffrequencybands,wherepolarizedflux finedasS να,whereS isthefluxdensity,observedatfrequency ∝ wasdetected,andcanreachamaximumvalueofninebands.Thesources, ν. withnosignificantpolarizedfluxdetected,arenotpresented.Thedefinition ofcoreandjetcomponentsaregiveninSection2.1. 2 OBSERVATIONSANDDATAREDUCTION division into sub-bands allows us to decrease the effect of signal 2.1 VLBAObservations depolarizationoverthebandwidth.Theresultingwidthofachan- We selected twenty sources from the geodetic VLBI database nelis32MHzat15.4GHzand16MHzatotherfrequencies.The (Fey&Charlot1997;Petrovetal.2009),showinglargefrequency- totalon-sourceobservingtimeforeachtargetwasaboutonehour dependent core shifts at cm-band and having bright jet features perband. suitable as reference points for aligning images obtained at dif- Thedual-polarizationobservationsrecordeddataateachsta- ferent frequencies. Sokolovskyetal. (2011) used this sample to tionwith2-bitsamplingandatotalrateof256Mbps.Thedatawere investigate the core shift effect concluding that cores of all the correlatedatSocorro(NM,USA)withaveragingtimeof2s. selected sources are well described by the Blandford&Ko¨nigl (1979) model with the shift being ν 1. Accordingly, we define − ∝ theradiocore(orsimplythecore)atagivenfrequencyasthesur- 2.2 DataProcessing face with optical depth τ 1 being the apparent base of the jet (Marscher2008).Seealsod≈iscussioninsect.3.9.Targetswereob- Datacalibration and imaging, as well asmodel fittingweredone servedwiththeVeryLongBaselineArrayduringfoursessionsin in a standard manner for each sub-band independently using the March–June 2007 (Sokolovskyetal. 2011) quasi-simultaneously Astronomical Image Processing System (AIPS, Bridle&Greisen at 9 frequencies in the dual-polarization mode. According to the 1994)andDifmap(Shepherdetal.1994;Shepherd1997).Calibra- IEEE nomenclature, L, S, C, X, and K (noted as U below) fre- tionstepsaredescribedbySokolovskyetal.(2011)andtheAIPS u quencybandswereused.Eachbandconsistsoffour8MHz-wide Cookbook1 in details. The amplitude calibration accuracy in the frequency channels (IFs) per polarization. L, S, C and X bands 1.4GHzto15GHzfrequencyrangeisestimatedtobe 5percent ∼ weresplitintotwosub-bands(twoIFsineachsub-band)centered (Sokolovskyetal. 2011). The errors in Stokes I flux density, σI, at 1.41, 1.66, 2.28, 2.39, 4.60, 5.00, 8.11, and 8.43 GHz respec- andlinearlypolarizedfluxdensity,σP,arecalculatedbyconsider- tively. In the following analysis these sub-bands were processed ingabsolutecalibrationuncertaintiesandthemaprmsnoise. independently. At U-band all four IFs were combined into a sin- glesub-band centeredat15.4GHzinordertoprovidesensitivity similar to that of individual sub-bands at lower frequencies. This 1 http://www.aips.nrao.edu/cook.html MNRAS000,1–19(2017) 4 E. V. Kravchenko,Y. Y. KovalevandK. V.Sokolovsky Polarization leakage parameters of the antennas (D- forthetypicalRMvaluesinAGNjets(e.g.Zavala&Taylor2003). terms) were determined within AIPS with the task LPCAL AthigherfrequenciestheresultingEVPAsmearingiswellwithin (Leppanenetal.1995). D-termswereexamined for timestability calibrationerrors. (Robertsetal. 1994; Go´mezetal. 2002) using the two polar- To model the structure of the source, a number of circular izations of each IF at all antennas. Corrections were calculated or elliptical two-dimensional Gaussian components werefittedto at L- and S-bands by averaging and minimizing the R-L phase thefullycalibratedvisibilitydataintheu–vplane,usingthetask offsetoverfourepochs;atC-andX-bandsbycomparingtheR-L modelfit inDIFMAP.TheVLBIcore was identifiedasthe bright offset over one year time interval; and at U-band by connecting component at the apparent jet base at each frequency and fur- our observations with the D-term phase solutions from 10-year ther we refer toit as “core component”. Toanalyse properties of MOJAVEprogramdata(Listeretal.2009,2013).Thus,accuracy theopticallythinjet,wechoosesingle,brightjetcomponent,that ofleakage parametersapproaches 2 (about 1per cent) atL-and couldbeidentifiedthroughallfrequencies.Hereinafterwereferto ◦ S-bandsand1 (about0.5percent)atotherfrequencies. it as “jet component”. More details of model fitting are given in ◦ Absolute EVPA calibration at L- and S-bands was done us- Sokolovskyetal.(2011). ing the EVPAs of 3C 286 and at C-, X-, and U-bands using the EVPAsof3C273and4C+39.25fromtheVLAMonitoringPro- gram2 (Taylor&Myers 2000), the University of Michigan Radio 2.3 RMMapReconstructionProcedure Astronomy Observatory monitoring program, and from the MO- ThedependenceofEVPAonλ2wasconsideredat‘Low’(1.4GHz JAVE program. Absolute calibration error is assessed as the dif- to2.4GHz),‘Middle’(2.2GHzto5.0GHz)and‘High’(4.6GHzto ferenceincorrectedEVPAbetweenpairsofsub-bands, andatU- 15.4GHz)frequencyintervalsseparatelyforallsourcesbecauseof band it is assessed as the deviation of the corrected EVPA from sparseobservationalfrequencycoverage,changingopacityincore theEVPAofcalibratorstakenfromthemonitoringprograms.The region,andpresenceofFaradayeffects.TheRMisestimatedasa resulting absolute EVPA calibration error is 4 and 2 for L-, S- ◦ ◦ linearslopeofEVPAwithλ2atthesefrequencyranges,presented and C-, X-,U-bands respectively. Final calibration error of abso- inTable1. lutevectorpositionanglecompriseserrorsfrominstrumental and To match the resolution of images obtained at different fre- absolute calibrationsand isestimatedtobe5 at low frequencies ◦ quencies, the images were restored with the beam corresponding (L-andS-bands),2.5 atmiddlefrequencies(C-andX-bands)and ◦ to uniform weighting of the data at the lowest frequency of the 2 atU-band. ◦ Low,Middle,or Highrange, respectively(seeTable1).Theself- The uncertainties in fractional polarization, σ , and EVPA, m calibration technique used to obtain high quality images unfortu- σ ,arecalculatedfromerrorpropagationtheory: χ natelylosesinformationaboutabsolutepositionofasource.There- 1 P2 fore, the positions of optically thin jet components were used to σ = σ2+σ2 , (4) m I r P I I2 alignimagesatdifferentfrequencies.Seedetailsofthistechnique, testsforpossiblebiasesandcomparisonwithothermethodsin,e.g. and Kovalevetal.(2008);Pushkarevetal.(2012);Kutkinetal.(2014); σ2Q2+σ2U2 Fuhrmannetal.(2014). U Q σχ= q2(Q2+U2) , (5) Weusedonlypixelswithpolarizedfluxdensitystrongerthan threetimesthepolarizationerror(seeTaylor&Zavala2010fora whereσQ andσU aretheuncertaintiesintheQandU Stokesflux thoroughdiscussionandreferences).Theresolutionofthenπ-wrap densities.Thecontributionoftheinstrumentalpolarizationleakage problemwasdonebyminimizingthereducedχ2.Finally,weused to theStokes I and linear polarization maps (Robertsetal. 1994; the95 per cent confidence level for therespective number of de- Hovattaetal.2012)isconsideredas greesoffreedom. σ σ = ∆ I2+(0.3I )2, (6) Dterm peak √NantNIFNscan q 2.4 GalacticandExtragalacticRM whereσ isthescatterofD-terms,N isthenumberofantennas, ∆ ant NIFisthenumberofIFs,NscanisthenumberofVLBAscansonpo- Observed Faraday rotation occurs at three main locations: (i) the larizationcalibrator withindependent parallacticangles, and Ipeak jet itself and its immediate vicinity, (ii) the intergalactic and (iii) isthepeakStokesIfluxdensityofthemap.ThescatterofD-terms Galacticmedium.Allvaluesdiscussedinthisworkrefertothefirst inour data is estimatedto be 0.01, 0.005 and 0.002 for 1.4GHz environment, while other two act as foreground Faraday screens to2.4GHz,4.6GHzto8.4GHzand 15.4GHzfrequencies. The andforfurtheranalysistheircontributionmustberemoved. numberofantennasis10,thenumberofscanson3C286,OJ287 The presence of magnetic fieldsin the intergalacticmedium and4C+39.25is3,andthenumberofIFsis4for15.4GHzand will cause Faraday rotation (see Akahori&Ryu 2010, 2011; 2forotherfrequencies.Thiserrorisaddedtotheallcorresponding Bernetetal.2012).Theoriginofthesefieldsoutsidegalaxyclus- rmserrorsinquadrature. ters,aswellastheirdistributioninthecosmicweborredshiftde- Depolarization due to non-zero bandwidth pendenceisnotwellunderstoodyet.Thus,thecontributionofthe (Gardner&Whiteoak 1966) is characterized by the EVPA extragalacticRMcomponent for everysourceisnotreliablyesti- variationacrossthereceivingband,∆ν: matedandwedidnotaccountitinthisanalysis. ∆ν EstimationsofRMresultingfromplasmainourGalaxyhave ∆χ= RMλ2 . (7) been performed by, e.g. Tayloretal. (2009); Maoetal. (2010); − ν VanEcketal. (2011); Jansson&Farrar (2012); Oppermannetal. Itisnoticeableatlowerfrequenciesonly,whereitamountsto 1.5 ≈ ◦ (2012); Han (2013), focusing on reconstruction of Galactic mag- neticfieldsbasedonanalysisofpolarizedpropertiesofextragalac- 2 http://www.vla.nrao.edu/astro/calib/polar/ ticradiosources,Galacticpulsars,recombinationlinesandionized MNRAS000,1–19(2017) FaradayRM andpolarizationof20 AGNjets 5 Table3.MeasuredStokesIfluxdensityandpolarizationdegree(m)ofGaussiancoreandjetcomponents,peakStokesIfluxdensity(Ipeak)andrmsnoise (σI)intheimage.Thefulltableisavailableonline. Source Frequency mcore Icore mjet Ijet Ipeak σI (GHz) (percent) (mJy) (percent) (mJy) (mJybeam 1) (mJybeam 1) − − 0148+274 1.4 1.62 0.03 541.01 0.24 5.34 0.03 590.93 0.22 590.93 0.25 0.14 ± ± ± ± ± 1.7 2.78 0.05 498.41 0.18 5.65 0.05 493.27 0.17 519.92 0.18 0.13 ± ± ± ± ± 2.3 3.52 0.07 399.89 0.31 5.44 0.06 379.67 0.25 465.08 0.31 0.20 ± ± ± ± ± 2.4 3.24 0.07 389.79 0.23 5.11 0.06 379.78 0.20 464.93 0.20 0.22 ± ± ± ± ± 4.6 1.37 0.06 357.65 0.22 3.89 0.08 219.84 0.29 357.65 0.22 0.17 ± ± ± ± ± 5.0 1.19 0.04 350.04 0.12 3.42 0.08 199.79 0.20 350.04 0.12 0.15 ± ± ± ± ± 8.1 1.73 0.08 336.49 0.09 3.28 0.13 112.71 0.08 336.49 0.09 0.16 ± ± ± ± ± 8.4 1.92 0.07 354.87 0.10 3.15 0.13 110.44 0.06 354.87 0.10 0.14 ± ± ± ± ± 15.4 1.31 0.07 273.49 0.13 <2.23 32.00 0.09 294.34 0.12 0.15 ± ± ± ± 0342+147 1.4 <0.46 182.47 0.13 5.36 0.26 96.27 0.11 182.47 0.13 0.16 ± ± ± ± 1.7 0.93 0.13 197.34 0.15 7.06 0.30 74.04 0.14 197.34 0.15 0.15 ± ± ± ± ± 2.3 0.46 0.12 246.47 0.15 7.86 0.44 58.91 0.12 246.47 0.15 0.20 ± ± ± ± ± 2.4 0.56 0.15 256.57 0.12 8.11 0.54 57.03 0.17 256.57 0.11 0.21 ± ± ± ± ± 4.6 1.77 0.08 274.57 0.19 6.80 0.54 32.35 0.12 295.37 0.19 0.17 ± ± ± ± ± 5.0 1.80 0.06 275.70 0.25 8.91 0.57 30.08 0.14 299.11 0.25 0.14 ± ± ± ± ± 8.1 2.49 0.08 293.40 0.26 9.87 0.74 19.74 0.12 306.44 0.27 0.17 ± ± ± ± ± 8.4 2.68 0.06 294.70 0.16 9.54 0.61 19.82 0.09 318.33 0.16 0.15 ± ± ± ± ± 15.4 4.19 0.07 290.99 0.27 17.55 2.18 8.80 0.08 292.04 0.26 0.16 ± ± ± ± ± Thecoreandjetregionscorrespondtothepositionsofτ 1andτ 1jetcomponentsrespectively,whicharepresentedinthesourcesthroughallobserved ∼ ≪ frequencies.PositionsofthesecomponentsareindicatedbycolourcirclesinFig.5.Upperlimitonfractionalpolarizationisthreetimestheaveragedpixel value,locatedatthepositionofcorrespondingcomponentonalinearpolarizationmap. Table4.EVPArotation,∆evpa,duetorotationmeasureof1 radm−2. Frequency(GHz) 1.4 1.6 2.2 2.4 4.6 5.0 8.1 8.4 15.1 λ(cm) 21.40 18.07 13.17 12.55 6.51 6.00 3.70 3.56 1.95 ∆evpa(◦) 2.60 1.87 0.99 0.90 0.24 0.21 0.08 0.07 0.02 gas. Estimated values of Galactic RM agree well between these we follow suggestion of Farnesetal. (2014) and model m vs. λ2 works. Therefore we substracted RMs obtained by Tayloretal. byfourfunctions,whichreproducethewavelength-dependenceof (2009)3 fromtheobservedpolarizationangles,sincetheyprovide Faradayeffectsquitewell.Namelytheseare: Gaussian,Gaussian RMestimatesforallsourcesinoursample(seeTable2).Wenote withaconstantterm,twoGaussians,andpolynomial,givenbyfol- thatthiscorrectionisnotneededfortheRMgradientanalysiswe lowingequationsrespectively perform. (λ a )2 AverageuncertaintiesintheseGalacticRMsamounttoafew m=a0exp − 2−a 1 , (8) to tens of radm 2 (see Table 2). In Table 4 we show values of h 2 i − EVPArotationfordifferentradiofrequenciesforRM=1 radm 2. Aton2.e4rrGorHozfb5y1ra3d.0m◦−t2o4in.5G◦raelsapceticctiRveMly.aWffeecntsotEeVthPaAttahte1se.4eGrr−oHrzs m=a0exph−(λ2−a2a1)2i+a3, (9) mightsignificantlycorrupttheχ valuesatlowfrequencies. 0 Section 3.10 contains adiscussion of theobserved EVPAin (λ a )2 (λ a )2 m=a exp − − 1 +a exp − − 4 , (10) opticallythincomponentsinoursources,whichenablesustoesti- 0 2a 3 2a h 2 i h 5 i mateforegroundRMsandcomparethemwithvaluesreportedby Tayloretal.(2009). m=a λa1. (11) 0 Coefficientsa intheequationsaretobesolvedforduringthemodel 2.5 ModelFittingmvs.λ2 i fitting. Faradayrotationcanproduce frequency-dependent depolarization For the analysis, we consider both the core and jet compo- or even repolarization (e.g. Burn 1966; Sokoloffetal. 1998). To nents.Meanwhile,opticallythicksynchrotronemissioncouldpro- studythepolarizedpropertiesofthesources,weconsideranumber ducemorecomplexEVPAvs.λ2 signatures,thuscannotbewell ofeffectsandusedthemtomodelobservedmvs.λ2dependencies. modelledbytheseparametricfunctions(seePacholczyk&Swihart MeanwhilelinearfitwasappliedtoEVPAvs.λ2inrangesgivenin 1967;Fukui1973;Jones&Odell1977). Table1. The Bayesian Information Criterion(BIC, Schwarz 1978) is Detailed discussion of various Faraday effects is given by, usedtocomparethegoodnessoffitofmodelswithdifferentnum- e.g. Sokoloffetal.(1998) and Farnesetal.(2014).Tofitthedata berofparameters.TheBICisgivenby: BIC 2lnL+kln(N), (12) ≈− 3 http://www.ucalgary.ca/ras/rmcatalogue where lnL is the log-likelihood of the data given the model, k is MNRAS000,1–19(2017) 6 E. V. Kravchenko,Y. Y. KovalevandK. V.Sokolovsky 103 0148+274 0148+274 Core 4 Core FgRM = -82 RM = -17 ± 4 C1 m (%) 23 PA (deg) 0 RMC2 = 168 ± 13 I (mJy) V 102 E 1 −50 0148+274 0 0 0.02 0.04 0 0.01 0.02 0.03 0.04 λ2 (m2) λ2 (m2) 1 ν (GHz) 10 80 0148+274 Jet FgRM = -82 6 RM = -7 ± 4 60 J1 %) deg) RMJ2 = -42 ± 14 m ( 4 PA ( 40 V E 20 0148+274 2 Jet 0 0 0.02 0.04 0 0.01 0.02 0.03 0.04 λ2 (m2) λ2 (m2) Figure2.Source0148+274.(a)1.4GHzto2.4GHzFaradayRMmapintheobserver’sframe.(b)4.6GHzto15.4GHzRMmap.StokesIlevelsaredrawnat (-1,1,2,4...) thelowestcontour(thatis3σSandgiveninTable3).Hereandhereafter,Icontoursandtheirvaluesaregivenforthelowestfrequencyofagiven frequencyr×ange.Thecolourbarisgivenin radm 2.Thedotandletterrepresentpositionsofthemodel-fittedcore(”C”)andjet(”J”)components,EVPAvs. − λ2fitsshownintheinset;thecorrespondingdegreeofpolarizationandspectrumaregiven.TheEVPAvalueistakenfromapolarizationmapconvolvedwith thebeamsizeofthelowestfrequencyoftheRMrangethatisgiveninTable1.ThefittedvaluesofRMandforegroundRM(“FgRM”)areshownandgiven in radm 2.Thespectrumisfittedbyapower-law(S να)andisgivenforthecore(blacktrianglesanddashedline)andforthejet(bluecirclesandsolid line)com−ponents.Upperlimitsonthedegreeofpolari∝zationcorrespondto3σmatthepositionofcomponentonthemap.Fitstothemvs.λ2byGaussian (solidblueline),Gaussianwithconstantterm(dottedgreenline),polynomial(dashedredline)andtwoGaussians(dashed-dottedvioletline)areshown,see Sect.2.5fordetails.ThesolidblacklineonRMmapindicatestheslice(“S”)acrosstheRMmap,takenintheclockwisedirection,withthecorresponding RMdistributionalongtheslicegivenintheinset.Slicesatdifferentfrequenciesarecentredatthepositionofjetcomponent.Thebeamsizealongthesliceis shownbylineintheleftcornerofeachplot.Greylinessurroundingblacklinesrepresenta 1σintervalonobservedRManddonotincludeabsoluteEVPA ± calibrationerror.ThelengthofsliceS1is2.01beamsor15.03mas,ofsliceS2is1.71beamsor3.75mas.RMgradientoftheS2sliceissignificant.Results forothertargetsarepresentedintheelectronicversionofthearticle. MNRAS000,1–19(2017) FaradayRM andpolarizationof20 AGNjets 7 N an optically thin synchrotron spectrum. Meanwhile, core compo- core nents show flat or slightly inverted spectra over the whole fre- components quency range, which is attributed to synchrotron self-absorption 8 (e.g. Blandford&Ko¨nigl 1979; Konigl 1981; Sokolovskyetal. 2011). 6 4 3.2 DegreeofLinearPolarization No significant polarized flux density was detected from two 2 sources, 0610+260 and 1845+797, so they were excluded from the RM analysis. The distribution of polarization degree in the 0 opaque core and theoptically thinjetcomponents for all sources 0 1 2 3 4 log(RM) (rad m-2) is presented in Fig. 1 and given in Table 3. The median degree N ofpolarization inthecoreregion isabout 1percent, whilemax- imum value does not exceed 8 per-cent, which is expected for jet 12 components an opaque medium (e.g. Pacholczyk&Swihart 1967). The me- dian polarization degree in the jet region is about 8 per cent and 10 reaches 25 per cent, which is lower than the value expected in a presence of uniform magnetic fields (e.g. Gardner&Whiteoak 8 1966).Theseestimatesoffractionalpolarizationaresimilartomea- sures obtained by analogous studies (e.g. Lister&Homan 2005; 6 Jorstadetal.2007).Clearly,suchlowobserveddegreeofpolariza- 4 tion is caused by depolarization (either internal or external Fara- day rotation, beam depolarization) and randomly oriented mag- 2 netic fields in these jet regions (see, e.g. Porthetal. 2011). Ob- servationswithhigherspectralandspatialresolutionscanresolve 0 0 1 2 3 4 this issue including space VLBI polarization measurements (e.g. log(RM) (rad m-2) Lobanovetal.2015;Go´mezetal.2016). Figure 3. Distribution of the observed RM values for all sources in the modelledcore(top)andjet(bottom)components.Whitefillingcorresponds to 1.4 GHz to 2.4 GHz RM frequency range, grey filling – 2.4 GHz to 8.4GHz,andobliquefillingtothe4.6GHzto15.4GHz.Detailsaregiven 3.3 m–λ2DependenceandFaradayEffects inTable1andTable6. Allsourcespossescomplexpolarizedstructure.Figure2presents the fractional polarization in the core and jet components versus thenumberofparametersofthemodel,and N isthesamplesize. wavelength squared. We model the m vs. λ2 dependencies by a AssumingGaussiannoise,theLikelihoodofthemodelθisdefined numberoffunctions,describedinSection2.5,andsummarizere- asthejointprobabilitytofitthedataas sultsinTable5andpresenttheminFig.2.Themajority(12outof 18)ofthesourcesshowadecreaseinpolarizationdegreewithin- L=max(p(yθ)), | creasingwavelength.AninhomogeneousexternalFaradayscreenis responsibleforsuchbehaviour,describedbyBurn(1966),Tribble (1991), Rossettietal. (2008), and Mantovanietal. (2009) laws. p(yθ)= N 1 exp (yi−yiM(θ))2 (13) ThisFaradayscreenmaycontainturbulentorsystematicallyvary- | Yi=1 √2πσi (cid:16)− 2σ2i (cid:17) ingregularfield.Fractionalpolarizationinboththesecasespossess ananalogousbehaviour.Unfortunately,ourstudyisnotabletodis- where y = y ,...,y isa set of measurement points withuncer- { 1 N} tinguishbetweenthem.Sixsourcesexhibitanincreaseoffractional tainties σ,...,σ ,andθ= θ ,...,θ isasetofmodelparameters, { i N} { 1 k} polarizationwithwavelength,knownasanomalous(Sokoloffetal. thatpredictthemeasurementsas yM(θ),...,yM(θ) .Wefavourthe { 1 N } 1998)orinverse(Homan2012)depolarization. Foursourcespos- model thathasthelowestvalueofBIC.Theresultsofthefitand sess oscillatory polarization behaviour, expected when a few jet discussionisgiveninSection3.3. or rotation measure components are blended within the region (Conwayetal. 1974; Goldstein&Reed 1984). Sparse frequency coverage does not allow us to study polarized structure in more 3 RESULTSANDDISCUSSION detailoreventodistinguishamongdifferentFaradayeffects. Thelistedeffectsinthetransparentjetcomponentsareaccom- Wefirstoutlinegeneralresults,thenconsidereachsourceindivid- panied by a linear EVPA vs. λ2 dependence across the full fre- ually. quency range which indicates a one-component Faraday rotating screen.Atthesametime,themajorityoftheopaquecoresexhibit complex EVPA vs. λ2 behaviour, resultingfrom Faraday rotation 3.1 SpectralIndex either in external or internal medium relative to the synchrotron SpectraofthecoreandjetcomponentsaredisplayedinFig.2with emissionregion.Detaileddiscussionofindividualsourcesisgiven the power-law fit to the Stokes I: I να. Jet components show inSection3.11. ∝ MNRAS000,1–19(2017) 8 E. V. Kravchenko,Y. Y. KovalevandK. V.Sokolovsky Table5.ResultsforthefitteddepolarizationmodelsandFaraday–correctedelectricfieldorientation. Source Core Core Jet Jet RM Helical Jet model physicallaw model physicallaw gradient signatures EVPA 0148+274 peaked multiplecomponents1 peaked anomalous Y aberration misaligned 0342+147 power2 Tribble power Tribble N ... misaligned 0425+048 power Burn Gaussian3 lowdepolarization N ... unclear 0507+179 twoGaussians4 multiplecomponents Gaussian+constant5 Ros.–Mantov. N ... misaligned 0610+260 ... ... Gaussian+constant Tribble ... ... ... 0839+187 Gaussian+constant Ros.–Mantov. Gaussian lowdepolarization N ... misaligned 0952+179 peaked multiplecomponents Gaussian+constant Tribbe Y 90 jumps unclear ◦ 1004+141 Gaussian+constant Ros.–Mantov. Gaussian+constant Tribble Y ... aligned 1011+250 ... ... power Burn N ... misaligned 1049+215 peaked multiplecomponents Gaussian lowdepolarization N ... misaligned 1219+285 peaked multiplecomponents Gaussian lowdepolarization Y ... unclear /anomalous 1406 076 Gaussian Tribble Gaussian lowdepolarization N ... misaligned − 1458+718 peaked multiplecomponents peaked anomalous Y spine–sheath misaligned /anomalous 1642+690 peaked multiplecomponents Gaussian+constant anomalous Y spine–sheath aligned 1655+077 twoGaussians multiplecomponents Gaussian+constant Tribble N ... aligned 1803+784 power anomalous Gaussian+constant lowdepolarization N ... aligned 1830+285 ... ... Gaussian Tribble N ... misaligned 1845+797 ... ... ... ... ... ... ... 2201+215 ... unclear Gaussian Tribble Y ... misaligned 2320+506 Gaussian+constant Burn/Tribble power Tribble N aberration misaligned 1multipleFaradayrotationmeasureorjetcomponents.2,3,4,5arethefittedmodelsgivenbyequationsfrom(8)to (11).Fittedparametricmodelsaredescribed inSection2.5.Physicaldepolarizationlaws,correspondingtothefittedmodels,arelistedinSection2.5.TheobservedsignificantRMgradientsaregiven inTable7.Under“helicalstructure”weassumepolarizationstructures,arisinginapresenceofahelicalmagneticfields,e.g.spine–sheathstructure.The orientationofthejetEVPAisgivenrelativetothelocaljetdirectionandisshowninTable8.DiscussionofeachsourceindividuallyisgiveninSection3.11. Figure4.FaradayRMmapsandtransverseRMslicesfor0952+179(left,4.6GHzto8.4GHz),1458+718(middle,1.4GHzto2.4GHz)and2201+315 (right,8.1GHzto15.4GHz).Slicesarecenteredatthepositionofridgeline.TheotherdetailsarethesameasinFig.2.Parametersforsignificantslicesare giveninTable7. MNRAS000,1–19(2017) FaradayRM andpolarizationof20 AGNjets 9 3.4 FaradayRotationMeasures erage RM error at theedges of a slice. Because it is asimplified approach, it results in the smaller value of significance, than the Weconstructed43mapsofFaradayRMfor18sourcesovertwoor value derived by our two–steps approach. Sinceour observations threefrequencyranges(asshowninTable1)followingthestepsde- allow us to study transverse RM profiles across a few frequency scribedinSection2.3.InonethirdofthesourcesnoFaradayRM bandssimultaneously, wetooktheseslicesonlyatthepositionof estimates could be obtained in the core regions since they break model-fittedtransparentjetcomponents,whichisidentifiedacross thelinearλ2 law.TheresultingRMmapswithsubstractedGalac- all frequencies. This enabled us to make a direct comparison of ticcontributionarepresentedinFig.2togetherwiththeEVPAvs. rotationmeasuregradientsobtainedatdifferentfrequencyranges. λ2 fits. RM pixel values at the location of transparent jet and at Wewereabletotaketransversesliceson41RMmaps.Three opaque corecomponents aregiveninTable6,whilethedistribu- outofanalysedsliceshavewidthlessthan1halfpowerbeamwidth tionofthesevaluesoverallfrequenciesisgiveninFig.3.Onecan (HPBW),nine are6 1.5 HPBWwide, and others moderately re- see fromFig. 3that high RM values areobserved at short wave- solvethejet(widerthan1.5HPBW).MonteCarlosimulationsby lengthsinthecoresonly.Thus,weconfirmtheexpectedresult(e.g. Mahmudetal.(2013)haveshown that reliableRMgradients can Trippeetal. 2012), indicating the presence of stronger magnetic be observed even when the jet slice is a fraction of the observ- fieldsanddensermediumupstreaminthejet. ing beam. Results for all transverse RM profiles are presented in Using the relation between the observed rotation measure Fig. 2. For a thorough discussion of confusion between real and (RM) and the rest frame value (RM ): RM = RM(1+z)2, we 0 0 spuriousRMgradientswereferreaderstoTaylor&Zavala(2010); estimatethemedianvalueofRM averagedoverallsources,listed 0 Hovattaetal.(2012);Algaba(2013). inthebottomrowofTable6.ThehighestmeasuredFaradayrota- Significant RMgradients weredetectedin8out of 41taken tioninthesourcerestframeis( 1.69 0.03) 104 radm 2 inthe − ± × − slices, namely in 0148+274, 0952+179, 1004+141, 1219+285, 0952+179core. 1642+690and2201+315(seeTable7).Othersources,1458+718, WeobservedasystematicincreaseoftheabsoluteRMvalues 0952+179, and 2201+315, show significant RM gradients at lo- inopticallythinregionswithincreasingfrequency.Mostprobably, cation, other than the position of the model-fitted jet component. thisisduetobeamdepolarizationatlongwavelengths(seesimula- ThesecutsarepresentedinFig.4andtheircharacteristicsaregiven tionsbyPorthetal.2011). in Table 7. Transverse RM profiles in the jets of 1458+718 and 1642+690 arenotmonotonic. Wefound intheliteraturetheonly source3C454.3,havingsimilarRMgradient(Hovattaetal.2012; 3.5 TransverseFaradayRMGradients Zamaninasabetal. 2013). Most likely, the helical magnetic field WestudiedtheRMdistributionalongthecutsmadeperpendicular inthebendingjetof3C454.3givesrisetosuchRMprofile.Itis tothelocaljetdirectiondefinedbythejet’sridge-line.Theridge- difficulttosay,whatcausessuchsharpgradientsin1458+718and line(jetemissioncentre)wasdeterminedbyfittingaGaussianto 1642+690,meanwhilethebothsourcesshowevidencesofahelical the image brightness distribution profile (convolved with circular fieldsintheirjets(seeSection3.11). beam),takenatagivenradialdistancefromthecore(seedescrip- tionofthetechniquein,e.g.Lobanov&Zensus2001). 3.6 RotationMeasureintheCore During theanalysisweomittederrorsintheabsolute EVPA calibration since they affect only the absolute rotation measure We see (Figure 3, Table 6) an overall tendency of the rota- values, while significance of a gradient is determined by rela- tion measure to increase its value with increasing frequency tiveEVPAchanges(e.g.Mahmudetal.2009;Hovattaetal.2012). and to break the linear λ2 law in the cores (see also VLA re- While,toanalyzeRMprofilesatdifferentfrequencyranges,these sults by Kravchenkoetal. 2015). Since the observed sources ex- errorstogether withtheuncertainty inGalacticRM(discussedin hibit significant core shifts among compact extragalactic sources Section2.4)shouldbetakenintoaccount.ComplexityoftheAGN (Sokolovskyetal.2011;Kovalevetal.2008),theshiftofthepho- coresandopacityeffectsmayresultinunreliableRMgradients(as, tospheretowardscentralenginewillresultinnoticeabledifference e.g.showninsimulationsbyBroderick&McKinney2010).Thus ofregionsprobedattheobserved frequencies.Hence,higher val- weanalyseonlyregionslocatedmorethan1beamsizedownstream uesofRMsatthesefrequenciesindicatedensermediaandstronger fromthecore,wheresynchrotronemissionisopticallythin. line-of-sight magneticfields(Lobanov 1998; Kovalevetal.2008; The criterion for a gradient to be significant comprises two Sokolovskyetal. 2011; Porthetal. 2011; Pushkarevetal. 2012); steps.Atfirst,alinewasfittedtotheRMvaluesalongaslice.Ifthe or more Faraday active material between the observer and the linearslopeexceeds3timesitsRMS,thesecondstepisapplied.It source(Porthetal.2011).Consideringthelocationoftheexternal consistsoffittingaconstantlinetothedataatthelevelequaltothe Faradayscreentobeveryclosetothejet,onemayassumeathin- weightedaverageoftheRMalongtheslice.Iftheχ2ofthesecond nerFaradayscreenfortheVLBIcorewithincreasingwavelength. fitislargerthanthetheoreticalvaluefortheappropriatedegreesof Frequencydependence(andthusdistancedependence)ofthecore freedom,theRMgradientwasconsideredtobesignificant.Weas- RMcanbestudiedusingtherelation sumethedegreesoffreedomasthenumberofpixelsalongtheRM RM νa, (14) sliceminus two.Theχ2 test,estimatedinthisway, carriesquali- | core|∼ tativeinformationandhasnostatisticalmeaning,becauseadjacent derivedinJorstadetal.(2007),whereaisapower-lowfall-offin pixelvaluesoftheRMimagearecorrelatedandconsideredaver- theelectrondensity,n ,withdistancerfromthecentralengine, e agermserrorsintheStokesI,QandUarenotevenlydistributedin n r a. (15) theimages. Simulations(likeHovattaetal.2012 andPashchenko e∼ − et al. in preparation) should be used for the statistical estima- Thesecalculationsarebasedonahelicalstructureofthejetmag- tionofthegradientsignificance.FollowingBroderick&McKinney neticfieldandtheassumptionthattheconstanttoroidalcomponent (2010)andTaylor&Zavala(2010),wealsocalculatedthesignif- of the field provides the main contribution to the magnetic field icanceofagradientasthetotalchangeinRMdividedbytheav- alongthelineofsightforasphericalorconicaloutflow. MNRAS000,1–19(2017) 10 E. V. Kravchenko,Y. Y. KovalevandK. V. Sokolovsky Table6.Rotationmeasureresults. Lowfrequencyrange Middlefrequencyrange Highfrequencyrange Power Source RMcore RMjet RMcore RMjet RMcore RMjet a 0148+274 17 4 7 4 168 13 42 14 1.9 0.2 − ± − ± − − ± − ± ± 0342+147 9 4 14 17 0 22 431 52 167 88 6.1 2.9 − ± − ± ± − ± − ± ± 0425+048 7 4 22 19 0507+179 30−4 35±4 1035−19 −55±17 1055−53 141−57 2.98−0.131 − ± − ± ± − ± ± − ± ± 0610+260 − − − − − − − 0839+187 3 4 25 17 − − ± − − − − ± − 0952+179 17 4 4 4 13 19 2767 53 40 89 2.90 0.14 − ± ± − ± − ± ± ± 1004+141 1 4 9 4 127 17 32 17 4.1 4.6 − ± − ± − ± − ± − − ± 1011+250 157 29 − − − − ± − − − 1049+215 4 4 11 4 107 17 23 23 547 52 2.9 0.3 − ± − ± − ± − ± − ± − ± 1219+285 16 4 16 4 17 17 27 15 0.0 0.9 − ± − ± − − − ± − ± ± 1406 076 30 4 7 4 47 5 2 6 235 17 16 25 1.77 0.12 − ± ± − ± ± − ± − ± ± 1458+718 3 4 33 17 1153 56 31 53 1642+690 1−4 8±4 239−17 − 2±18 272±50 −106±102 4.6−9.61 − ± ± − ± − ± ± ± ± 1655+077 24 4 27 4 491 13 4 13 2.54 0.14 ± ± − − − ± − ± ± 1803+784 8 4 3 4 21 17 6 18 28 17 11 24 0.9 0.6 − ± ± ± ± ± ± ± 1830+285 5 6 − − − − ± − − − 1845+797 − − − − − − − 2201+315 44 4 15 4 514 50 15 253 1.40 0.08 − ± − ± − − − ± ± ± 2320+506 44 4 19 4 1627 18 2.84 0.07 ± ± − − − ± − ± median 17 8 107 22 491 29 2.5 med|ian(1+|z)2 61.6 30.5 566.0 79.8 1460.5 129.1 | | − TheshownRMpixelvaluesweredeterminedatthepositionofthemodelledcoreandjetcomponents.RMisgivenin radm 2andcorrectedfortheGalactic − rotation.Thecalculatedpoweraoftherotationmeasurefall-offwithfrequency RMcore νaisgiveninthelastcolumn,seefordetailsSect.3.6.Allthe | |∼ valuesarecalculatedintheobserver’sframeexceptforthelastrowwhichisgiveninthesources’restframe.ThemediansarecalculatedforabsoluteRM values. 1-RMatthehighfrequencyrangehasnotbeenconsideredinthefit. Table7.Detectedsignificanttransverserotationmeasuregradients. Source Name Range RM1 RM2 ∆RM Significance Width (GHz) (radm 2) (radm 2) (r|adm |2) (beams) − − − Slicesatpositionofmodel-fitted,transparentjetcomponent,giveninFig.2 0148+274 S2 4.6–15.4 1 22 -62 20 63 30 2.1σ 1.7 ± ± ± 0952+179 S1 1.4–2.4 -8 6 26 6 34 8 4.1σ 2.3 ± ± ± S3 8.1–15.4 65 192 610 177 545 261 2.1σ 1.3 ± ± ± 1004+141 S2 4.6–8.4 63 35 -41 24 104 42 2.5σ 1.8 ± ± ± 1219+285 S2 4.6–15.4 60 42 -63 19 123 46 2.7σ 2.3 1642+690 S2 4.6–8.4 -153±57 -135±59 17±82 2.9σ1 2.7 ± ± ± S3 8.1–15.4 -272 258 554 216 826 336 2.5σ 3.6 ± ± ± 2201+315 S1 1.4–2.4 -20 7 21 7 41 10 4.1σ 1.7 ± ± ± Slicesatotherjetlocations,giveninFig.4 0952+179 S1 4.6–8.4 62 43 -139 64 200 77 2.6σ 1.7 ± ± ± S3 4.6–8.4 32 49 -92 40 124 63 2.0σ 1.8 ± ± ± 1458+718 S1 1.4–2.4 -17 8 -51 8 34 12 2.9σ 6.7 S2 1.4–2.4 -27±7 -72±7 45±10 4.5σ1 6.7 S3 1.4–2.4 -12±9 -54±7 42±11 3.7σ1 6.9 ± ± ± 2201+315 S1 8.1–15.4 -64 195 668 267 732 330 2.2σ 1.3 ± ± ± Thetotalchangeinrotationmeasure, ∆RM,ischaracterized byRM1 andRM2,whichareeitheredgeorextremeRMvaluesofthemonotonicorsharp | | transverseRMprofilesaccordingly.Theerrorin|∆RM|isdefinedasthesquarerootofσRM1 andσRM2 addedinquadrature.Thesignificanceofagradient isdeterminedasthetotalchangeinRMdividedbyitserror.Wenote,thatweusedthisvalueasaquantitativemeasurefortheRMgradient.Meanwhile, qualitativeanalysisofthegradientsignificanceisbasedontwo–stepsapproach,describedinSection3.5. 1–RMgradientisnotmonotonic. Table 6 summarizes the estimated values of a. Eight of our hancementofthepoloidalmagneticfieldcomponentorsignificant sourcesshowa 1to3suggestingamodelofajetwithFaraday changesofthephysicalconditionsatthejetbase;(iii)possiblefila- ≈ sheath surrounding a conically/spherically expanding jet. Two of mentarystructureoftheFaradayscreen,whichwillbesmearedout oursourcesshowflatterfall-offandthreehavehighera.Thesere- withinabeamatlongwavelengths. sults agree with other, similar measurements (Jorstadetal. 2007; InthirteensourceswecouldmeasurethecoreRMattwoor O’Sullivan&Gabuzda 2009a; Trippeetal. 2012). The observed threefrequencyranges;sevenofthemshowreversalsofRMsign deviations of a can naturally be explained by (i) different geom- (seeFig.2).Suchbehaviour mayresultfromacomplexstructure etryofthejet,(ii)flaringactivityofthesource,thatresultsinen- ofasource:theτ 1surfacecouldbeblendedbyhighlypolarized ∼ MNRAS000,1–19(2017)